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Abstract
This paper introduces generalized extreme value (GEV) distribution to analyze right-censored sur-

vival data for populations with a surviving fraction. Our proposed GEV model leads to extremely
flexible hazard functions. We show that our Bayesian model has several nice properties. For ex-
ample, we prove that even when improper priors are used, the resulting posterior distribution could
still be proper under some weak conditions. We further provide theoretical and numerical results
showing that our GEV models offer a richer class of models than the widely used Weibull models.
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1. Introduction

Cure rate model is popularly used for modeling time-to-event survival data where a signif-
icant proportion of observation survived. Perhaps the most popular type of cure rate model
is the mixture model introduced by Berkson and Gage (1952). For this model, the survival
function for the entire population, denoted by S1(t), is given by S1(t) = π+ (1−π)S∗(t),
where π is the cure rate, S∗(t) is the survivor function for the noncured group in the pop-
ulation. Chen et al. (1999) shows that the standard cure rate model has several drawbacks,
e.g., when including covariates through π, we might get improper posterior distributions
for many types of noninformative improper priors. And a different kind of cure rate model
is proposed in Chen et al. (1999). The proposed model is given by Sp(t) = exp(−θF (t)),
where Sp(t) denotes the survival function for the population and exp(−θ) is the cure rate.
This model has a proportional hazards structure through the cure rate parameter, and thus
has an appealing interpretation. After introducing latent variables, posterior samples for
parameters could be efficiently computationally sampled using Gibbs algorithm. Also, the
model yields proper posterior distributions under a wide class of non-informative improper
priors for the regression coefficients, including an improper uniform prior.

In the paper of Chen et al. (1999), the proposed model uses Gamma and Weibull dis-
tributions for survival time, which are quite popular with monotone hazard rates. But, it is
long known that in practice for survival analysis, often the hazard function is not monotone
and it is either upside-down shaped or bathtub shaped or a combination of upside-down
and bathtub shape. For example, when studying the entire life span of a biological entity,
it is quite possible that a three-phase behavior of the failure rate will be observed. A model
with a bathtub or “U” shaped failure rate would be appropriate to describe the population’s
survival capacity. To build an extremely flexible hazard function, in this article, we propose
the GEV distribution for log T where T denotes the failure time. We show that by changing
the shape parameter of the GEV distribution, we obtain a variety of shape for the hazard
function including upside-down and bathtub shape.

In this article, we use Bayesian methodology for making the inference about param-
eters. An important issue in Bayesian analysis is the specification of a prior distribution.
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This is especially true in survival analysis when one wants to assess the importance of cer-
tain prognostic factors such as age, gender,etc. It may be difficult to specify informative
priors for all possible candidate models, especially if little prior information is available.
When such prior elicitation is difficult, or when little prior information is available, one
may consider analyses with conventionally chosen priors, such as the improper uniform
prior, which reflect little prior information.We provide sufficient conditions under which
the posterior distribution is proper when improper uniform prior is used for regression pa-
rameters. We assume that covariates are modeled through the cure rate parameter. This
prior is analytically and computationally attractive, and facilitates a direct comparison with
maximum likelihood.

The article is organized as follows. In Section 2 we provide a short introduction to
generalized extreme value distribution for minima. In Section 3 we derive the likelihood
function and propose a useful class of prior distributions and derive some of its theoretical
properties. We also derive several properties of the resulting posterior distribution. In
Section 4, we perform some numerical simulation for our logGEV model. We also compare
the logGEV model with the Weibull distribution model. Proofs of the theorems appear in
the Appendix.

2. Generalized Extreme Value Distribution

2.1 Introduction of Generalized extreme value distribution

Suppose Y1, Y2, ... is a sequence of independent and identically distributed random vari-
ables each having the distribution function F (y). Let Mn be the minima of the n random
variables Y1, Y2, ..., Yn, i.e. Mn = min{Y1, Y2, ..., Yn}. If the distribution of Yi is specified
then the exact distributions ofMn are known. Besides, extreme value theory also considers
the existence of the limit distribution of Mn. If there exists a non-degenerate distribution
function Hξ(x), and a pair of sequence an, bn,with an > 0, such that

lim
n→∞

P{a−1n (Mn − bn) ≤ x} = Hξ(x) (1)

holds for all continuity points of Hξ(·), we say that Hξ(x) is a generalized extreme
value distribution for minima. The possible forms of Hξ(x) are completely specified as
follows:

Hξ(x) =

{
1− exp[−(1 + ξ x−µσ )

1
ξ

+] if ξ > 0 or ξ < 0

1− exp(− exp(x−µσ )) if ξ = 0,
where µ ∈ R, σ ∈ R+, and

ξ ∈ R are the location, scale, and shape parameters, respectively, and x+ = max(x, 0).
A more detailed discussion on extreme value distribution for minima could be found in

the paper Hirose (2007). Since the GEV distribution for minima is the limiting distribution
of minima, in the electrical engineering literature the GEV distribution for minima is often
used to describe some systems that have many components that fail when the weakest link
fails. Note that there is also generalized extreme value distribution for maxima. Interested
readers could find more details about generalized extreme value distribution for maxima
(see, e.g., Coles (2001) and Hirose (2007)). In this paper we just consider the generalized
extreme value distribution for minima.

2.2 Comparing LogGEV for Minima and Weibull Distribution

Suppose T is a positive random variable, and if we assume a minima GEV distribution for
log T, i.e. logT ∼ GEV(µ, σ, ξ) , then the corresponding cdf and pdf for T are
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F (t;µ, σ, ξ) = ΨGEV

( log(t)− µ
σ

)
,

f(t;µ, σ, ξ) =
1

σt
ψGEV

( log(t)− µ
σ

)
,

where ΨGEV and ψGEV are pdf and cdf for the standardized minima GEV distribution.
When µ = 0 and σ = 1, the density of the failure time T could be written as:

f(t|ξ) =


1
t (1 + ξ log t)

1
ξ
−1

exp[−(1 + ξ log t)
1
ξ ] t > exp(−1

ξ ) if ξ > 0
1
t (1 + ξ log t)

1
ξ
−1

exp[−(1 + ξ log t)
1
ξ ] t < exp(−1

ξ ) if ξ < 0

exp(−t) 0 < t <∞ if ξ = 0.

Lemma 1. If T ∼ Weibull(α, λ), then logT ∼ GEV(ξ = 0, µ = log(λ), σ = 1
α).

Proof. The cumulative distribution function of T is

F (t|α, λ) = 1− exp{−(
t

λ
)α}. (2)

Thus we have P (logT ≤ y) = P (T ≤ exp(y)) = 1− exp{− exp(αy)
λα }.

Assuming µ = log λ, σ = 1
α , then P (log T ≤ y) = 1 − exp{− exp(αy)

λα } = 1 −
exp(− exp(x−µσ )).

Thus, logT ∼ GEV(ξ = 0, µ = log(λ), σ = 1
α).

From Lemma 1, we see that the Weibull distribution is a special case of logGEV distri-
bution.

2.3 Shape of Hazard Function for LogGEV Distribution

If logT ∼ GEV(µ, σ, ξ), so the hazard function of T is

λ(t) =

{
1
σt(1 + ξ log t−µσ )

1
ξ
−1 if ξ 6= 0

1
σt exp( log t−µσ ) if ξ = 0.

Next we check the behavior of the hazard function for the logGEV distribution. Figure
1 shows the plot of hazard function for logGEV(µ = 0, σ = 1, ξ) with three different
values of ξ = −0.03, 0, 0.03. Note that a small change in the value of ξ may lead to a huge
change in the hazard functions especially when the time-to-failure is very small. Figure 2
shows the plot of the hazard function for logGEV(µ = 0, σ = 1.5, ξ) with three different
values of ξ = −0.03, 0, 0.03. When the value of the scale parameter σ is changed from 1
to 1.5, we observe that the shape of the hazard function in Figure 2 is quite different from
the plot of hazard functions in Figure 1. This means that the logGEV distribution is flexible
enough in the sense that we could obtain a variety of shapes for the hazard functions as we
change the parameters of this distribution. So we could consider using logGEV distribution
rather than Weibull distribution if a model with a upside down shaped or basetub shaped
hazard rate is needed since the hazard function for Weibull distribution is monotone.
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3. GEV model for survival data with a surviving fraction

Cure rate models have been used for modeling time-to-event data for various types of can-
cers. For these diseases, a significant proportion of patients are being “cured”. One of the
most popular model is called standard cure rate model. In this model, the surviving func-
tion for the entire population, denoted by S1(t) , is given by S1(t) = π + (1 − π)S∗(t),
where a fraction π of the population are considered “cure”, and the remaining 1 − π are
not “cured”, S∗(t) denotes the surviving function for the non-cured group in the popu-
lations. This model is attractive, but it still has several drawbacks. For example, when
including covariates through π, we might get improper posterior distributions for many
types of noninformative improper priors. This is a serious drawback, since if we want to
obtain Bayesian inference proper prior must be required. To overcome the drawbacks of
the standard cure rate model, in Chen et al. (1999) a different type of cure rate model is
introduced and the specified distribution for survival time is Weibull distribution. In section
2.2, it is proved that if T has Weibull distribution then logT has generalized extreme value
distribution with ξ = 0 . In this paper, we apply the proposed model given in Chen et al.
(1999) to the generalized extreme value distribution to incorporate a larger class of models.

For the cancer data, suppose that we have n subjects, and let Ni denote the number
of carcinogenic cells for the ith subject. Further, assume that the Ni’s are iid Poisson
random variables with mean θi, i = 1, . . . , n. We emphasize here that the Ni’s are not
observed and can be viewed as latent variables in the incubation times z′ijs (j = 1, . . . , Ni)
for the Ni carcinogenic cells for the ith subject, which are unobserved, and all have cdf
F (·), i = 1, . . . , n. Let ti denote the time to relapse of cancer for subject i, where ti is
right censored, so ti = min{zij , 0 ≤ j ≤ Ni}. Let ci denote the censoring time, so that
we observe yi = min(ti, ci), where the censoring indicator δi = I(ti < ci) equals 1 if ti
is a failure time and 0 if it is right censored. Represent the observed data by the vector
(n,y, δ), where y = (y1, · · · , yn) and δ = (δ1, · · · , δn). Also, let N = (N1, · · · , Nn),
θ = (θ1, · · · , θn). The complete data are given by D = (n,y, δ,N), where N is an
unobserved vector of latent variables. In this Section and Section 4, the standard GEV
distribution for minima will be used. So we assume the density for yi is f(yi|ξ) and S(yi|ξ)
is the corresponding survival function, where ξ is the shape parameter, the form of f(yi|ξ)
is shown in section 2.2. This model could also be applied to other failure time data with
surviving fraction, including time to death, time to infection and so on.

The complete-data likelihood function of the parameters (ξ,θ) can be written as

L(θ, ξ|D) =
( n∏
i=1

S(yi|ξ)Ni−δi(Nif(yi|ξ))δi
)

× exp
{ n∑
i=1

(Ni log(θi)− log(Ni!)− θi)
}
. (3)

In addition, for each subject i (i = 1, 2, . . . , n), the survival function is given by Si(t) =
exp(−θiF (t)), so the cure fraction is given by Si(∞) = exp(−θi). Now we incorporate
covariates into the model through θ. For each i = 1, · · · , n, let x′i = (xi1, · · · , xik)
denote the k × 1 vector of covariates for the ith subject, and let β = (β1, · · · , βk) denote
the corresponding vector of regression coefficients, D = (n,y,X, δ). We relate θ to
the covariates by θi = exp(x′iβ), so the cure rate for subject i is exp(− exp(x′iβ)), i =
1, · · · , n.

Thus we could write the complete-data likelihood of (β, ξ) as
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L(β, ξ|D) =
( n∏
i=1

S(yi|ξ)Ni−δi(Nif(yi|ξ))δi
)

× exp
{ n∑
i=1

Nix
′
iβ − log(Ni!)− exp(x′iβ)

}
. (4)

Since N is an unobserved latent vector, by summing out N, the complete data likeli-
hood given in 4 is reduced to

∑
N

L(β, ξ|D) =
n∏
i=1

(θif(yi|ξ))δi exp {−θi(1− S(yi|ξ))} .

Let Dobs = (n,y,X, δ) and assume that the prior distribution for (β, ξ) is π(β, ξ), then
the posterior distribution π(β, ξ|Dobs) is given by:

π(β, ξ|Dobs) ∝
∑
N
L(β, ξ|D)π(β, ξ). (5)

Now we assume that log yi ∼ Hξ(µ = 0, σ = 1, ξ) and use the following prior on β
and ξ, π(β) ∝ 1 and π(ξ) = 1

2I[−1,1](ξ) and assume that π(β, ξ) = π(β) · π(ξ). Since
we are using improper noninformative prior on β, (5) is not necessarily a proper density,
however, theorem 4 below provides conditions under which (5) is proper.

Theorem 1. Let X∗ be an n × k matrix with rows δix′i. If the following two conditions
hold:

(a) X∗ is of full rank,
(b) for every i with δi = 1, yi > exp(1),
then the posterior distribution given in (5) is proper.

The proof of the Theorem 4 is given in Appendix. Note hat the conditions given in
Theorem 1 is not sufficient but not necessary for the propriety of posterior distributions.
However the conditons stated in the theorem above is quite general for the real data set.

4. Numerical Simulation

To check the propriety of using logGEV distribution for minima for the survival time in the
model described in Section 3, we perform a numerical simulation of the logGEV model.
The simulation process is shown below:

1. We take the sample size n = 100 and consider a single covariate x. We choose x by
randomly obtaining a sample from 1, 2, . . . , 100 with replacement, and then standardize x
that we have simulated to stabilize the posterior computations. Note that intercept is also
included in the analysis. Thus we get the n × 2 covariate matrix X with the first column
as 1′s and the second column is the standardized x. We take β = (0, 0.5)′. Denote the ith
row of X is (1, xi) , so θi = exp(β0 + β1x

T
i ), i = 1, ..., n.

2. For every i, i = 1, ..., n, get a sample from Poisson(θi), denote it as Ni, then get
a sample of size Ni from Weibull(α = 1.03, λ = 1) , we denote these observations as
Zi1, . . . , Zi,Ni and set ti = min(Zi1, . . . , Zi,Ni). If Ni = 0, then we set ti =∞.

3. For every i, i = 1, ..., n, let ci denote the censoring time, we take yi = min(ti, ci)
and indicator δi = I(ti < ci) equals 1 if yi is a failure time and 0 if it is right censored.
Here, we take ci = 5 to let the censoring percentage close to 30% .
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4. Next we estimate the parameters using logT ∼ GEV(µ = 0, σ = 1, ξ) distribution.
From Figure 3, we observe that when fitting the simulated data set of Weibull distribu-

tion with the proposed model of logGEV distribution, the survival function estimates are
quite similar to the Kaplan-Meier estimates of the survival function. This indicates that the
logGEV model might be able to provide a quite good fit to the simulated data set. From
table 1, note that both the maximum likelihood estimates and Bayesian estimates for β0
and β1 are very close to the true values of β0 and β1 (2 and 0.6 respectively).

Table 1: Maximum Likelihood Estimates and Bayesian estimates of the Model Parameters:
β0, β1, ξ.

Parameter MLE Bayesian
β0 0.0848 (0.1270) 0.0614 (0.1327)
β1 0.5077 (0.1253) 0.5077 (0.1280)
ξ -0.004 (0.0576) -0.0336 (0.0631)

5. Discussion

In this paper we establish sufficient conditions for the propriety of the posterior distribution
when improper uniform prior is used for the regression coefficients through cure rates. So
far we only prove the case when the standard extreme value distribution is used. This result
could be extended to the proposed model for the general form of generalized extreme value
distribution.

Appendix:Proofs of Theorem 1

Proof. By summing out the unobserved latent vector N, the complete-data likelihood given
in (5) reduces to

∑
N

L(β, ξ|D) =
n∏
i=1

(θif(yi|ξ))δi exp {−θi(1− S(yi|ξ))} .

When δi = 0, (θif(yi|ξ))δi exp {−θi(1− S(yi|ξ))} = exp {−θi(1− S(yi|ξ))} ≤ 1.
When δi = 1, we will show that there exists a constant M such that

(θif(yi|ξ))δi exp {−θi(1− S(yi|ξ))} ≤ gi(ξ)M, (6)

where gi(ξ) = 1
1+ξ log yi

.
The left side of (6) can be rewritten as

f(yi|ξ)
1−S(yi|ξ) · (θi(1− S(yi|ξ)) exp {−θi(1− S(yi|ξ))}

=
1
yi

(1+ξ log yi)
1
ξ
−1

exp[−(1+ξ log yi)
1
ξ ]

1−exp[−(1+ξ log yi)
1
ξ ]

(θi(1− S(yi|ξ)) exp {−θi(1− S(yi|ξ))} , (7)

Let φ1(z) = ze−z φ2(z) = ze−z

1−e−z for z > 0 , then it can be shown that there exists a
constant g0 > 0 such that

φi(z) ≤ g0, ∀z > 0 i = 1, 2. (8)

Using (8), (7) is less than or equal to y−1i g20gi(ξ). Thus taking M = g20 max
i:δi=1

{y−1i }, we

obtain (6).
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Since X∗ is of full rank, there must exist k linearly independent row vectors x′i1 ,x
′
i2
, . . . ,x′ik

such that δi1 = δi2 = . . . = δik = 1.
To prove the posterior given in (5) is proper, we only need to show that∫ 1

−1

∫
Rk

∑
N

L(β, ξ|D)π(ξ)dβdξ <∞ (9)

left side =
1

2

1∫
−1

∫
Rk

∑
N

L(β, ξ|D)dβdξ

=
1

2

1∫
−1

∫
Rk

n∏
i=1

(θif(yi|γ))δi exp {−θi(1− S(yi|γ))} dβdξ

≤ 1

2

∫ 1

−1

∫
Rk

(
n−d∏
i:δi=0

1)

{
k∏
j=1

f(yij |ξ)θij exp{−θij (1− S(yij |γ))}}

{
∏

i:δi=1,i 6=ij ,j=1,...,k

gi(ξ)M}dβdξ

=
1

2

∫ 1

−1

∫
Rk
Md−k

∏
i:δi=1,i 6=ij ,j=1,...,k

gi(ξ)

k∏
j=1

f(yij |ξ)θij exp{−θij (1− S(yij |γ))}dβdξ, (10)

where θij = exp(x′ijβ), d =
∑n

i=1 δi and Rk denotes k-dimensional Euclidean space.
Now we make the transformation uj = x′ijβ for j = 1, 2, . . . , k. This is a one-to-one

linear transformation from β to u = (u1, . . . , uk)
′.

Thus (10) is proportional to

∫ 1

−1

∫
Rk

∏
i:δi=1,i 6=ij ,j=1,...,k

gi(ξ)

k∏
j=1

f(yij |ξ) exp{uj − (1− S(yij |ξ)) exp(uj)}dudξ

=

∫ 1

−1

∏
i:δi=1,i 6=ij ,j=1,...,k

gi(ξ)


k∏
j=1

f(yij |ξ)
∫
R

exp{uj − (1− S(yij |ξ)) exp(uj)}duj

 dξ

=

∫ 1

−1

∏
i:δi=1,i 6=ij ,j=1,...,k

gi(ξ)

k∏
j=1

f(yij |ξ)
1− S(yij |ξ)

dξ, (11)

The last equality holds, because we integrate out u,
∫
R exp{uj−(1−S(yij |ξ)) exp(uj)}duj =

1
1−S(yij |ξ)

.

Since
f(yij |ξ)

1−S(yij |ξ)
=

1
yij

(1+ξ log yij )
1
ξ
−1

exp[−(1+ξ log yij )
1
ξ ]

1−exp[−(1+ξ log yij )
1
ξ ]

≤ M1 · gij (ξ),where M1 =

g0 · max
i:δi=1

y−1i , ignoring the constant, (11) is less than or equal to
∫ 1
−1
∏
i:δi=1

1
1+ξ log yi

dξ.
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Since yi > exp(1),(1+ξ log yi)
1
ξ
+1could not be 0 when ξ ∈ [−1, 1],g(ξ) =

∏
i:δi=1

1

(1+ξ log yi)
1
ξ
+1

is bounded in [−1, 1] . Thus
∫ 1
−1
∏
i:δi=1

1
1+ξ log yi

dξ <∞
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Figure 1: Plot of hazard functions corresponding to minima GEV distribution with µ =
0, σ = 1 and different values of ξ.

Figure 2: Plot of hazard functions corresponding to minima GEV distribution with µ =
0, σ = 1.5 and different values of ξ.
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Figure 3: Estimated survival Curves for the simulated model Weibull(α=1.03,λ=1) by
Kaplan-Meier method(solid line is the estimate, dashed lines are 95% confidence band for
the survival function) and the fitting model log GEV(µ = 0, σ = 1, ξ) (the dotted line).
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