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Abstract
Consider the problem of spatial prediction of a random process from a spatial dataset. Global spatial-
predictor selection provides a way to choose a single spatial predictor from a number of competing
predictors. Instead, we consider local spatial-predictor selection at each spatial location in the do-
main of interest. This results in a hybrid predictor that could be considered global, since it takes the
form of a combination of local predictors; we call this the locally selected spatial predictor. We pur-
sue this idea here using the (empirical) deviance information as our criterion for (global and local)
predictor selection. In a small simulation study, the relative performance of this combined predictor,
relative to the individual predictors, is assessed.

Key Words: information criteria; generalized degrees of freedom; best linear unbiased predictor;
model averaging; model combination

1. Introduction

In this proceedings paper, we consider the use of the empirical deviance information crite-
rion to select from multiple predictors over a latticeDs ≡ {u1, ...,uN} ⊂ Rd. Let observed
and potential data have the following additive structure:

Z(s) = Y (s) + ε(s); s ∈ Ds, (1)

where Z(s) represents a datum at a spatial location s, Y (·) is a hidden process, and ε(·) is a
measurement-error process independent of Y (·). The process Y (·) is the source of spatial
dependence in the data, but its probability distribution is left unspecified at this point. We
observe Z(·) at locations {s1, ..., sn} ⊂ Ds, and we define ZO ≡ (Z(s1), ..., Z(sn))′ and
YO ≡ (Y (s1), ..., Y (sn))′. We assume that ε(si) ∼ Gau(0, σ2ε v(si)), where both v(·) and
σ2ε are known and that for si 6= sj , ε(si) and ε(sj) are independent.

There are many methods of spatial prediction, both stochastic and non-stochastic, avail-
able in the literature; see, for example, Cressie (1993, Section 5.9). In what follows, we
consider K spatial predictors of the form,

Ŷ (k)(s;θ) ≡ H(k)(s;θ)′ZO; k = 1, ...,K, (2)

where H(k)(s;θ) is an n-dimensional vector, and θ represents unknown parameters that are
to be estimated. The predictors given by (2) are linear predictors when θ is known. For
example, the best linear unbiased (i.e., universal kriging) predictor can be written in this
form (e.g., Cressie, 1993, p. 152), as can the smoothing-spline predictor (Wahba, 1990).
When θ is estimated from the data ZO and substituted into H(k), the predictor may become
nonlinear.

Bradley et al. (2011) considered the case of selecting basis functions for a random-
effects model using the empirical deviance information criterion (DICE), where they ar-
gued that DICE can be interpreted as an estimate of the mean of the total squared prediction
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error summed over all observed data locations (see also Vaida and Blanchard, 2005). How-
ever, we point out that if a predictor Ŷ (k)(·;θ) has minimum total squared prediction error
summed over all observed data locations, it may not have the minimum squared prediction
error at any individual spatial location in Ds. In this proceedings paper, we consider a lo-
cal empirical deviance information criterion to select predictors at each individual spatial
location in Ds.

In Section 2 we review DICE, and in Section 3 we define local spatial-predictor selec-
tion based on a local DICE. In Section 4, we simulate data using the Spatial Random Effects
(SRE) model of Cressie and Johannesson (2008) and choose between spatial predictors de-
fined in terms of different classes of basis functions. The empirical evidence suggests that
in terms of total squared prediction error, the hybrid predictor consisting of locally selected
predictors outperforms each individual predictor. We conclude with a discussion in Section
5.

2. Empirical Deviance Information Criterion

Consider the deviance information criterion (Spiegelhalter et al., 2002) to select between
{Ŷ (k)(·;θ) : k = 1, ...,K} in the case where Y (·) is Gaussian with known parameters θ,

DIC(k)(ZO;θ) ≡
n∑
i=1

(Z(si)− Ŷ (k)(si;θ))2

σ2ε v(si)
+ 2

n∑
i=1

H(k)(si;θ)′ei, (3)

where ei is the i-th column of the n× n identity matrix. Vaida and Blanchard (2005) show
that the deviance information criterion is an unbiased estimator of the mean of the total
squared prediction error based on the statistical model given by (1). That is, if Y (·) follows
any generic distribution, and ε(·) is a Gaussian white-noise process with mean zero and
var(ε(s)) = σ2ε v(s), then

EZO(DIC(k)(ZO;θ)|θ) = EZO,Y

(
n∑
i=1

(Y (si)− Ŷ (k)(si;θ))2

σ2ε v(si)

∣∣∣∣∣θ
)
. (4)

Bradley et al. (2011) define the empirical deviance information criterion (DICE) by
substituting estimates of θ into (3). That is,

DICE
(k)(ZO) ≡

n∑
i=1

(Z(si)− Ŷ (k)(si; θ̂))2

σ2ε v(si)
+ 2

n∑
i=1

H(k)(si; θ̂)′ei, (5)

where θ̂ is a given estimator of θ; the subscript “E” in (5) stands for “empirical.” Notice
that DICE will depend on the estimator θ̂ chosen.

There has been work in the literature to preserve the unbiasedness result in (4), in the
case where parameters θ are estimated. This can be achieved using a penalty called the gen-
eralized degrees of freedom (Ye, 1998; Huang and Chen, 2007; Liang et al., 2008; Greven
and Kneib, 2010; Chen and Huang, 2011). From a computational-efficiency point of view,
Bradley et al. (2011) provide empirical results that suggest that computing the generalized
degrees of freedom is slow, which leads us to consider DICE.
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The conventional approach for model selection is to choose the k that minimizes
{DICE

(k)(ZO) : k = 1, ...,K}. This is quantified by the following equation,

k∗(ZO) ≡ arg min
{
DICE

(k)(ZO) : k = 1, ...,K
}
. (6)

Notice that (5) is a “global” criterion since it depends on sums over i = 1, ..., n. In the
next section, we consider selecting k at each si ∈ Ds; that is, we consider “local” spatial-
predictor selection.

3. Local Spatial-Predictor Selection

We begin this section by describing an ideal setting where we have a criterion based on
unobserved quantities, that is, an oracle (Donoho and Johnstone, 1994). The normalized
squared prediction error at generic spatial location u, namely

SPE(k)(u,ZO) ≡
(Y (u)− Ŷ (k)(u; θ̂))2

σ2ε v(u)
, (7)

is an oracle since it depends on the unobserved quantity Y (u). If we define the following
local-selection procedure,

k̃(uj ,ZO) ≡ arg min
{
SPE(k)(uj ,ZO) : k = 1, ...,K

}
, (8)

then for any k = 1, ...,K, and spatial predictor locations u1, ...,uN , it is easy to see that

N∑
j=1

( Y (uj)− Ŷ (k̃)(uj ; θ̂) )2

σ2ε v(uj)
≤

N∑
i=1

(Y (uj)− Ŷ (k)(uj ; θ̂))2

σ2ε v(uj)
. (9)

That is, the hybrid predictor that is a combination of the locally selected predictors, selected
according to (8), performs as well or better (in terms of total squared prediction error) than
any of the k = 1, ...,K predictors.

However, since Y (·) is not observed, we consider the estimation of SPE. In partic-
ular, for a location si where there is a datum Z(si), consider the following estimator of
SPE(k)(si,ZO):

(Z(si)− Ŷ (k)(si; θ̂))2

σ2ε v(si)
+ 2H(k)(si; θ̂)′ei; i = 1, ..., n, (10)

where the second term is defined by individual components in (2) and (3). From Stein’s
Lemma (Stein, 1981), it is immediate that

EZO

(
(Z(si)− Ŷ (k)(si; θ̂))2

σ2ε v(si)
+ 2H(k)(si; θ̂)′ei

∣∣∣∣∣θ
)

= EZO,Y

(
SPE(k)(si,ZO)|θ

)
; i = 1, ..., n, (11)

and hence (10) and the oracle criterion (7) share the same mean.
However, Z(·) is typically not observed at all spatial locations in Ds. To address this,

we select predictors over a partitioning of Ds = P1 ∪ · · · ∪PA, where Pa ∩Pb is the empty
set for a 6= b. It is important that each set of the partition include locations where there
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are data. For a given set of the partition, we select a predictor based on all locations where
there are data; this then defines the selected predictor at all locations in the set.

Specifically, we define the local empirical deviance information criterion for a set of the
partition Pa, as

DICE
(k)(Pa,ZO) ≡

∑
si∈Pa

(Z(si)− Ŷ (k)(si; θ̂))2

σ2ε v(si)
+ 2

∑
si∈Pa

H(k)(si; θ̂)′ei; a = 1, ..., A.

(12)

Notice that the sums in (12) are over the data locations si contained in Pa.
Now use the spatial predictor that minimizes DICE

(k)(Pa,ZO) with respect to k =
1, ...,K. That is, for all u ∈ Pa, the optimally selected predictor is

k∗(u,ZO) ≡ arg min
{
DICE

(k)(Pa,ZO) : k = 1, ...,K
}
. (13)

Now, as a varies from 1,..., A, k∗(u,ZO) is obtained for all u ∈ Ds. The corresponding
locally selected spatial predictor is given by the N -dimensional vector,

(Ŷ (k∗)(ui; θ̂) : i = 1, ..., N)′. (14)

We call (14) the locally selected spatial predictor. In the next section, we provide empirical
results that indicate that this predictor performs better, in terms of (bias-corrected) total
squared prediction error, than any of the individual spatial predictors under consideration.

4. A Small Simulation Study

In this section, we use the SRE model as our simulation model and Fixed Rank Kriging
(FRK) for spatial prediction (Cressie and Johannesson, 2006, 2008). We simulate data
according to (1) with the following model for Y (·):

Y (s) = (S(0)(s))′η + ξ(s), (15)

where S(0)(s) = (S
(0)
1 (s), ..., S(0)

r(0)
(s))′ is an r(0)-dimensional vector of basis functions and

s ∈ Ds. The r(0)-dimensional random vector η is distributed as Gau(0, K(0)), where K(0)

is the r(0) × r(0) covariance matrix of η, ξ(·) is assumed to be a white-noise Gaussian
process with mean zero and variance (σ

(0)
ξ )2, and ξ(·) is assumed to be independent of η.

The fixed but unknown parameters are organized into the set θ ≡ {K(0), (σ
(0)
ξ )2}. Recall

that var(ε(·)) = σ2ε v(·) is assumed known.
In Section 4.1, we describe the calibration of our simulation model. This includes the

specification of the spatial domain Ds, σ2ε , v(·), S(0)(·), K(0), and (σ
(0)
ξ )2.

4.1 Calibration of the Simulation Model

We consider the lattice, Ds ≡ {s = (i, j)′ : i = −50, ..., 50, j = −50, ..., 50} =
{u1, ...,uN}, so that N = 10, 201. We randomly selected n = 2550 locations in Ds,
resulting in the data locations, {s1, ..., s2550}. In this small simulation study, v(·) ≡ 1, and
σ2ε is given a value calibrated from (17) below. That is, we simulate Y (·) from (15) and

Z(si) = Y (si) + ε(si); i = 1, ..., 2550, (16)
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where ε(·) is a Gaussian white-noise process with mean zero and variance σ2ε .
We simulate Y (·) from (15) by specifying S(0)(·) to consist of bisquare basis functions

(Cressie and Johannesson, 2008) based on a quad-tree of centers (or knots) defined at two
resolutions. A generic bisquare function and the two resolutions of the quad-tree centers
are displayed in Figures 1 and 2, respectively. The number of basis functions in S(0)(·) is
r(0) = 562.

The 562 × 562 matrix K(0) is calibrated against the stationary exponential covariance
function. We choose K(0) such that ||S(0)K(0)(S(0))′−Σ(0)||2F is minimized, where S(0) ≡
(S(0)(u1), ...,S(0)(uN ))′, || · ||F is the Frobenius norm, and the (i, j)-th element of Σ(0)

is exp{−||ui − uj ||/κ}, for ui,uj ∈ Ds. The Frobenius norm is given by ||M||F ≡
{M′M}1/2 for a square matrix M. The parameter κ > 0 in the exponential covariance
function represents the level of spatial dependence; we set κ = 25 to obtain medium-
strength spatial dependence (Kang et al., 2010; Bradley et al., 2011; Katzfuss and Cressie,
2011).

Figure 1: A bisquare function over two-dimensional Euclidean space.

Figure 2: The basis-function centers used for simulation were obtained from a quad-tree.
The red ‘*’ corresponds to centers of the bisquare basis functions at the first resolution. The
blue ‘x’ corresponds to centers of the bisquare basis functions at the second resolution.
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We calibrate second-moment parameters in the simulation model (15) and (16) by first
specifying proportions of variability and then solving for parameters (Kang et al., 2010;
Bradley et al., 2011; Katzfuss and Cressie, 2011). Let the fine-scale-variation proportion be
denoted as:

FVP ≡
N(σ

(0)
ξ )2

N(σ
(0)
ξ )2 + trace(S(0)K(0)(S(0))′)

. (17)

The values of K(0) and S(0) are specified above; consequently, trace(S(0)K(0)(S(0))′) is
known. In the simulation, we specify FVP = 0.05 and solve (17) to obtain (σ

(0)
ξ )2 =

0.0486. Let the signal-to-noise ratio be denoted,

SNR ≡
N(σ

(0)
ξ )2 + trace(S(0)K(0)(S(0))′)

Nσ2ε
. (18)

In the simulation, we specify SNR = 10, and then we solve(18) to obtain σ2ε = 0.1080.
A single realization of Y (·) based on the calibrations above is shown in Figure 3 for

illustration. In Section 4.2, we give two spatial predictors (i.e., K = 2) from which our
local spatial-predictor selection will be illustrated.

Figure 3: One realization from Y (·) (Section 4.1), which was obtained from an SRE model
with bisquare basis functions.

4.2 Spatial mapping with Fixed Rank Kriging (FRK)

In this proceedings paper, we consider the simple case of selecting from two FRK predic-
tors. For a given set of r(k) basis functions, S(k)(·), the k-th FRK predictor is based on the
SRE model:

S(k)(·)′η(k) + ξ(k)(·), (19)

where var(η(k)) ≡ K(k) and var(ξ(k)(·)) ≡ (σ
(k)
ξ )2; k = 1, 2. Cressie and Johannesson

(2008) derive the FRK predictor as,

E(Y (u)|ZO, θ̂EM ,S(k)(·))

≡ covZO(ZO, Y (u)|K̂EM
, (σ̂EMξ )2,S(k)(·))′covZO(ZO|K̂

EM
, (σ̂EMξ )2,S(k)(·))−1ZO,

(20)
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where θ̂EM ≡ {K̂EM
, (σ̂EMξ )2} is an EM estimate of θ = {K(k), (σ

(k)
ξ )2} (Katzfuss and

Cressie, 2011) based on the EM algorithm. Also in (20), S(k)(·) is an r(k)-dimensional
vector of basis functions that are not necessarily the bisquare functions used to generate the
data.

In (20), the n-dimensional vector,

cov(ZO, Y (u)|K̂EM
, (σ̂EMξ )2,S(k))

= S(k)K̂EM S(k)(u) + covZO(ZO, ξ(u)|K̂
EM

, (σ̂EMξ )2,S(k))

= S(k)K̂EM S(k)(u) + (σ̂EMξ )2(I(u = s1), ..., I(u = sn))′, (21)

where S(k) ≡ (S(k)(s1), ...,S(k)(sn))′ is the n× r(k) matrix of basis functions formed from
S(k)(·), and I(·) denotes the indicator function. Also in (20), the n× n matrix,

cov(ZO|K̂
EM

, (σ̂EMξ )2,S(k)) = S(k)K̂EM
(S(k))′ + (σ̂EMξ )2I + σ2ε I,

where I denotes the n× n identity matrix.
In Section 4.3, we consider selecting predictors based on thin-plate splines and on facet-

like linear functions. Let S(1)(·) consist of thin-plate splines based on the radial basis func-
tion, h2log (h) (e.g., Wahba, 1990, p. 31), and let S(2)(·) consists of facet-like linear func-
tions from Obled and Creutin (1986). A plot of these basis functions in two-dimensional
Euclidean space is given in Figures 4 and 5, respectively. In Figure 6, we display the centers
that define S(1) and S(2).

Figure 4: Example of a thin-plate spline from Wahba (1990, p. 31) over two-dimensional
Euclidean space.

Figure 5: Example of a facet-like linear function over two-dimensional Euclidean space.

In our simulation experiment, we generated data based on an SRE model with r(0) =
562 bisquare basis functions. Then we used two FRK predictors based on basis func-
tions given by (misspecified) thin-plate splines (r(1) = 441) and facet-like linear functions
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Figure 6: Basis-function centers for thin-plate splines (left-panel) and facet-like linear func-
tions (right-panel). For both predictors, only one resolution is used, and r(1) = 441 and
r(2) = 121.

(r(2) = 121), respectively. In Figure 6, it is evident that the facet-like linear functions
S(2)(·) might perform worse in some regions as there are no basis-function centers defined
outside the region {(i, j) : i, j = −25, ..., 25}. In those regions near the boundary of Ds,
S(2)(·) is identically zero. In future research, this simulation will be expanded to include
different configurations of centers of S(k)(·) and hence of r(k)(·), for k = 1, ...,K > 2.

4.3 Results for a Single Realization

In this section, we provide results for a single realization, to illustrate our proposed local
spatial-predictor selection. The simulated observations are displayed in Figure 7; note that
there are regions of missing data throughout Ds.

Figure 7: The data locations where color indicates a datum’s value. White indicates the
spatial locations where no data were observed.

We consider the selection of a spatial predictor from among {Ŷ (1)(ui; θ̂EM ), Ŷ (2)(ui; θ̂EM )},
for each i = 1, ..., N = 10, 201. We choose a simple partition of size A = 20× 20 = 400,
which is displayed in Figure 8 (i.e., P1, ..., P400). In Figure 9, we show the optimal local
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selection of k∗(·,ZO) from among {1, 2}.

Figure 8: The grid-boxes represent {Pa : a = 1, ..., A}, a partition of Ds. Here A = 400.

Clearly, the predictor based on the facet-like linear functions is selected in the center of
the spatial domain Ds. For this single realization, thin-plate splines tend to be chosen more
outside the center of the spatial domain, which is consistent with the specification of the
basis function centers displayed in Figure 6. Figure 10 shows the locally selected spatial
predictor defined by (14), which should be compared to Figure 3.

There are obvious discontinuties in the locally selected predictor, which we shall now
discuss. When comparing the center of Figure 10 to the center of Figure 3 we see that
the locally selected spatial predictor (consisting mostly of predictions based on k = 1)
appears to be recovering the values of Y (·) within this region. Outside the center of the
spatial domain, we see a very large discrepency between Figures 10 and 3 indicating that
neither the thin-plate splines nor the facet-like linear functions are performing well. This
plot might lead one to include basis-function centers outside the center of the spatial domain
when using facet-like linear functions for FRK prediction.

The stark differences between spatial predictors chosen at different grid cells might also
occur because the partition in Figure 8 is too coarse (i.e., A might be too small). Instead
of using a coarse regular grid, one could use a fine irregular tessellation (e.g., a Dirchlet
tesselation, Cressie, 1993, pp. 373 - 375). We are currently investigating different ways to
specify {P1, ..., PA}. However, in this small simulation study our focus is primarily on the
performance of the locally selected spatial predictor in terms of squared prediction error
using the partition in Figure 8.

Predictor Total SPE
k = 1 2.7773e+003
k = 2 3.2599e+003
k∗ 2.7534e+003

Table 1: The table shows total SPE given by (21). Recall that k = 1 corresponds to the
FRK predictor using facet-like linear functions, and k = 2 corresponds to the FRK predictor
using thin-plate splines. Here, k∗ corresponds to the locally selected spatial predictor.
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Figure 9: A map of {k∗(ui,ZO) : i = 1, ..., N} for the data displayed in Figure 7. White
indicates that the FRK predictor based on facet-like linear functions was chosen. Black
indicates that the FRK predictor based on thin-plate splines was chosen.

Figure 10: The locally selected spatial predictor given by (14). This should be compared
to Y (·) in Figure 3.
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Define the total SPE as,

TSPE(k)(ZO) ≡
N∑
i=1

SPE(k)(ui,ZO), (22)

where SPE(k) is defined by (7). Notice that total SPE depends on the true value of Y (·),
something we can know from the simulation. In Table 1, we report these values. For
this particular realization, the locally selected spatial predictor outperforms either of the
individual spatial predictors under consideration.

4.4 Results for Multiple Realizations from the Simulation

We simulated 500 independent realizations according to (15) and (16). For each of the 500
replications the same 2250 observed spatial locations, as seen in Figure 7, were used. The
partition {P1, ..., P400} displayed in Figure 8 was used for local spatial-predictor selection
for each of the 500 replicates. We found that the locally selected spatial predictor in (14)
had smaller total SPE than either of the individual predictors in 99.8% of the 500 simulation
runs.

Although the locally selected spatial predictor consistently had smaller total SPE, the
amount of improvement is also of interest. In Figure 11, we display kernel-smoothed his-
tograms of the relative improvement,

TSPE(k)(ZO)− TSPEk
∗
(ZO)

TSPE(k)(ZO)
, (23)

for k = 1, 2. If (23) is “close” to 0, then the amount of improvement that the locally
selected predictor provides is small. In Figure 11, we display K = 2 kernel-smoothed
histograms of (23) based on the 500 independent realizations of ZO. The corresponding
modes are approximately 0.3 (k = 1) and 0.45 (k = 2), indicating an improvement for the
locally selected spatial predictor. From Figure 11, the value of the ratio in (23) is much
more variable over independent replicates when k = 1 than when k = 2.

5. Discussion

In this proceedings paper, we have introduced the notion of local spatial-predictor selec-
tion from a finite set of spatial predictors over a lattice Ds, using the empirical deviance
information criterion. Simulations were based on an SRE model using bisquare spatial ba-
sis functions, but FRK predictors were based on thin-plate splines and on facet-like linear
functions. Using the total squared prediction error as our criterion, we saw that the locally
selected spatial predictor outperformed each of the individual predictors, although there are
discontinuities that occur.
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Figure 11: Kernel-smoothed histograms of the ratio in (23) over the 500 independent repli-
cates. The solid line corresponds to k = 1 and the dashed line corresponds to k = 2.
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