
A New Adjusted Residual Likelihood Method for the Fay-Herriot
Small Area Model

Masayo Yoshimori ∗ and Partha Lahiri †

Abstract
In the context of the Fay-Herriot model, a mixed regression model routinely used to combine
information from various sources in small area estimation, certain adjustments to a standard
likelihood (e.g., profile, residual, etc.) have been recently proposed in order to produce
strictly positive and consistent model variance estimators. These adjustments protect the
resulting empirical best linear unbiased prediction (EBLUP) estimator of a small area mean
from possible over-shrinking to the regression estimator. However, the existing adjusted
likelihood methods can lead to high bias in the estimation of both model variance and the
associated shrinkage factors and can produce a negative second-order unbiased mean square
error (MSE) estimate of an EBLUP. In this paper, we propose a new adjustment factor
that rectifies the above-mentioned problems associated with the existing adjusted likelihood
methods. In particular, we show that our proposed adjusted residual maximum likelihood
estimators of the model variance and the shrinkage factors enjoy the same higher-order
asymptotic bias properties of the corresponding residual maximum likelihood estimators.
We compare performances of the proposed method with the existing methods using Monte
Carlo simulations.

Key Words: Empirical Bayes; Linear mixed model; Profile likelihood; Residual likelihood;
Shrinkage.

1. Introduction

For the last few years, there has been an increasing demand to produce reliable
estimates for small geographic areas, commonly referred to as small areas, since such
estimates are routinely used for fund allocation and regional planning. The primary
data, usually a survey data, are usually too sparse to produce reliable direct small
area estimates that use data from the small area under consideration. To improve
upon direct estimates, different small area estimation techniques that use multi-level
models to combine information from relevant auxiliary data have been proposed in
the literature. The readers are referred to Rao (2003) for a comprehensive review
of small area estimation.

The following two-level model, commonly referred to as the Fay Herriot model
(see Fay and Herriot, 1979), has been extensively used in different small area appli-
cations (see, e.g., Carter and Rolph 1974; Efron and Morris 1975; Fay and Herriot
1979, etc.) For i = 1, · · · , m,

Level 1 (sampling model): yi|θi
ind∼ N(θi, Di);

Level 2 (linking model): θi
ind∼ N(x′iβ, A).

In the above model, level 1 is used to account for the sampling distribution of the
direct estimates yi, which are weighted averages or sums of observations from small
area i. Level 2 links the true small area means θi to a vector of p known auxiliary
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variables xi = (xi1, · · · , xip)′, often obtained from various administrative records.
The parameters β and A of the linking model are generally unknown and are es-
timated from the available data. The assumption of known sampling variances Di

often follows from the asymptotic variances of transformed direct estimates (Efron
and Morris 1975; Carter and Rolph 1974) and/or from empirical variance modeling
(Fay and Herriot 1979).

The Fay-Herriot two-level model can be viewed as the following simple linear
mixed model:

yi = θi + ei = x′iβ + vi + ei, i = 1, · · · ,m,

where the vi’s and ei’s are independent with vi
iid∼ N(0, A) and ei

ind∼ N(0, Di); see
Prasad and Rao (1990). Fay and Herriot (1979) called the model a Bayesian model
where level 1 and level 2 are the sampling and prior distributions respectively. We
define the mean squared error (MSE) of an estimator θ̂i of θi as E(θ̂i − θi)2, where
the expectation is with respect to the joint distribution of y and θ under the Fay-
Herriot model. The best prediction (BP) estimator of θi, which minimizes the MSE,
is given by:

θ̂B
i = (1−Bi)yi + Bix

′
iβ,

where Bi = Di
Di+A (i = 1, · · · ,m). The superscript ‘B’ in θ̂B

i is a natural notation
to indicate that θ̂B

i is also the Bayes estimator of θi under the squared error loss
function.

Define y = (y1, · · · , ym)′; X ′ = (x1, · · · , xm), V = diag(A+D1, · · · , A+Dm). If
A is known, β can be estimated by the standard weighted least squares estimator:

β̂(A) = (X ′V −1X)−1X ′V −1y.

Replacing β by β̂(A) one gets the following best linear unbiased prediction (BLUP)
estimator of θi:

θ̂BLUP
i = (1−Bi)yi + Bix

′
iβ̂(A).

In the more realistic case when both β and A are unknown, an empirical best
linear unbiased prediction (EBLUP) estimator of θi is given by

θ̂EB
i = (1− B̂i)yi + B̂ix

′
iβ̂,

where B̂i = Di/(Â + Di), i = 1, · · · ,m, and β̂ = β̂(Â), Â is a consistent estimator
of A, for large m. The superscript ‘EB’ in θ̂B

i is a natural notation to indicate that
θ̂EB
i is also an empirical Bayes estimator of θi under the squared error loss function.

Rao (2003) and Jiang and Lahiri (2006) list several consistent estimators of A.
They include different method-of-moments estimators (see Fay and Herriot, 1979;
Prasad and Rao, 1990) and likelihood based methods such as residual maximum
likelihood (REML) and profile maximum likelihood (see, e.g., Datta et al., 1999;
Das et al., 2004). In terms of the MSE up to the order O(m−1), the REML and ML
estimators of A are equivalent and are better than those of the method-of-moments
estimators (Datta et al., 2005). It is also known that REML is superior to the
ML method in terms of the higher-order asymptotic bias; for example, the bias of
REML is o(m−1) while that of ML is O(m−1), under certain regularity conditions,
for large m.

Under certain regularity conditions, MSE[θ̂EB
i ] = g1i(A) + g2i(A) + g3i(A) +

o(m−1), where g1i(A) = ADi
A+Di

, g2i(A) = D2
i

(A+Di)2
Var(β̂), g3i(A) = D2

i
(A+Di)3

Var(Â),

Var(β̂) = x′i
(∑m

j=1
1

A+Dj
xjx

′
j

)−1
xi, and Var(Â) is the variance of Â correct up to
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the order O(m−1). The term g1i(A) is the dominating term [of order O(1)], captur-
ing the uncertainty of the BP. The additional terms g2i(A) and g3i(A), which are of
order O(m−1), capture the uncertainty due to estimation of β and A, respectively.
It is interesting to note that estimation of A affects the term g3i(A) term through
Var(Â) - the more the variability in the estimator Â the more the MSE of EBLUP.

For example, for both REML and ML, Var(Â) = 2
{∑m

j=1
1

(A+Dj)2

}−1
, smaller than

the asymptotic variance of the Prasad-Rao (PR) and Fay-Herriot (FH) method-of-
moments estimators of A; see Datta et al. (2005). It is also interesting to note
that the adjustment factor h(A) does not affect the MSE of the EBLUP, under a
suitably chosen class of adjustment factors such as the ones corresponding to the
adjusted profile likelihood (AM.LL) and the adjusted residual likelihood (AR.LL)
estimators given in Li and Lahiri (2011).

Note that the second-order approximation involves unknown A and thus cannot
be used to assess the uncertainty of EB for a given data set. A MSE estimator, de-
noted as M̂SE(θ̂EB

i ), is called a second-order unbiased (or nearly unbiased) estimator
of MSE(θ̂EB

i ) if E[M̂SE(θ̂EB
i )] = MSE(θ̂EB

i )+ o(m−1). The second-order approxima-
tion given above is useful in obtaining a second-order unbiased MSE estimator of
EB:

M̂SE(θ̂EB
i ) = g1i(Â) + g2i(Â) + 2g3i(Â)− B̂2

i B̂ias(Â),

where B̂ias(Â) is a second-order unbiased estimator of Bias(Â). For REML and
ML, B̂ias(Â) are always non-negative.

One problem with the standard method-of-moments and likelihood-based meth-
ods is that estimate of A could be zero, especially when A is small relative to the
sampling variances and m is small. This causes an overshrinkage problem in the
sense that the EBLUPs reduce to the regression estimates x′iβ̂ for all small areas
and the estimates do not use the direct estimates, even for areas with moderately
large sample. Wang and Fuller (2003) [17] suggested a strictly positive method-
of-moments estimator for the model variance. On the other hand, Li and Lahiri
(2011) [13] introduced an adjusted REML and PML methods, which are strictly
positive and consistent. Their methods are equivalent to the standard likelihood
methods in terms of higher-order MSE. The order of bias for the Li-Lahiri adjusted
maximum residual and profile likelihood methods is O(m−1), same as the order of
bias for the PML but higher than the REML method. In a Monte Carlo simulation
study, Lahiri and Pramanik (2011) observed that the Li-Lahiri adjusted maximum
likelihood method can be subject to high bias, especially when m is small and B is
close to 1.

In section 2, we propose a new adjustment factor for the adjusted residual and
profile maximum likelihood methods. The purpose of introducing this new adjust-
ment factor is to reduce the bias of the adjusted likelihood based methods. In this
section, we analytically showed that the new adjusted REML is equivalent to the
REML in terms of higher order asymptotic bias and MSE for estimation of both A
and Bi. In terms of the estimation of the shrinkage factor, we argue analytically
that our new adjusted REML generally overestimates while the Li-Lahiri adjusted
REML underestimates. Also, our proposed adjusted REML is better than the Li-
Lahiri adjusted REML when Bi is greater than 1/2, but worse than the Li-Lahiri
adjusted REML when Bi is less than 1/2. When Bi = 1/2, the absolute values
of the leading term of the bias of the two adjusted REML methods are exactly
the same. Thus, for a small area problem with highly unstable direct estimates,
we expect our method to perform well. Another advantage of the new adjusted
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REML method is that the second-order unbiased MSE estimator of the EBLUP is
always non-negative - this is not necessarily true for the Li-Lahiri adjusted REML.
In section 3, we examine the small sample performances of different estimators of
A, B, θi for the balanced case using a Monte Carlo simulation experiment. In this
section, we also study the performances of the second-order MSE estimators of dif-
ferent EBLUPs that use different estimators of A. To save space, we report only
the balance case and exclude proofs of all technical results.

2. A New Adjustment for the Adjusted Likelihood Method

Following Lahiri and Li (2009), we define an adjusted likelihood as

Lad(A) ∝ h(A)× L(A),

where h(A) is an adjustment factor and L(A) is a standard likelihood function (e.g.,
profile likelihood, residual likelihood, etc). Adjusted maximum likelihood estimator
of A is obtained by maximizing Lad(A) with respect to A.

We assume that log(h(A)) is four times continuously differentiable with respect
with A (A > 0) and is free of y. Note that

lad(A) = l(A) + log(h(A)),

l
(1)
ad (A) = l(1) + l̃

(1)
ad ,

l
(2)
ad (A) = l(2) + l̃

(2)
ad ,

where l(A) = log(L(A)), lad(A) = log(Lad(A)), l̃
(1)
ad , l(j) and l

(j)
ad denotes the jth

derivative of log h(A), l(A) = log L(A), and lad(A) with respect of A (j ≥ 1), re-
spectively.
The following theorem provides the higher-order bias and MSE properties of the ad-
justed profile and residual maximum likelihood estimators for a general adjustment
factor h(A).

Theorem 1. Under certain regularity conditions,

(i) E[Âg.AR −A] = 2l̃
(1)
ad

tr[V −2]
+ o(m−1),

(ii) E[Âg.AM −A] = tr[P−V −1]+2l̃
(1)
ad

tr[V −2]
+ o(m−1),

(iii) E[(Âg.Ad −A)2] = 2
tr[V −2]

+ o(m−1),

where Âg.Ad ∈ {Âg.AM , Âg.AR} denotes an adjusted likelihood estimator.

We choose h(A) =
(
tan−1{tr[I −B]})1/m, where B = diag(B1, · · · , Bm). This

choice satisfies the conditions of Theorem 1. Let ÂAM.Y L and ÂAR.Y L denote the
adjusted profile and residual likelihood estimator of A, respectively, with this choice
of h(A). These adjusted maximum likelihood estimators of A are consistent and
strictly positive, under certain regularity conditions. We have the following theorem
that provides the higher-order bias and MSE properties of the proposed adjusted
profile and residual maximum likelihood estimators.

Theorem 2. Under certain regularity conditions,

(i) E[ÂAR.Y L]−A = o(m−1);
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(ii)E[ÂAM.Y L]−A = tr[P−V −1]
tr[V −2]

+ o(m−1);

(iii) E[(ÂA.Y L −A)2] = 2
tr[V −2]

+ o(m−1),
where AA.Y L ∈ {AAR.Y L, AAM.Y L}.
Note that the variances of Bi(Â) for all likelihood methods considered are equiv-

alent, up to order O(m−1). Thus we can compare different estimators using the bias
to the variance (BV) ratio. Using Li and Lahiri (2009), we have

Bias(B(Â))
V ar(B(Â))

=
A + Di

Di
(1− l̃

(1)
ad (A + Di)) + o(1) (1)

For our proposed choice of the adjustment factor, we obtain the following results:

Theorem 3. Under standard regularity conditions, we have, for large m,

(i) BVRE = 1
Bi

+ o(1), BVAR.Y L = 1
Bi

+ o(1), BVAR.LL = − 1
1−Bi

+ o(1),

(ii) BVML = 1
Bi

[1 + (A + Di)H
2 ] + o(1), BVAM.Y L = 1

Bi
[1 + (A + Di)H

2 ] + o(1),

BVAM.LL = − 1
1−Bi

+ (A+Di)
2

Di

H
2 + o(1),

where H = tr[V −1X(X ′V −1X)−X ′V −1] > 0.

3. A Monte Carlo Simulation Study

In this section, we design a Monte Carlo simulation study to compare small sample
performances of different estimators of the model variance A, the shrinkage param-
eter B, different EBLUP estimators corresponding to different estimators of A and
the associated MSE estimators for the balanced case of the Fay-Herriot model with
common mean x′iβ = 0 and equal sampling variance Di = D (i = 1, · · · ,m). To be
explicit, we generate R = 104 independent replicates {Yi, vi, i = 1, . . . , 15} using
the following Fay Herriot model;

Yi = vi + ei,

where vi and ei are mutually independent with vi
iid∼ N(0, A), ei

ind∼ N(0, D), i =
1, · · · , m.

In order to examine effects of m and A/D on the performances of different
estimators, we consider m =15, 45 and D ∈ {0.05, 0.1, 1, 10, 20}, for fixed A =
1. We have also investigated performances of different estimators when we vary
A ∈ (0.05, 0.1, 1, 10, 20), keeping D = 1 fixed. But our findings about the relative
performances of different estimators are similar and so to save space we do not
report the results for this case.

3.1 Comparison of Different Estimators of A, B and θi

We compare following estimators of A: residual likelihood (RE), maximum like-
lihood (ML), Li-Lahiri adjusted residual maximum likelihood (AR.LL), Li-Lahiri
adjusted maximum likelihood (AM.LL), Wang-Fuller method-of-moments (WF),
proposed adjusted residual maximum likelihood (AR.YL), and proposed adjusted
maximum likelihood (AM.YL). Note that in the balanced case, the residual max-
imum likelihood and the Prasad-Rao ([15]) estimators of A are identical. We also
compare the corresponding estimators of B = D/(A + D) and EBLUP of θi.
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Table 1 displays simulated probabilities of obtaining zero estimates of A by
different methods. Note that only the RE and ML could yield zero estimates and
the probability of getting zero estimates is high when A/D is small for both methods,
although RE is relatively less prone to zero estimate than the ML. The performances
of both RE and ML improve as m increases.

We define the percent relative bias (RB) of a given estimator, say Â, of A
by 1

R

∑R
r=1(Â

(r) − A)/A × 100, where Â(r) denotes an estimator of A for the rth
replication, r = 1, . . . , R. The relative bias of the corresponding estimator of B is
defined in a similar way. Table 2 displays the percent relative bias (RB) of different
estimators of A. When A/D = 1, REML is the best. For higher values of A/D,
performances of RE, WF and AR.YL are almost identical and are generally better
AR.LL and AM.LL. For small values of A/D, it is interesting to note that ML
performs the best, followed by AM.YL and they are both better than RE. In this
case, both AM.YL and AR.YL perform better than WF and substantially better
than AM.LL and AR.LL. Overall, in terms of relative bias, AR.YL is tracking RE
well supporting our asymptotic theory. As m increases, the performances of all the
estimators improve.

We define the simulated MSE of an estimator B̂ of B as: MSE(B̂) = 1
R

∑R
r=1(B̂

(r)−
B)2, where B̂(r) denotes an estimator of B for the rth replication, r = 1, . . . , R.
The MSE of an EBLUP is defined in a similar way. We express the simulated MSEs
in percentages.

We report the relative biases and MSEs of different estimators of B in Table
3. For small A/D, AR.LL and AM.LL are subject to severe underestimation and
large MSE, even when m = 45. The proposed adjustment factor cuts down this
underestimation and MSE substantially, but suffers from an overestimation problem
for large A/D, which diminishes when m = 45. It appears that the new adjustment
factor works better than the one proposed by Li and Lahiri (2011) when A/D is
small. However, the opposite is true when A/D is large. The performances of
AR.YL and RE are almost identical when m = 45.

Table 4 displays the simulated MSE of EBLUPs using different estimators of
A. For large A/D, all the methods provides similar results. The new adjustment
factor performs better than the Li-Lahiri adjustment factor for small A/D, even
when m = 45. The new adjustment factor provides results similar to the standard
likelihood method. Overall, ML and AM.YL seem to perform the best.

3.2 Comparison of Different MSE Estimators

For a given area i, the relative bias and relative root mean square error (RRMSE)
of a MSE estimator, say M̂SEi, are defined as

RB
i, dMSEi

=
∑R

r=1 M̂SE
(r)

i /R−MSEi

MSEi
× 100,

RRMSE
i, dMSEi

=

√
MSE(M̂SEi)

MSEi
× 100,

where M̂SE
(r)

i denotes an estimator for MSEi of θ̂EB
i in the rth replication (r =

1, · · · , R).. In table 5, we report the average relative bias and average relative root
mean squared error (RRMSE) of MSE estimators of EBLUPs, where the average is
taken over the small areas. For this particular simulation, we increase the number
of replication to R = 105 to reduce the Monte Carlo errors. Our new adjusted
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likelihood methods perform similar to the standard likelihood methods. However,
for small A/D, the Li-Lahiri adjustment works better than the new adjustment.
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Table 1: Percentage of zero estimates

m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 49.65 56.36 0 0 0 0 0

0.1 45.13 52.42 0 0 0 0 0
1 6.48 8.52 0 0 0 0 0
10 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

45 0.05 44.22 48.44 0 0 0 0 0
0.1 35.79 39.61 0 0 0 0 0
1 0.22 0.38 0 0 0 0 0
10 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

Table 2: RB of Â× 100

m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 269.29 181.93 1290.13 1110.01 322.91 235.88 416.71

0.1 112.07 63.71 632.42 537.77 138.14 90.37 182.55
1 1.62 -11.32 63.88 45.33 2.37 -10.47 3.02
10 -0.48 -7.78 19.61 9.65 -0.47 -7.77 -0.48
20 -0.22 -7.2 18.12 8.65 -0.22 -7.2 -0.22

45 0.05 126.17 97.27 553.31 514.16 137.58 108.99 223.78
0.1 48.03 30.88 262.46 241.06 53.02 36.11 88.85
1 0.03 -4.41 18.98 14.1 0.04 -4.39 0.08
10 -0.09 -2.53 5.67 2.98 -0.09 -2.53 -0.09
20 0.09 -2.24 5.35 2.78 0.09 -2.24 0.09
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Table 3: RB and MSE for B̂i

Relative Bias × 100 of Bi(Â)
m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 -7.5 -4.9 -35.8 -32.6 -10.1 -7.5 -14.2

0.1 -4.8 -1.8 -34.1 -30.6 -7.4 -4.5 -11.5
1 12.7 19.7 -17.3 -11.4 11.6 18.3 10.3
10 17.2 25.5 -1.6 6.5 17.2 25.5 17.2
20 16.9 25.2 -0.8 7.4 16.9 25.2 16.9

45 0.05 -4.1 -3 -19.8 -18.7 -4.7 -3.6 -8.7
0.1 -2.2 -0.9 -18.1 -16.8 -2.7 -1.4 -6.2
1 4.9 7.2 -5.1 -2.9 4.8 7.2 4.8
10 4.8 7.2 -0.5 1.9 4.8 7.2 4.8
20 4.8 7.1 -0.2 2.1 4.8 7.1 4.8

MSE × 100 of Bi(Â)
m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 2.97 2.2 12.79 10.7 2.96 2.17 3.21

0.1 2.9 2.27 10.78 8.87 2.7 2.04 2.63
1 4.5 5.21 2.2 1.88 4.04 4.66 3.52
10 0.25 0.31 0.15 0.17 0.25 0.31 0.25
20 0.07 0.09 0.04 0.05 0.07 0.09 0.07

45 0.05 1.32 1.14 4.24 3.82 1.29 1.1 1.31
0.1 1.45 1.3 3.45 3.06 1.38 1.23 1.13
1 1.45 1.58 0.96 0.94 1.44 1.57 1.41
10 0.05 0.05 0.04 0.04 0.05 0.05 0.05
20 0.01 0.02 0.01 0.01 0.01 0.02 0.01

Table 4: Simulated value of MSE of EBLUP

m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 3.17 2.95 5.34 4.87 3.18 2.95 3.22

0.1 1.97 1.87 2.9 2.67 1.96 1.85 1.95
1 0.59 0.6 0.59 0.58 0.59 0.59 0.59
10 0.09 0.09 0.09 0.09 0.09 0.09 0.09
20 0.05 0.05 0.05 0.05 0.05 0.05 0.05

45 0.05 1.74 1.69 2.41 2.31 1.73 1.68 1.74
0.1 1.3 1.28 1.55 1.5 1.29 1.27 1.27
1 0.53 0.54 0.53 0.53 0.53 0.54 0.53
10 0.09 0.09 0.09 0.09 0.09 0.09 0.09
20 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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Table 5: Comparison of different estimators for MSE

Average RB
m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 162.86 199.61 85.42 101.72 172.79 210.85 186.02

0.1 114.76 139.18 70.51 83.20 124.11 149.88 137.25
1 5.09 10.55 -7.66 -7.42 6.47 11.92 7.92
10 -0.07 -0.12 0.10 0.08 -0.07 -0.12 -0.07
20 0.03 0.12 -0.11 -0.04 0.03 0.12 0.03

45 0.05 156.88 178.37 90.57 96.11 161.85 184.39 205.41
0.1 61.03 73.01 2.71 3.10 65.08 77.20 90.35
1 -0.12 -0.60 3.81 3.66 -0.09 -0.56 0.02
10 0.04 0.05 0.03 0.04 0.04 0.05 0.04
20 -0.01 -0.04 0.05 0.02 -0.01 -0.04 -0.01

Average RRMSE
m A/D RE ML AR.LL AM.LL AR.YL AM.YL WF
15 0.05 66.3 64.0 26.9 28.6 60.3 58.6 48.7

0.1 56.0 53.7 25.2 26.6 51.4 49.6 42.7
1 23.0 23.1 13.9 14.6 22.0 22.1 20.8
10 3.4 3.6 2.8 3.0 3.4 3.6 3.4
20 1.7 1.9 1.5 1.6 1.7 1.9 1.7

45 0.05 129.9 126.8 72.4 73.3 126.4 123.0 93.6
0.1 81.3 79.3 49.6 50.1 79.1 77.1 62.8
1 19.3 19.7 15.6 15.9 19.3 19.6 19.1
10 2.1 2.1 2.0 2.0 2.1 2.1 2.1
20 1.0 1.1 1.0 1.0 1.0 1.1 1.0
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