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Abstract
Many policymakers propose linking administrative decisions related to teachers to their effective-

ness. Since teacher effectiveness cannot be measured directly, many researchers use value-added
models to apportion changes in student achievement to the teachers and schools who have taught
them. Several models, based on a linear mixed model framework, have been proposed and used for
assessing value added by teachers: students’ test scores are used as outcome variables and teachers’
contribution is treated as random effect. The value-added score for a teacher is the empirical best
linear unbiased predictor in the linear mixed model. However, the linear mixed model formula-
tion has certain limitations, among them, its rigid structure. To address this, we use random forest.
We introduce new variable importance measures and also use the existent measures to rank teacher
effects. In addition, comparisons of traditional linear mixed model and random forest results are
presented. We show that the random forest results may be more accurate when the linear model is
misspecified. It is possible to use this approach as a complementary tool to linear models.
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1. Introduction

Much of the debate about educational reform has centered on teacher and school account-
ability. Attempts to measure the teacher’s influence on student achievement has been an
interest in the scientific community for several decades (Hanushek, 1971; Bryk and Weis-
berg, 1976; Hanushek, 1979). Programs have been implemented in specific states or school
districs to account for school and/or teacher effects since the early 1990s, such us The
Tennessee Value-Added Assessment System (Sanders, Saxton, and Horn, 1997). How-
ever, since the most recent reauthorization of The Elementary And Secondary Education
Act, The No Child Left Behind Act of 2001, a major emphasis has been placed on setting
standards that each teacher must meet in order to be considered highly qualified. As a con-
sequence, many states and school districts have adopted or are in the process of adopting
models intended to measure teacher effects on student achievement.

A number of models have been proposed and are currently used for assessing value
added by teachers and schools. Most of these models, henceforth called traditional VAMs,
are either special cases of a general mixed model described in McCaffrey, Lockwood, Ko-
retz, and Hamilton (2004) or extensions of it (McCaffrey and Lockwood, 2010; Mariano,
McCaffrey, and Lockwood, 2010). In these models, students’ test scores are used as out-
come variables, while the contributions of teachers are treated as random effects. Hence,
the value-added score for a teacher is obtained as the predicted value of the random effect.

The appropriateness of the use of VAMs in education is an ongoing debate (Stewart,
2006; Rothstein, 2009, 2010; Briggs and Domingue, 2011; Kinsler, 2012). This study ap-
proaches one potential limitation of traditional VAMs: the rigid structure of the model.
Specifically, this limitation arises because the linear model structure only includes covari-
ates that are explicitly included in the model; typically, few interactions are considered and
nonlinearity is typically only considered through quadratic terms. It might be possible that
a certain teacher is more effective with a certain group of students, but that situation can
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only be taken into account in the VAM if the corresponding interaction is modelled in ad-
vance. If this is not the case, the VAM would be misspecified. To address this limitation we
work with data mining methods, in particular random forest (Breiman, 2001), a supervised
ensemble method of bagging or bootstrap aggregation. The advantage of using this method
is that, as opposed to the traditional VAMs, no structure is predetermined. Therefore, in
principle, any possible effect would be taken into account when obtaining results.

This work compares the information about teacher effect obtained using traditional
VAM methodology and data mining techniques. For the former, we use two models: the
covariate adjustment model and the gain score model. For the latter, we work with random
forest. In the linear mixed models, the teacher effects are obtained using the empirical
best linear unbiased predictors (EBLUPs). In random forest, there is no methodology that
produces teacher effects. Rather, variable importance measures are used to obtain a ranking
of teacher effects. Additionally, new importance measures are developed based on the
random forest internal structure. Comparison of the alternative methods are obtained based
on simulations that assume scenarios for both correctly specified and misspecified linear
mixed models.

Section 2 presents the background literature for the linear mixed models and data min-
ing methods used in this study. In Section 3, we describe existent variable importance
measures, introduce new measures, and describe how comparisons between linear mixed
model results and variable importance measures are made. The simulation study is describe
in Section 4. Selected results are presented in Section 5. Concluding remarks are presented
in Section 6.

2. Background

We provide a brief description of the VAMs and data mining techniques used in the follow-
ing sections. In this study, VAMs are centered on teacher contributions and assume teacher
effects are random effects while effects associated to other covariates (e.g. gender, rural
or urban housing, free and reduced lunch status) are considered fixed. The data mining
techniques used in this study are based on random forest (Breiman, 2001) and rankings of
teacher effects are obtained using variable importance measures.

2.1 Value-added models

2.1.1 Covariate Adjustment Model (CAM)

The CAM assumes a single cohort of students in two contiguous years or grades, t = 1,2,
where t = 1 corresponds to the first grade of the study. We assume there are N students, K2
teachers in grade 2, and K1 teachers in grade 1. The dependent variable is students’ scores
in year 2 of the study. The model uses scores in year 1 as one of the covariates in the model.
In addition, teacher (random) effects in the model are considered. Formally, and letting the
superscript c denote the parameters from the CAM, we have:

yi2 = δ
cyi1 +βββ

c′xi +bc′zi + ε
c
i2 (1)

where xi = (xi0,xi1, . . . ,xiP) is the vector of covariates for student i, βββ
c = (β c

0 , . . . ,β
c
P) is

the vector of fixed effects with intercept β c
0 , δ c is the slope relating the year-2 score to the

year-1 score, zi = (zi1, . . . ,ziK2) is the vector specifying which teacher effects are associated
with the year-2 score of student i, and bc = (bc

1, . . . ,b
c
K2
) is the vector of teacher random

effects. We assume that bc ∼ N(0,(σ c
τ )

2I). Similarly εεεc
2 = (εc

12, . . . ,ε
c
N2) ∼ N(0,(σ c)2I).

Moreover, εεεc
2 is independent of bc. The predicted values of bc will be the value-added
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scores for the year-2 teachers. Note that teacher-level covariates can be included in this
model by using the indicator variables in zi.

2.1.2 Gain Score Model (GSM)

The construction of GSM is similar to the one for CAM. The main difference is that the
dependent variable is now the difference of year 2 and year 1. Specifically, we have yg

i =
yi2− yi1 and:

yg
i = βββ

g′xi +bg′zi + ε
g
i (2)

where xi is student i’s vector of covariates related to fixed effects. βββ
g = (β g

0 , . . . ,β
g
P) is

the vector of fixed effects with β
g
0 the overall mean. bg = (bg

1, . . . ,b
g
K2
) is the vector of

teacher random effects. The assumptions are similar to those in CAM; bg ∼ N(0,(σg
τ )

2I)
and εεεg = (εg

1 , . . . ,ε
g
N)∼ N(0,(σg)2I), εεεg is independent of bg.

2.1.3 Teacher Effects

The teacher contributions to student achievement are estimated using the empirical best
linear unbiased predictor (EBLUP):

b̂ = ĜZ′V̂−1(y−Xβ̂ββ ) (3)

where V = cov(y) = ZGZ′+R is the covariance matrix of y. For the CAM (1) we have:
y′=(y12, ...,yN2), X=(x∗1, ...,x∗N)′ with x∗i =(yi1,xi), βββ =(δ c,βββ c), b=bc, Z=(z1, ...,zN)

′,
G = ((σ c

τ )
2I), and R = ((σ c)2I). Similarly, for the GSM (2), we have: y′ = (yg

1, ...,y
g
N),

X = (x1, ...,xN)
′, βββ = βββ

g, b = bg, Z = (z1, ...,zN)
′, G = ((σg

τ )
2I), and R = ((σg)2I).

2.2 Random Forest

First, we briefly describe random forest. For a more detail description see Breiman, Fried-
man, Olshen, and Stone (1984); Breiman (2001); Loh (2008); Hastie, Tibshirani, and Fried-
man (2009).

Some comments about the notation used in what follows: N and i = 1, ...,N represent
the observations in our data set. We loosely speak of N for regression trees and random
forest, since the methods often require a split of the original data set in two subsets that
are known as training (or learning) data set and test data set. This is common practice in
data mining, since the training data set is used to build the model for prediction and the test
data set is used to find certain statistics or measures, such as levels of accuracy, impurity,
overfitting, etc. This division could be dynamic as is the case in cross-validation. When
needed, we use LN = (Yi,Xi1, ...,XiP); i = 1, ...,N1 and TN = (Yi,Xi1, ...,XiP); i = 1, ...,N2
for the learning data set and the test data set, respectively, where N1 +N2 = N.

Similarly in random forest, the set of data used on each tree is obtained using bootstrap-
ping, a sample with replacement from the original data set that also has N observations,
some of which are sampled more than once while others are not sampled at all. For ease of
notation and when no confusion arises we will use N and i = 1, ...,N for both the original
data set and each set obtained through bootstrapping. For every tree obtained in this way,
the observations that are not included form the out-of-bag samples (OOB). OOB samples
are meaningful in the development of several VIMs methods discussed later. When needed,
we use B and BC for the bootstrap and the OOB samples, respectively.

Regression trees and forests are built using covariates. Let Xp for p = 1, . . . ,P denote
each one of the covariates in the model, and let Xip denote the value of that covariate for
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student i, i = 1, . . . ,N so that Xi· = (Xi1, . . . ,XiP). In general, covariates may be any feature
associated with student i; demographics such as gender or race/ethnicity, socio-economic
status indicators such us free or reduced lunch program, urban or rural housing, or, most
importantly for this study, the teachers associated with the student. Our study of VIMs
centers on the importance of the individual covariates describing which teachers taught
the students, so we set aside the first M of the covariates to be the teacher indicators. For
m= 1, . . . ,M, let Xim = 1 if teacher m instructed student i and 0 otherwise. These categorical
variables thus represent the presence or absence of a particular teacher for each student.

In the following, T and sometimes R, represent a specific tree. In addition, for tree T ,
DT and JT represent the number of internal and terminal nodes, respectively, or simply D
and J if no confusion arises. Similarly, dq1 , q1 = 1, . . . ,D and jq2 , q2 = 1, . . . ,J represent
individual internal and terminal nodes, respectively, or simply d and j when no confusion
arises. When the relationship between the children and their parent node is needed, we use
d` and dr for the left and right children nodes of d. We use indicator variables in a variety of
contexts, that assign 1 when the condition is met and 0 otherwise. Thus, ζkd = 1 indicates
that observation k landed in node d, φpd = 1 represents when covariate p is used as the
splitting variable in node d, ω jk = 1 reflects when observation k corresponds to terminal
node j, ωdk = 1 reflects when observation k corresponds to internal node d, and νmk = 1
reflects when student k has been taught by teacher m.

2.2.1 Random Forest and Variable Importance Measures

Random forest (Breiman, 2001)is the average prediction obtained from a collection of re-
gression trees, themselves built through the random generation of a subset of attributes in
the data.

Random forest has become a popular method in several research fields. Its appeal
lays in its predictive accuracy that is comparable to the best machine learning methods.
In particular, random forest performs well when the structure of the underlying model is
nonlinear, the number of covariates is very large, covariates are highly correlated, and/or
complex interactions are present among covariates. Additionally, random forest is used as
a method for variable selection via the use of variable importance measures (VIMs).

3. Obtaining Variable Importance Measures

Variable importance measures or importance scores are measures used to determine the
relative contribution that each covariate has in predicting the dependent variable. VIMs
have been used for variable selection and variable ranking in several fields during the last
decade. But, as far as we know, this is the first time they have been used to assess relative
contributions of teachers. We describe the existent methods used to obtain VIMs, comment
about potential advantages and limitations, and explain how they give an indication of the
relative teacher effectiveness. Furthermore, we propose new methods to obtain VIMs and
discuss their relevance in the context of VAMs.

3.1 Decision Trees Variable Importance Measure

Breiman et al. (1984) propose an importance measure for decision trees based on the esti-
mated improvement in squared error loss that a variable has in the internal nodes of the tree.
To understand this we need to present a few definitions. The squared error loss at node d is
defined as e2

d = ∑Yi∈TN (Yi− Ȳd)
2ζid , where Ȳd = 1

∑Yi∈LN ζid
∑Yi∈LN Yiζid . That is, the sum of

the squared differences between the values of the outcome variables in the test data set that
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arrive to node d and the mean of the outcome variables from the training data set in node
d. The improvement in squared error loss is defined as ι2

d = e2
d − (e2

d` + e2
dr
). Formally, if

T is a decision tree with D− 1 internal nodes (the root of the tree is not considered), the
importance measure for variable Xp in tree T is defined as:

V I2
p(T ) =

D−1

∑
d=1

ι
2
d φpd (4)

where

φpd =

{
1 if variable Xp is used as splitting variable in internal node d
0 otherwise.

That is, the squared relative importance of covariate Xp is the sum of improvements
in squared error loss for every node where Xp is used as the splitting variable. Intuitively,
there are two components that influence on this variable importance measure. First, the
covariates that are found as splitting criterion closer to the root of the tree are potentially
more important than those covariates closer to the leaves of the tree. This happens because
more observations are considered in nodes closer to the root and therefore the improvement
in square error loss tends to be greater. Second, for a particular node, how different the
means of the children nodes are determines how importance the covariate is relative to that
node.

Notice that a covariate that has a large number of categories, has a larger number of
possible splitting points. If this number is larger, relative to other covariates, this covariate
will tend to have a larger variable importance values. Therefore, this measure may be
biased toward covariates with larger number of categories.

For a random forest with R trees, we use the average of these measures obtained for
every single tree: V I2

p = 1
R ∑

R
r=1 ∑V I2

p(T ). Although random forest will correct some bias
given the random selection of covariates for every node, variables with larger number of
categories, and therefore larger number of splitting points, would still be favored towards
selection, and will obtain a larger variable importance measure.

3.2 Permutation Accuracy Importance.

Permutation accuracy importance (PAI), introduced by Breiman (2001), is obtained for
each covariate p as the difference in prediction accuracy between the original OOB data set
and its permuted version, where the permutation occurs only for covariate p. Formally, if
f (·,B,ΘT ) is the random forest solution for tree T when the bootstrapping sample is B,
the variables considered for splitting at each node δ are given by ΘT , and the OOB sample
is BC, the estimated prediction accuracy is:

Λ(B,ΘT ) =
1
|BC| ∑

i:(Xi·,Yi)∈BC

( f (Xi·,B,ΘT )−Yi)
2 (5)

where |BC| is the number of observation in the OOB sample. The prediction accuracy for
the random forest with R trees is given by the average prediction accuracy of all the trees.
For convenience, let us express this result in terms of covariate p: Λ(X·p)= 1

R ∑
R
r=1 Λ(B,Θr).

We then permute the values of covariate p in the OOB samples to create a new sample for
each tree. That is, the data set values are the same for all the observations and covariates,
except those corresponding to covariate p. Those are randomly reasigned in a different
order. We called this new sample X∗·p, and we obtain Λ(X∗·p). Finally, the variable impor-
tance measure based on permutation accuracy importance is PAI = Λ(X∗·p)−Λ(X·p). The
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intuition behind this method is that if a covariate is important, the permutation should pro-
duce a large gap between the prediction accuracy of the original OOB samples and the one
obtained from permuting variable p.

Similar to the limitations of decision trees VIM, PAI is not reliable when covariates are
of different type (e.g. continuous and categorical, qualitative and quantitative), the vari-
ables are on a different scale of measurement, or the variables have different number of
categories. This happens because a covariate with a larger number of categories relative to
other covariates, will tend to have a better prediction accuracy and a larger difference with
the permuted version. Hence, it will be biased towards covariates with larger number of cat-
egories. Also, the PAI overestimates the importance of correlated covariates; variables that
are not important might be considered much more relevant, because they might be highly
correlated with other covariates. To address the problem of different type of covariates
and different scales of measurement, Hothorn et al. (2006) present a method for growing
trees based on a conditional inference framework. To address the problem of correlation
among covariates Strobl, Boulesteix, Kneib, Augustin, and Zeileis (2008) introduce the
conditional variable importance.

3.3 Shrinkage in Variable Importance Measures

When obtaining VIMs based on random forest, there is a shrinkage effect similar to the
one described for the linear mixed model random effects. Intuitively, this effect is present
because in random forest, variables are selected randomly for each node, and therefore even
when a covariate specific random effect is much larger than others, this covariate could
only potentially appear on the nodes where it has been selected. Similarly to EBLUPs
for teacher effects, the VIMs obtained from random forest take into account the entire
data, not only the teacher’s own students. Notice, however, this shrinkage effect will be
affected by the number of students each teacher has. Teachers with fewer students do
not appear as frequently in the trees. This occurs from two sources. One source is that
only a subsample of the observations is considered for each tree in random forest, and a
teacher with fewer students might have even fewer students in certain trees or sometimes
not students at all. Additionally, most VIMs are determined by the number of observation
affecting each node in which the covariate is used as splitting variable, and the number of
times that covariate appears in the tree. Therefore, teachers with fewer students might not
only be considered less important than teachers with more sutdents, their estimates might
also be less accurate than the estimates of teachers with more students. These two opposing
effects, the shrinkage effects as well as how the number of students per teacher influence
the VIMs, is addressed in Section 5.

3.4 A New Approach to Variable Importance Measures

As previously mentioned, several approaches to determine variable importance measures
have been proposed and developed. These approaches have advantages and limitations.
The main characteristic of most approaches is that they use the accuracy of predictions in
normal and altered conditions in order to determine how important each covariate is. While
some of these methods have shown empirical success, they are based in strong assumptions
about the distribution of the covariate p, the independence between this covariate and the
dependent variable, the differences in variable type among covariates, etc. Even the condi-
tional approach cannot fully take into account the possible correlation between covariates.
Furthermore, these methods seem not to take full advantage of the structure of the regres-
sion trees and random forest. Empirical results have shown that the accuracy of random
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forest preditions is comparable to the best learning machine methods; however, variable
importance measures have not had the same level of success.

With this motivation, we propose a new approach to VIMs. We present measures that
are constructed based entirely on the structure of regression trees and random forest and
are not dependent on prediction accuracy differences. This is the fundamental difference
between the proposed new measures and those previously found in the literature. It could
present advantages, since any assumptions and considerations should be made before grow-
ing the trees and no posterior assumptions are necessary, as is the case with PAI. At the same
time, it could present a limitation, since the quality of the measures is a reflection of our
understanding of the tree structure. We describe first the proximity matrix, which is used
as the base for developing the new VIMs.

3.4.1 Proximity Matrix in Random Forest

A by-product of regression trees and random forest is the proximity matrix. This is an
N ×N symmetric matrix, where every cell represents the proportion of ocurrences that
the observation represented by the row position belongs to the same terminal node as the
observation represented by the column position. If we consider the proximity matrix for a
single tree, it is a matrix of zeros and ones, where a coordinate with a one indicates that
two observations, the first determined by the row position and the second by the column
position, share the same terminal node.

3.4.2 Node and Teacher Proportions

Every existent VIMs requires the use of the outcome values of the dependent variable from
two sources. The first source is used while building the tree, since the sum of square
error differences of the outcome values are used to determine the covariates and covariates’
values used for splitting each node. The second source comes from using outcome values
to construct the different types of VIMs, for example via comparisons of predicted with
observed values or improvements in square error loss. It seems that if we could avoid the
use of the second source, and use instead the already existent tree structure to obtain VIMs,
we could potentially avoid the limitations or biases exclusively introduced in our VIMs by
the second source.

This is the main motivation to propose new VIMs. The node and teacher proportions
are VIMs that take advantage exclusively of the structure of the tree and outcome values are
not used in their construction. In addition these VIMs are specifically designed for covari-
ates with characteristics present in the VAM context; in particular, covariates representing
teachers. These covariates are binary variables that represent the presence (1) or absence
(0) of that covariate in the corresponding observation (student). Both new measures try to
capture from different perspectives how the final configuration of each tree in the random
forest gives information about the importance of each covariate. There are different ap-
proaches that could be used to obtain this information. We have decided to depart from the
information of the tree obtained from proximity matrices for each tree in the random forest,
and pinpoint unique characteristics for each covariate.

Specifically, we continue assuming N students and M teachers. The relative importance
of covariate (teacher) m on observation (student) k in tree r is given by:

V node
mrk = νmk

Jr

∑
j=1

ω jk
∑

N
i=1 ω jiνmi

∑
N
i=1 ω ji

(6)
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where

νmk =

{
1 if covariate (teacher) m is present in observation (student) k
0 otherwise

and

ω jk =

{
1 if observation (student) k ∈ terminal node j
0 otherwise

Equation 6 represents the relative contribution of teacher m in student k in tree r. It is
obtained as the ratio of the sum of weights of teacher m’s students in students k’s terminal
node over the sum of weights of all students in student k’s terminal node. Furthermore,
we find the total contribution of teacher m in tree r, as the average of all the individual
contributions V node

mrk for {k : 1, . . . ,N and νmk = 1} in tree r, and the VIM for teacher m is
the average of all those contributions on every tree. Formally, we have:

V IMnp
m =

1
R

R

∑
r=1

1

∑
N
i=1 νmi

N

∑
k=1

V (s)
mrk (7)

We call (7) the node proportion VIM for student m. In what follows, we denote by V IMnp

the measures obtained following this procedure.
An alternative approach to measure the relative importance of covariate m is given by:

V teach
mrk = νmk

∑
Jr
j=1 ω jk ∑

N
i=1 ω jiνmi

∑
Jr
j=1 ω jk ∑

N
i=1 νmi

(8)

Equation 8 measures also the relative contribution of covariate m on observation k in tree r,
but using a slightly different approach. It is the ratio of the sum of weights of observation
k’s terminal node where covariate m is present, over the sum of all observations where
covariate m is present in tree r. Similarly, the VIM for covariate m is the average of V teach

mrk
for all observations k in tree r where m is present, and all trees r, r : 1, . . . ,R. We have:

V IMt p
m =

1
R

R

∑
r=1

1

∑
N
i=1 νmi

N

∑
k=1

V (s)
mrk (9)

We call (9) the teacher proportion VIM for student m, and denote by V IMt p the measures
obtained following this procedure.

3.5 Comparing V IMs with V IM`m

The VIMs and measures of variable importance based on linear mixed model estimates
(henceforth V IM`m), are not directly comparable. The VIMs determine the relative impor-
tance of each teacher effect. That is, the VIMs produce a ranking of teacher effects while
the V IM`m produce teacher effect estimates. However, we can also obtain a ranking of
importance of teacher effects from the V IM`m, by taking the absolute value of the teacher
effects estimates. Additionally, in our simulations we know by design the exact influence
that each covariate has on the dependent variable. Therefore, using the absolute value of
the true teacher effects, we can make comparisons between VIMs and V IM`m.

One of the limitation of only producing a ranking of teacher effects is that we do not
produce the direction of the effects. From a practical point of view, this is not optimal
since one of the motivations of using VAMs is to determine if a teacher effect is positive or
negative.

Although there are ways to overcome this limitation, our main motivation is to deter-
mine the adequacy of these measures first. And we do so, without estimating the direction
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of the effects for two reasons. First, as mentioned previously, the proposed VIMs, node
and teacher proportion, do not use outcome variables in their construction, but only the
structure of the tree. If a direction for the measure was introduced based on outcome vari-
ables, the new measures proposed would have an additional influence that could potentially
mask the differences between the existent methods to obtain VIMs and the proposed ones.
Second, using our knowledge of the true effects in the simulations, we could assign the
correct sign to the VIMs. However, the results obtained following the latter procedure lead
us to the same conclusions as the absolute value approach.

We therefore make comparisons between the ranking of teacher effects using Spear-
man’s rank correlation coefficients for our comparisons.

4. Simulation Study

In this section, we introduce the study design and the description of the factors used.

4.1 Data structure and design

Several factors are manipulated in this study, including:
1. The number of teachers.10, 20, 40, or 100 teachers.
2. The number of students per teacher in each group (SpT1/SpT2). We divide the data in

two groups and assign to each teacher within a group the same number of students. Teacher
in different groups could have different number of students, where SpT` is the number of
students per teacher in group `. The ratios of students per teacher considered are: 12

12 , 24
24 ,

36
36 , 36

12 , or 30
18 .

3. Ratio of teacher variance /student variance (σ2
τ /σ2). Choices used in manipulation

of this factor include 1, 2, 5, and 20. For example, σ2
τ /σ2 = 5 would indicate that the

teacher variance is five times as large as the student variance.
4. The number of trees in random forest. 100, 500, 1000, 2000, and 3000 trees are

considered.
5. Model type. Two types of models considered: the covariate adjustment (CAM) and

the gain score model (GSM) (see Section 2).
6. Model specifications. For each of the model types (CAM and GSM), a family of four

models is generated. The first is the baseline model described in section 2. For the other
model specifications the following extensions of the baseline models are given.

The extension of the covariate adustment model is given by:

yi2 = δ
cyi1 +βββ

c′xi +bc′zi +
P

∑
j=1

K2

∑
k=1

λ
c
jkxi jzik + ∑

j 6=`

K2

∑
k=1

λ
c
j`kxi jxi`zik + ε

c
i2 (10)

The extension of the gain score model is given by:

yg
i = βββ

g′xi +bg′zi +
P

∑
j=1

K2

∑
k=1

λ
g
jkxi jzik + ∑

j 6=`

K2

∑
k=1

λ
g
j`kxi jxi`zik + ε

g
i (11)

The baseline model represents the family of simulations that assume no interaction ef-
fects. For CAM model this holds true when λ c

jk and λ c
j`k in (10) are equal to zero for all

j, ` : 1, ...,P and k : 1, ...,K2 and all the assumptions hold. In this case the linear mixed
model is correctly specified, and the random effects estimates are the EBLUPS. For the
simulations we consider four covariates associated with fixed effects: the prescore is ob-
tained from a normal distribution with mean 75 and variance 21, gender is a binary variable
obtained from a binomial distribution with probability of success p = 1/2, urban or rural
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housing, another binary variable obtained from a binomial variable with a probability of
having urban housing of p = 0.4, and free and reduced lunch program also a binary vari-
able with probability p = 0.8 of being part of the program. The associated fixed effects
used in the simulations for these variables are .5, .2, 3, and −5, respectively. Furthermore,
an overall mean of 50 is considered. The error variance is set equal to 1, and therefore the
ratio σ2

τ /σ2 = σ2
τ , the teacher variance.

The good teacher - bad teacher model represents the family of simulations that does
not account for interactions effects and keeps most of the assumptions of the baseline model
except the one related to the distribution of b. (bc for CAM and bg for GSM). Specifically,
these models are constructed with only two teachers having large effects in the model, one
positive and the other negative, while the rest of the teachers have no effects. This model
specification is used, because it does not meet the assumptions of the linear model and
might be better suited for data mining techniques. For the simulations, the positive effect
is set at 1.5 ∗σ2

τ and the negative effect at −1 ∗σ2
τ . Here, σ2

τ is used only for setting the
good and bad teacher and does not represent the teacher variance. We use the same set of
covariates associated with fixed effects and values used in the respective baseline model.

The simple interaction model represents the family of models that include simple inter-
actions effects between one covariate associated with a fixed effect, xi j, and another covari-
ate associated with a random effect, zik. In CAM, this is represented in (10) by having at
least one λ c

jk 6= 0 for j : 1, ...,P and k : 1, ...,K2. An interaction effect of 10 is considered in
the simulations, for half of the teachers randomly determined when a student, taught by one
of those selected teachers, lives in the rural area. In GSM, simple interactions are modeled
when at least one λ

g
jk 6= 0 for j : 1, ...,P and k : 1, ...,K2 in (11).

The complex interaction model is the family of models that include interactions among
three covariates, two of them associated with fixed effects and one associated with random
effects. For CAM, this is represented in model (10) by having at least one λ c

j`k 6= 0 for
j, ` : 1, ...,P, j 6= `, and k : 1, ...,K2. In the simulations, we randomly determined half of the
teachers to be susceptible to this interaction effect, and the interaction studied corresponds
to students living in an urban area, belonging to the free and reduced lunch program, and
being taught by one of these teachers. We considered and interaction effect of 20. In GSM,
the complex interaction is indicated when at least one λ

g
j`k 6= 0 for j, ` : 1, ...,P, j 6= `, and

k : 1, ...,K2 in (11) (Note that for the simulations, we used the same values as in CAM).

4.2 Procedures and analysis

The simulations are based on a factorial design yielding a total of 3200 combinations. Five
VIMs are considered:
a) the absolute value of the linear mixed model random effect estimates, V IM`m,
b) the VIM based on the PAI, denoted by V IM1,
c) the VIM based on the improvement in square error loss, denoted by V IM2,
d) the node proportion, V IMnp and
e) the teacher proportion, V IMt p.

For each experiment, 100 replicates are obtained and the Spearman’s rank correlation
is computed between the absolute value of the true teacher effects and the VIMs, for each
replicate. The results for each experiment are expressed as the correlation mean taken over
all the replicates. In the next Section, selected results are reported.
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5. Results

For limitations of space, we only present selected results for CAM (additional results can
be obtained by request). Four different scenarios are considered, each representing a row
of graphs within a figure. Scenarios under consideration include: CAM1 as the baseline
model, CAM2 as the good teacher-bad teacher model, CAM3 as a simple interaction model,
and CAM4 as a complex interaction model (see Section 4 for a complete description).

Figure 1 plots the correlations means for the five measures across the number of teach-
ers (x-axis) when the number of students per teacher is either 12 (left column charts) or 24
(right column charts) and the ratio of teacher variance over student variance is 2.

When the number of students per teacher was 12 in CAM1, the V IM`m yielded higher
correlations than the remaining measures. As the number of students per teacher increased,
the data mining VIMs tended to improve in performance, although V IM`m still outper-
formed the rest. It is to note that the correlations stabilized at 40 teachers, suggesting little
change in CAM1 due to an increase in the number of teachers from 40 to 100 teachers. All
the VIMs based on random forest had similar performance when the number of teachers
was 40 or higher, however V IM1 and V IM2 slightly outperformed the teacher and node
proportions, when the number of teachers was 10 or 20. When the number of students per
teacher was 24, all the VIMs based on random forest improved and reduced considerably
the gap towards the V IM`m results in comparison to the case with 12 students per teacher.
Most of the other conclusions remained the same as in the case with 12 students.

When the number of students per teacher was 12, in CAM2, the V IM`m only produced
slightly better results when the number of teachers was 10 or 20; when the number of teach-
ers was 40 or higher, the performance was practically the same for all five measures. More-
over, measures tended to suffer in performance relative to the results obtained in CAM1, in
particular as the number of teachers increased. These results seem reasonable in view of
the shrinkage estimate existent in both the linear model and the VIMs estimates. The true
teacher effect for most teachers is zero and only two teacher effects are away from zero.
The larger the number of teachers, the stronger the shrinkage effect on all teachers, and the
more difficult it is to recognize which teachers are those with nonzero effects. In conse-
quence, the performance of all the VIMs suffered. When the number of students per teacher
was 24, the V IM`m had the same performance as all the VIMs based on random forest for
every studied number of teachers. The conclusions about the measures’ performance for
different number of teachers remained the same as with the 12 students per teacher case.

When the number of students per teacher was 12 in CAM3, similar patterns to that of
CAM1 were found. The V IM`m produced better results than all the other measures; all four
measures based on random forest performed similarly when the number of teacher was
40 or greater. When the number of teachers was 10 or 20, V IM1 and V IM2 outperformed
the teacher and node proportions. Additionally, when the number of students per teacher
was 24, the results and trends in performance remained the same. As in CAM1, the gap in
performance between V IM`m and the VIMs based on random forest was smaller. Further,
similar results were obtained when other simple interactions were considered. It seems the
linear mixed model estimates adjust quite well to the presence of a unique, however large,
effect.

Results with Complex Interactions. Scenarios where complex interactions are modeled,
CAM4, present important results for this study. First, we focus on the case where the num-
ber of students per teacher was 12 (this chart is presented in the lower left corner of Figure
1). We observed that V IM`m outperformed all the VIMs based on random forest only when
the number of teachers was 10. When the number of teachers was 20, V IM`m outperformed
V IM1 and V IM2, but obtained a similar performance to that of the teacher and node propor-
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tions. When the number of teacher was 40, only V IM2 did not outperform V IM`m. Finally,
when the number of teacher was 100, all the VIMs based on random forest outperformed
V IM`m. These results are important. The V IM`m was obtained based on a linear mixed
model that does not account for the complex interactions, and the Spearman correlation be-
tween the absolute value of true teacher effects and the absolute value of EBLUPs is lower
than the correlation obtained when the model was correctly specified (without interactions).
Furthermore, all the VIMs based on random forest performed better, since random forest
accounted for all the possible interactions. Most importantly, the two proposed VIMs, the
node proportion and the teacher proportion, outperformed the rest of the measures when
the number of teachers was 20 or greater.
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Figure 1: Mean correlation between the VIMs and the absolute value of true teacher effects
when the number of teachers varies for different CAM models and different student per
teacher ratios. σ2

τ /σ2 = 2

Intuitively, teacher and node proportions capture better the complex structure of the
model, or more precisely, the random forest captures the complex structure of the model
and these measures reflect more accurately this information. For example, a component
of the node proportion is obtained as the ratio of students in a terminal node that have
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been taught by a specific teacher over the total number of students in that terminal node.
The complex structure of the model is taken into account by random forest when generat-
ing those terminal nodes, and thus, this ratio includes that complex structure. As a result,
the measure improves when the number of covariates (teachers) increases; random forest
can obtain more information about the complex structure of the data, and thus, the node
proportion can better reflect the teachers’ importance. By contrast, when the number of
teachers is small, there is less oportunity to fully exploit the tree structure and the perfor-
mance of the node proportion is not as strong. On the other hand, V IM1 and V IM2 use
additional information based on the outcome values, which seems to add certain noise to the
measures’ accuracy when complex interactions are present. When the number of students
per teacher was 24, the results and conclusions were very similar. In this situation, teacher
and node proportions perform at least as well as V IM`m when the number of teachers was
10, and better than any other measures when the number of teachers were 20 or greater.

In comparing the results from all four CAM families, the node proportion and teacher
proportion produced very consistent estimates for CAM1, CAM3, and CAM4. By contrast,
V IM`m produced similar results for CAM1 and CAM3, but the performance was greatly af-
fected by complex interactions, CAM4. Furthermore, in the case of 24 students per teacher,
the measures’ performance improved slightly over that of 12 students per teacher. How-
ever, in most situations, the relative performance of V IM`m did not change with respect to
VIMs based on random forest.

Similar results were obtained for GSM. While the patterns of measures’ performance
remained relatively similar, the main difference between GSM and CAM was in the mag-
nitude of the results. The mean correlations in GSM were not as high as those found in
CAM. It would seem that the covariate prescore played an important role in determining
the ranking of teacher effects.

6. Concluding Remarks

This work studies value-added models from a new perspective. We use data mining meth-
ods, in particular random forest, to evaluate the accuracy of random effects estimates ob-
tained from linear mixed model formulations, in situations where these formulations are
correctly specified or misspecified. Although the focus here is on the value-added models
in education, the proposed methods could extend to any area where value-added models
are used.

When a linear mixed model is correctly specified, there is no better random effect es-
timate than the empirical best linear unbiased predictor. However, the ranking of random
effects obtained using variable importance measures is not far behind, and in several scenar-
ios, this ranking is almost as good as the one obtained with the linear model. On the other
hand, when the linear mixed model is misspecified, the results obtained using variable im-
portance measures based on random forest may produce a more accurate ranking of teacher
effects. This happens in particular when the true model presents complex interactions that
are not considered in the linear model specification.

The obtained results are important in many respects. First, a large difference between
the ranking obtained via variable importance measures and via linear model estimates
should signal that the linear mixed model is misspecified. Second, although this method
could help determine model misspecification, the exact simple and complex effects are not
known, and alternative methods need to be developed for this purpose. We are currently
working on methods that help determine simple and complex interactions based on the
random forest structure.

In terms of variable importance measures, we have proposed two new methods. These
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methods rely exclusively on the trees structure, and do not use the outcome values or any
other additional information, as it is the case in the traditional variable importance meth-
ods. In reported and unreported results, we have found that in situations with complex
interactions, the new variable importance measures consistently outperformed the existent
variable importance measures. Furthermore, we believe the new proposed measures could
be improved. These measures use the trees structure of random forest only to the extent
of the final configuration of the terminal nodes. However, the information of the internal
nodes could also be considered, and it is an area where additional research is needed.

Limitations of this study are based on the extent of our simulations. We have obtained
results based on the covariate adjustment model and the gain score model. Currently, we
are working on the complete persistence and generalized persistence model, proposed by
Mariano et al. (2010).

In conclusion, this study addresses an area unexplored until now in the theory and
practice of value-added models and linear mixed models. Although additional work is
needed to confirm and extend the results of this study, the initial findings are encouraging.
Future work could address the issue of estimation of teacher effects with alternative data
mining methods.
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