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Abstract
We propose a new empirical likelihood approach which can be used to construct design-based con-
fidence intervals under unequal probability sampling without replacement. The proposed approach
gives confidence intervals which may perform better than standard confidence intervals and pseudo
empirical likelihood confidence intervals. They do not rely on variance estimates, re-sampling or
linearisation, even when the parameter of interest is not linear. It can be applied to the Horvitz-
Thompson estimator, the Hájek estimator or the regression estimator. It can be also used to construct
confidence intervals of totals or counts even when the population size is unknown. We also show
that the proposed maximum empirical likelihood estimator is asymptotically optimal. It also offers
a likelihood-based justification for design-based approaches, such as calibration, used in sample
surveys.

Key Words: Calibration, Design-based approach, Estimating equations, Finite population correc-
tions, Hájek estimator, Horvitz-Thompson estimator, Length biased sampling, Regression estimator,
Stratification, Unequal inclusion probabilities.

1. Introduction

Let U be a finite population ofN units; whereN is a fixed quantity which is not necessarily
known. Suppose that the population parameter of interest θ0 is the solution of the following
estimating equation (e.g. Binder & Kovačević, 1995).

G(θ) = 0, with G(θ) =
∑
i∈U

gi(θ); (1)

where gi(θ) is a function of θ and of characteristics of the unit i. This function does not
need to be differentiable. Note that gi(θ) and θ0 can be vectors, but for simplicity, we
consider that they are scalar. For example, θ0 is population mean µ = N−1

∑
i∈U yi, when

gi(θ) = yi − θ; where the yi are the values of a variable of interest. Other examples are
the low income measure and regression coefficients (Binder & Kovačević, 1995; Deville,
1999). In §5, we show how estimating equation can be used to estimate quantiles. The aim
of this paper is to derive an empirical likelihood confidence intervals for θ0.

Suppose that we wish to estimate θ0 from the data of a sample s of size n selected with
a single stage unequal probabilities without replacement sampling design. We consider that
the sample size n is fixed quantity which is not random. We adopt a design-based approach;
where the sampling distribution is specified by the sampling design. Let πi denote the
inclusion probability of unit i. An unbiased estimator of the function (1) is given by the
following Horvitz & Thompson (1952) estimator.

Ĝπ(θ) =
n∑
i=1

ği(θ); (2)
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where
∑n

i=1 denotes the sum over the sampled units and ği(θ) = gi(θ)π
−1
i . An estimator θ̂

of θ0 is the solution of Ĝπ(θ) = 0. When gi(θ) = yi − n−1θπi, the solution of Ĝπ(θ) = 0
is the Horvitz & Thompson (1952) estimator ŶHT =

∑n
i=1 yiπ

−1
i of the population total

Y =
∑

i∈U yi. When gi(θ) = yi − θN−1, the solution is the Hájek (1971) ratio estimator
ŶH = NN̂−1

π ŶHT of Y ; where N̂π =
∑n

i=1 π
−1
i . The estimator ŶHT may not be as

efficient as ŶH when yi and πi are correlated (Rao, 1966), which may be the case, for
example, with business surveys.

Under the design-based approach, the standard likelihood function is flat and cannot be
used for inference (Godambe, 1966). A possible solution is to assume a super-population
models which can be used to derive likelihood function (e.g. Chambers et al., 2012). How-
ever these models are not always suitable for the production of survey estimates. Hartley
& Rao (1968) introduced an empirical likelihood-based approach which does not rely on
models. Owen (1988) brought this approach into the mainstream statistics (see also Owen,
2001). Since Chen & Qin (1993) suggested its first application in survey sampling, there
have been many recent developments of empirical likelihood based methods in survey sam-
pling (e.g. Rao & Wu, 2009) and adaptive sampling (Salehi et al., 2010).

Standard confidence intervals based upon the central limit theorem can perform poorly
when the sampling distribution is not normal. For example, the lower bounds of a confi-
dence interval can be negative even when the parameter of interest is positive. The coverage
and the tail errors can be also lower than their intended levels. On the other hand, empirical
likelihood confidence intervals may be better in this situation, as empirical likelihood con-
fidence intervals are determined by the distribution of the data (Rao & Wu, 2009) and the
range of the parameter space is preserved. Note empirical likelihood confidence intervals
have better coverages when the variable of interest is skewed or contains many zeros (Chen
et al., 2003) which is common with many surveys and with estimation of domains.

Chen & Sitter (1999) proposed a pseudo empirical likelihood approach which can be
used to construct confidence intervals (Wu & Rao, 2006). The pseudo empirical likeli-
hood approach is not entirely appealing from a theoretical point of view, as confidence
intervals rely on variance estimates which can difficult to compute. The pseudo empirical
log-likelihood ratio function depends on a population parameter (the design effect) which
needs to be estimated, incuring an additional variability which may affect the coverage of
the confidence intervals. The proposed approach does not rely on variance estimates, or
population parameters.

We propose to use an empirical likelihood approach which is different from the pseudo
empirical likelihood approach. It can be used to compute confidence intervals of totals or
counts even when N is unknown. Confidence intervals for ŶHT or ŶH can be computed,
and it allows to take into account of auxiliary information. We show that the empirical
likelihood estimator is asymptotically equivalent to an optimal regression estimator (Mon-
tanari, 1987). Note that pseudo empirical likelihood estimators are not asymptotically op-
timal. Wu & Rao (2006) proposed a more efficient pseudo empirical likelihood approach
(EL2) when the variable of interest is correlated with the inclusion probabilities. However,
this approach cannot be used to estimate totals and count when N is unknown; which is a
common situtation with social surveys.

The main contribution of this paper is to show that under a series of regularity condi-
tions, the distribution of the proposed empirical log-likelihood ratio function converges to a
chi-squared distribution. This property depends on a set of constraints which takes account
of the sampling design and the auxiliary variables. We show this property can be used to
derive confidence intervals. We also show that the maximum empirical likelihood estimator
is asymptotically optimal.

In §2, we define the proposed empirical likelihood function and we show how the pa-
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rameters of the empirical likelihood function can be estimated. In §2.1, we define the
empirical likelihood estimators. In §3 show how to compute non-parametric confidence
intervals. In §3.2, we show how the auxiliary variables can be taken into account. In §4,
we propose an adjusted empirical log-likelihood ratio function which takes into account
of large sampling fractions. In §5, we show how the proposed approach can be used for
quantiles. In §6, we show via a series of simulations that the proposed empirical likelihood
approach gives better point estimators and confidence intervals, compared to the pseudo
empirical likelihood approach.

2. Empirical likelihood approach under unequal probability sampling

Let {y1, . . . , yn} denote a set of n independent and identically distributed values from the
population distribution F (y) = N−1

∑
i∈U δ{yi ≤ y}; where yi denotes the values of a

variable of interest attached to unit i. As the units are selected with unequal probabilities,
we propose to use the length biased sampling approach proposed by Owen (2001, Ch. 6)
who showed that under Poisson sampling, the sample distribution is given by (see also Kim,
2009)

Fs(y) =

∑n
i=1 πi Pi δ{yi ≤ y}∑n

j=1 πj Pj
; (3)

where the quantity Pi is the probability mass of unit i in the population and the function
δ{A} is the Dirac measure which is equal to one when A is true and zero otherwise. Let
mi = NPi where mi is the unit mass of unit i in the population (e.g. Deville, 1999). Thus
(3) reduces to

Fs(y) =

∑n
i=1 πi mi δ{yi ≤ y}∑n

j=1 πj mj
· (4)

Berger & De La Riva Torres (2012b) showed that under conditional Poisson sampling, the
sample distribution is also given by (4).

The empirical likelihood function is defined by (see Owen, 2001, p. 7)

L(m) =

n∏
i=1

[Fs(yi)− Fs(y
−
i )]; (5)

where Fs(y−i ) = limy↑yiFs(y). The above definition is usually used in the context of
independent and identically distributed observations. Despite the fact that under fixed size
sampling designs, we do not have independent and identically distributed observations, we
propose to use (5) as an approximation of the real empirical likelihood. Thus, the empirical
likelihood function we propose to use is

L(m) =

n∏
i=1

(
πi mi∑n
j=1 πj mj

)
· (6)

Note that Owen (2001, Ch. 6) and Kim (2009) proposed to use the same empirical likeli-
hood function under Poisson sampling and with probability mass instead of the mass mi.
The aim of this paper is to show that this empirical likelihood function can be used to
construct confidence intervals under fixed size sampling designs.

The maximum likelihood estimators of mi are the values m̂i which maximise the log-
empirical likelihood function

ℓ(m) = log(L(m)), (7)
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subject to the constraints mi ≥ 0 and

n∑
i=1

mici = C; (8)

where ci is a known Q× 1 vector associated with the i-th sampled unit and C is a known
Q × 1 vector. We consider that the constraint (8) is such that

∑n
i=1miπi = n always

holds. Note that the vector C is not necessarily a vector of fixed quantities. Hence C can
be fixed or random. Possible choices for ci and C are discussed in §3. Note that the ci
and C cannot be any vectors, as they must obey the regularity conditions given in §2.1.
The constraint (8) resembles the constraint used in calibration (e.g. Huang & Fuller, 1978;
Deville & Särndal, 1992). However, we will see in §3 that C is not necessarily a vector of
population totals of auxiliary variables.

Deville & Särndal (1992) showed that such minimisation problem has a unique solu-
tion which can find by using the Lagrangian function, Q(m,η) =

∑n
i=1 log(πi mi) −

n log (
∑n

i=1 πi mi) − η′ (
∑n

i=1mici −C). The values of mi and η which minimise
Q(m,η) are the solutions of the following set of equations ∂Q(m,η)/∂mi = 0 and
∂Q(m,η)/∂η = 0. As (8) is such that

∑n
i=1miπi = n, the solution is

m̂i =
(
πi + η′ci

)−1
, (9)

The parameter η is such that the constraint (8) holds. This parameter can be computed
using an iterative Newton-Raphson procedure. Consider the followingQ×1 vector function
of η, f(η) =

∑n
i=1 m̂ici. A Taylor approximation of f(η) in the neighbourhood of an

initial guess η0 gives

η l η0 − ∆̂(η0)
−1(f(η0)−C), (10)

as the constraint (8) can be re-written as f(η) = C. The Q × Q matrix ∆̂(η) is the
following gradient.

∆̂(η) =
∂f(η)

∂η
= −

n∑
i=1

cic
′
i

(
πi + η′ci

)−2· (11)

The recursive formula (10) can be used to compute η. For the first iteration, we used η0 = 0
which gives a new approximation of η using (10). This new approximation is used as a new
value for η0 which is substituted into (10). We repeat this process until convergence. Note
that it is not necessary to know N in order to the compute η and m̂i.

Note that when ci = πi and C = n, we have that η = 0 and m̂i = π−1
i .

2.1 Maximum empirical likelihood estimator

The maximum empirical likelihood estimator θ̂ of θ0 is defined by solution of the following
estimating equation.

Ĝ(θ) = 0, with Ĝ(θ) =
n∑
i=1

m̂i gi(θ); (12)

where m̂i is defined by (9). We assume that the gi(θ) are such that Ĝ(θ) = 0 has a solution.
Note that when ci = πi and C = n, we have that η = 0 and m̂i = π−1

i . In this case,
θ̂ is the Horvitz & Thompson (1952) estimator ŶHT when gi(θ) = yi − n−1θπi and θ̂ is
the Hájek (1971) ratio estimator ŶH when gi(θ) = yi − θN−1. Wu & Rao (2006, p. 362)
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proposed to use the pseudo empirical likelihood estimator with a similar constraint. This
gives a pseudo empirical likelihood estimator which is different from ŶHT and ŶH . In §6,
we will compare the proposed approach with the Wu & Rao (2006) empirical likelihood
approach via simulation.

In order to derive asymptotic properties of the proposed empirical likelihood approach,
it is necessary to define the asymptotic framework and a set of regularity conditions. We use
the Hájek (1964) asymptotic framework, which consists in assuming that d =

∑
i∈U πi(1−

πi) → ∞. This assumption implies that n → ∞ and N → ∞, as d < n < N . The
standard empirical likelihood approach (Owen, 1988) assumes that the sampling fraction
is negligible (n/N → 0). However, many surveys (e.g. business surveys) use sampling
fractions which are not necessarily negligible. The proposed empirical likelihood approach
does not rely on this assumption. The stochastic order O(·), o(·), Op(·) and op(·) are
defined according to this asymptotic framework, where the convergence in probability is
with respect to the sampling design.

Consider the following regularity conditions.

N−1∥Ĉπ −C∥ = Op(n
− 1

2 ), (13)

N−1Ĝπ(θ0) = Op(n
− 1

2 ), (14)

nN−1π−1
i = O(1), (15)

max{∥ci∥ : i ∈ s} = op(n
1
2 ), (16)

max{|gi(θ)| : i ∈ s} = op(n
1
2 ), (17)

∥Ŝ∥ = Op(1), (18)

∥Ŝ−1∥ = Op(1), (19)

1

nN τ

n∑
i=1

∥ci∥τ

πτi
= Op(n

−τ ), (20)

where τ ≤ 3,

Ŝ =
n

N2
∆̂(0), and Ĉπ =

n∑
i=1

ci
πi
· (21)

The matrix ∆̂(0) is given by (11) with η = 0. The quantity ∥A∥ = trace(A′A)1/2 denotes
the Euclidean norm

The conditions (13) and (14) hold when the central limit theorem holds. For unequal
probability sampling, Isaki & Fuller (1982) gave conditions under which (13) holds (see
also Krewski & Rao, 1981, p. 1014). The condition (15) was proposed by Krewski &
Rao (1981, p. 1014). Chen & Sitter (1999, Appendix 2) showed that the conditions (16)
and (17) hold for common unequal probability sampling designs. The matrix Ŝ is equal to
a covariance matrix between totals multiplied by −n/N2. Thus the condition (18) holds
when the norm of this covariance matrix variance decreases with rate n−1. The condition
(19) means that ∥Ŝ∥ is larger than a positive lower bound which is similar to the Cramér-
Rao lower bound (see also Zhong & Rao, 2000, p. 932). The condition (20) is a Lyapunov-
type condition for the existence of moments (e.g. Krewski & Rao, 1981, p. 1014).

Berger & De La Riva Torres (2012b) showed that under these regularity conditions,

Ĝ(θ) = Ĝπ(θ) + B̂′(C − Ĉπ) + op(N), (22)
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where B̂ is a vector of regression coefficients defined by

B̂ =

(
n∑
i=1

1

π2i
cic

′
i

)−1 n∑
i=1

1

π2i
gi(θ)ci· (23)

where ŵi are regression weights. There is a clear analogy between the proposed empirical
likelihood approach and calibration (e.g. Huang & Fuller, 1978; Deville & Särndal, 1992),
as the function (7) can be viewed as a calibration distance function, and the empirical like-
lihood estimator is asymptotically equivalent to a calibrated regression estimator (22). The
distance functions used in calibration are disconnected from mainstream statistical theory.
However, the proposed distance function (7) is clearly related to the concept of likelihood.
The advantage of the proposed empirical likelihood approach over standard calibration is
the fact that the empirical likelihood function can be used to construct likelihood ratio con-
fidence intervals.

When ci = (xi, πi)
′, we have that Ĝ(θ) = Ĝπ(θ) + B̂x(X − X̂HT ) + op(N), where

B̂x =
∑n

i=1(x̆i − n−1X̂HT )(ği(θ) − Ĝπ(θ)){
∑n

i=1(x̆i − n−1X̂HT )
2}−1, x̆i = xiπ

−1
i

and ği(θ) = gi(θ)π
−1
i . Note that B̂x is the estimator of the covariance between Ĝπ(θ)

and X̂HT divided by the estimator of the variance of X̂HT under a with replacement pps
sampling design. Therefore B̂x is the optimal regression coefficient (e.g. Isaki & Fuller,
1982; Montanari, 1987; Särndal, 1996; Berger et al., 2003) when the sampling fraction is
small. This results can be easily extended when we have more than one auxiliary variable.
Hence, the empirical likelihood estimator is asymptotically optimal. When N is known, it
is recommended to use xi = 1 or to include a variable equal to one in xi. This will improve
the efficiency of the maximum empirical likelihood estimator.

3. Empirical likelihood confidence intervals

The main advantage of empirical likelihood approach is its capability of deriving non-
parametric confidence intervals which do not depend on variance estimates. In this §, we
propose to use an empirical log-likelihood ratio function to derive empirical likelihood con-
fidence intervals. The approaches proposed in this § are valid for small sampling fractions
(i.e. when the πi are negligible); that is, if we can treat the sample as if the units were
selected with replacement. In §4, we will see how the proposed method can be adapted to
account for large sampling fractions.

Empirical likelihood confidence intervals rely on the following property.

Ĝπ(θ0) V [Ĝπ(θ0)]
− 1

2 → N(0, 1); (24)

where V [Ĝπ(θ0)] denotes the design-based variance of Ĝπ(θ0).
As θ0 is a constant, Ĝπ(θ0) is a Horvitz & Thompson (1952) estimator. Hájek (1964),

Vı́̌sek (1979), Ohlsson (1986), Zhong & Rao (1996) and Berger (1998b) gave regular-
ity conditions for the asymptotic normality of the Horvitz & Thompson (1952) estimator.
Based on these evidences, it is reasonable to assume (24), as E(Ĝπ(θ0)) = G(θ0) = 0.
Note that the classical empirical likelihood approach and the pseudo empirical likelihood
approach also rely on (24) (e.g. Owen, 1988, p. 242, Owen, 2001, p. 219, Wu & Rao, 2006,
p. 364). Note that the distribution of a point estimator of θ0 is not necessarily normal, and
we will not need the normality of the point estimator which is necessary to derive standard
confidence intervals.

Let m̂i be the values which maximise (7) subject to the constraints mi ≥ 0 and (8)
when ci = πi and C = n. Note that mi = π−1

i in this situation. Hence the empirical
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likelihood point estimator is the solution of Ĝπ(θ) = 0. Let ℓ(m̂) be the maximum value
of the empirical log-likelihood function.

Let m̂∗
i be the values which maximise (7) subject to the constraints mi ≥ 0 and (8)

with ci = c∗i and C = C∗, where c∗i = (πi, gi(θ))
′ and C∗ = (n, 0)′. Let ℓ(m̂∗, θ) be the

maximum value of of the empirical log-likelihood function.
The empirical log-likelihood ratio function is defined by the following function of θ.

r̂(θ) = 2 {ℓ(m̂)− ℓ(m̂∗, θ)} · (25)

Berger & De La Riva Torres (2012b) showed that

r̂(θ0) = Ĝπ(θ0)
2 V̂pps[Ĝπ(θ0)]

−1 + op(1)· (26)

where θ0 denotes the population parameter to estimate and where V̂pps[Ĝπ(θ0)] is the fol-
lowing pps variance estimator (e.g. Durbin, 1953; Särndal et al., 1992, p. 99).

V̂pps[Ĝπ(θ0)] =

n∑
i=1

(
ği(θ0)− n−1Ĝπ(θ0)

)2
; (27)

where ği(θ) = gi(θ)/πi. When the sampling fractions are negligible, V̂pps[Ĝπ(θ)] is a
consistent estimator for the variance (Durbin, 1953). Hence the property (24) implies that
r̂(θ0) follows asymptotically a chi-squared distribution with one degree of freedom, by
Slutsky’s theorem. Thus, the (1 − α) level empirical likelihood confidence interval (e.g.
Wilks, 1938; Hudson, 1971) for the population parameter θ0 is given by[

min
{
θ| r̂(θ) ≤ χ2

1(α)
}
; max

{
θ| r̂(θ) ≤ χ2

1(α)
} ]

; (28)

where χ2
1(α) is the upper α-quantile of the chi-squared distribution with one degree of

freedom. Note that r̂(θ) is a convex non-symmetric function with a minimum when θ is
the maximum empirical likelihood estimator. This interval can be found using a bijection
search method (e.g. Wu, 2005). This involves calculating r̂(θ) for several values of θ.

3.1 Empirical likelihood approach for stratified sampling designs

Assume that the sample s is randomly selected by a uni-stage stratified probability sampling
design p(s). Suppose that the finite population U is stratified into H strata denoted by
U1, . . . , Uh, . . . , UH ; where ∪Hh=1Uh = U . Suppose that a sample sh of fixed size nh
is selected without replacement with unequal probabilities πi from Uh. We assume that
dh =

∑
i∈Uh

πi(1− πi) → ∞ for all h and that the number of strata H is bounded.
The empirical likelihood estimator is still the solution of (12) where m̂i are still the

values which maximise (7) under a set of constraints with ci = zi and C = n; where

zi = (zi1, . . . , ziH)
′ and n = (n1, . . . , nH)

′ (29)

denotes the vector of the strata sample sizes, with zih = πi δ{i ∈ Uh}. It can be shown
that m̂i = π−1

i .
For confidence intervals, we propose to use ci = zi, c∗i = (z′

i, gi(θ))
′, C = n,

and C∗ = (n, 0)′. Berger & De La Riva Torres (2012b) showed that (26) holds where
V̂pps[Ĝπ(θ0)] is now the stratified variance pps estimator which is consistent because the
number of strata is bounded. Hence r̂(θ0) follows a chi-squared distribution asymptotically
and the empirical likelihood confidence intervals can be computed with (25).

Note that we propose to use the same likelihood function (12) with or without strati-
fication. With the pseudo empirical likelihood approach, the pseudo empirical likelihood
function without stratification is different from the pseudo empirical likelihood function
with stratification (e.g. Rao & Wu, 2009, p. 195).
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3.2 Empirical likelihood approach with auxiliary variables

Let xi be a P vector of values of auxiliary variables attached to unit i. These variables
are such that their population control totals X =

∑
i∈U xi are known. Let m̂i(x) be the

values which maximise (6) under the constraint (8) with ci = (x′
i, z

′
i)
′ and C =

∑
i∈U ci.

In §2.1, we showed that Ĝ(θ) is asymptotically equal to the generalised optimal regression
estimator of G(θ).

For confidence intervals, we propose to use the following restricted empirical log-
likelihood function instead of the function (7).

ℓ(m̂(x)) =

n∑
i=1

log

(
mi m̂i(x)

−1∑n
j=1mj m̂j(x)−1

)
, (30)

which will be used for the calculation of confidence intervals and not for point estimation.
Note that the function (30) reduces to the function (7) when we do not have auxiliary
variables.

Let ci = ċi, c∗i = ċ∗i , C = (X ′,n′)′, and C∗ = (X ′,n′, 0)′, with ċi = (x′
i, ż

′
i)
′,

ċ∗i = (x′
i, ż

′
i, gi(θ))

′ and żi = zi/(πim̂i(x)). Let ℓ(m̂∗(x)) be the maximum value of of
the empirical log-likelihood function. The restricted empirical log-likelihood ratio function
is given by

r̂x(θ) = 2 {ℓ(m̂(x))− ℓ(m̂∗(x))} ·

Berger & De La Riva Torres (2012b) showed that

r̂x(θ0) = Ĝx(θ0)
2 V̂st[Ĝx(θ0)]

−1 + op(1); (31)

where Ĝx(θ0) =
∑n

i=1 gi(θ0)m̂i(x) and V̂st[Ĝx(θ0)] is an estimator of the variance of
Ĝx(θ0). This variance takes into account of the calibration constraint and of the fixed sizes
constraints. Deville & Tillé (2005) showed that this estimator is consistent under fixed size
sampling designs. Thus r̂x(θ0) follows a chi-squared distribution asymptotically.

4. Empirical likelihood approach for non negligible sampling fractions

With large sampling fractions, the pps variance estimator (27) is biased, implying that the
empirical log-likelihood ratio function does not necessarily follow a chi-squared distribu-
tion. Hence the empirical log-likelihood ratio function described in §3 cannot be used for
confidence intervals, and needs to be adjusted to allow for large sampling fractions. Note
that for point estimation, the approaches describes in the previous section are still valid
even if we have large sampling fractions. In this §, we propose to adjust the empirical
log-likelihood ratio function in order to obtain a chi-squared distribution asymptotically.

A simple solution consists in using the approaches described in the previous § and mul-
tiplying r̂(θ) by the ratio of variances ϕ̂(θ) = V̂pps[Ĝπ(θ)]V̂ [Ĝπ(θ)]

−1, where V̂ [Ĝπ(θ)]

is an unbiased estimator of Ĝπ(θ). This makes the computation of confidence intervals
more intensive, as ϕ̂(θ) needs to be computed for several values of θ. This approach is not
entirely satisfactory, as it relies on variance estimates. We propose an alternative approach
which does not rely on variance estimates.

When we have a single stratum, we propose to use ci = qiπi, c∗i = qi(πi, gi(θ))
′,

C =
∑n

i=1 qi and C∗ = (
∑n

i=1 qi,
∑n

i=1(qi − 1)gi(θ)π
−1
i )′, with qi = (1 − πi)

1/2. The
qi are finite population corrections factors proposed by Berger (2005b). The qi reduce
the effect on the confidence interval of units with large πi. For example, if πi = 1, then
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m̂iπi = m̂∗
iπi = 1. This implies that this unit will have no contribution towards the

empirical likelihood functions and any confidence intervals. This is a natural property as
this unit does not contribute towards the sampling variation.

Consider the following adjusted empirical log-likelihood ratio function.

r̂(θ)(a) = r̂(θ) + ξ̂(θ), (32)

where ξ̂(θ) is a correction factor for large sampling fraction. This factor is defined by
ξ̂(θ) = −2η∗′C∗; where η∗ is the Lagrangian multiplier obtained with c∗i and C∗. In
Appendix B, we show that

r̂(θ0)
(a) = Ĝπ(θ0)

2 V̂ [Ĝπ(θ0)]
−1 + op(1); (33)

where

V̂ [Ĝπ(θ0)] =
n∑
i=1

q2i ği(θ0)
2 − d̂−1G̊(θ0)

2 (34)

is the Hájek (1964) variance estimator, with G̊(θ0) =
∑n

i=1 q
2
i ği(θ0) and d̂ =

∑n
i=1 q

2
i .

If this variance estimator is consistent, we have that r̂(θ0)(a) follows a chi-squared dis-
tribution, by Slutsky’s theorem. Hence Empirical likelihood confidence intervals can be
constructed with r̂(θ)(a). The result (33) is consistent with (26), as when all the qi are
equal to one, Berger & De La Riva Torres (2012b) showed that V̂ [Ĝπ(θ)] equals (27) and
ξ̂(θ) = 0, implying that r̂(θ)(a) = r̂(θ).

The variance estimator (34) is a consistent estimator for the variance, for high entropy
sampling designs (e.g. Hájek, 1964, 1981; Berger, 1998a; Deville, 1999; Brewer, 2002;
Brewer & Donadio, 2003; Haziza et al., 2004; Henderson, 2006; Tillé, 2006; Prášková &
Sen, 2009; Fuller, 2009; Berger, 2007, 2011). For example the rejective (Hájek, 1964;
Fuller, 2009), the Rao-Sampford (Rao, 1965; Sampford, 1967), the Chao (1982) and the
Pareto sampling designs (Aires, 2000) are high entropy sampling designs (Berger, 2005a,
2011). Note that most sampling designs used in practice have large entropy, except the
non-randomized systematic sampling design and the Rao et al. (1962) sampling design
(see §4.1).

The adjustment term ξ̂(θ) is a correction which takes into account of the dispersion be-
tween the qi. Indeed, Berger & De La Riva Torres (2012b) showed that ξ̂(θ) = 0 under sim-
ple random sampling. Because of (33), we see that this correction ensures that that r̂(θ0)(a)

follows a chi-squared distribution asymptotically. Berger & De La Riva Torres (2012b)
showed that by making Isaki & Fuller (1982) assumptions about the asymptotic behaviour
of the joint-inclusion probabilities, we have that ξ̂(θ) = Op(n

1−2ψ). Thus ξ̂(θ) → 0, if
these asymptions hold when ψ > 1/2. Although ξ̂(θ) may be negligible, we prefer to keep
it in (32), as these conditions on the joint-inclusion probabilities can be hard to verify.

For stratified designs, we propose to use ci = qizi, c∗i = qi(z
′
i, gi(θ))

′,
C =

∑n
i=1 qiz

′
iπ

−1
i , and C∗ = (

∑n
i=1 qiz

′
iπ

−1
i ,
∑n

i=1(qi−1)gi(θ)π
−1
i )′. Berger & De La

Riva Torres (2012b) showed that (33) holds; where V̂ [Ĝπ(θ0)] is now the stratified Hájek
(1964) variance estimator which is consistent because the number of strata is bounded.
Hence r̂(θ0)(a) follows a chi-squared distribution asymptotically.

With calibration constraints, we propose to use ci = ċi, c∗i = ċ∗i , C =
∑n

i=1 m̂i(x)ċi,
and C∗ = (

∑n
i=1 m̂i(x)ċi,

∑n
i=1(qi − 1)gi(θ)m̂i(x))

′, with ċi = qi(x
′
i, ż

′
i)
′, ċ∗i =

qi(x
′
i, ż

′
i, gi(θ))

′. In this case, we need to use an adjusted restricted empirical log-likelihood
ratio function given by r̂(a)x (θ) = r̂x(θ) + ξ̂x(θ); with ξ̂x(θ) = −2η∗′C∗; where η∗ is the
Lagrangian multiplier obtain with c∗i and C∗. Berger & De La Riva Torres (2012b) showed
that (31) holds. Thus r̂(a)x (θ) follows a chi-squared distribution asymptotically.
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4.1 Empirical likelihood approach for the Rao-Hartley-Cochran strategy

The Hartley-Rao-Cochran sampling design (Rao et al., 1962) is a popular unequal proba-
bility sampling design which does not belong to the class of high entropy sampling designs.
In this §, we show how the proposed appproach can be used in this situation.

Suppose that the population is divided randomly into n groups A1, . . . , Ai, . . . , An of
sizes N1, . . . , Ni, . . . , Nn, where

∑n
i=1Ni = N . One unit is selected independently from

each group with probability pi = πi/ai; where ai =
∑

j∈Ai
πj . As the units are selected

independently, the empirical likelihood function is given by

L(m) =

n∏
i=1

pi mi

(
∑n

j=1 pj mj)
·

By maximising this function under the constraint (8) with ci = pi and C = n, we obtain
m̂i = p−1

i . When gi(θ) = yi − n−1piθ, the maximum empirical likelihood estimator θ̂,
defined by (12), is the Hartley-Rao-Cochran estimator (Rao et al., 1962) of a total.

For the computation of confidence intervals, we propose to use ci = q◦i pi, c∗i =
(q◦i pi, q

•
i gi(θ))

′, C =
∑n

i=1 q
◦
i and C∗ = (

∑n
i=1 q

◦
i ,
∑n

i=1(q
•
i − 1)gi(θ)p

−1
i )′, with q◦i =

a
1/2
i and q•i = (ς̂ n a−1

i )1/2; where ς̂ = (
∑n

i=1N
2
i − N)[(N2 −

∑n
i=1N

2
i ) is the finite

population correction proposed by Rao et al. (1962). Berger & De La Riva Torres (2012b)
showed that r̂(θ0)(a) = ĜR(θ0)

2V̂ [ĜR(θ0)]
−1 + op(1) where ĜR(θ0) is the Rao et al.

(1962) estimator of a total and V̂ [ĜR(θ0)] is its variance estimator. Hence r̂(θ0)(a) fol-
lows a chi-squared distribution asymptotically, as ĜR(θ0) is asymptotically normal under
regularity conditions proposed by Ohlsson (1986).

5. Estimation of Quantiles

Suppose that the parameter θ0 of interest is the q quantile Yq of the population distribution
of a variable of interest yi; where 0 < q < 1. As the estimating equation

∑n
i=1 m̂i(δ{yi ≤

θ}−q) = 0 does not always have a solution, it cannot be used directly to derive a empirical
log-likelihood ratio function (e.g. Owen, 2001, p. 45). In order to avoid this problem, we
propose to use the following function gi(θ) = ϱ(y(i), θ)− q; where

ϱ(y(i), θ) = δ{y(i) ≤ θ}+
θ − y(i−1)

y(i) − y(i−1)
δ{y(i−1) ≤ θ}(1− δ{y(i) ≤ θ});

where the y(i) is the values of the i-th sampled units arranged in increasing order, with
y(0) = y(1) − (y(2) − y(1)). The empirical likelihood estimator of Yq is the solution of the
equation Ĝ(θ) = 0 which becomes F̃ (θ) = q; where

F̃ (θ) =

(
n∑
i=1

m̂i

)−1 n∑
i=1

m̂(i)ϱ(y(i), θ)·

Note that F̃ (θ) = q has always a unique solution because F̃ (y) is a bijective function given
by a piecewise linear interpolation of the step distribution function

F̂ (θ) =

(
n∑
i=1

m̂i

)−1 n∑
i=1

m̂iδ{y(i) ≤ θ}·
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This interpolation consists in joining the steps of F̂ (θ) by straight lines segments. It can be
easily shown that

1

N
Ĝπ(θ0) =

1

N

n∑
i=1

π−1
i [ϱ(y(i), θ0)− q] l 1

N

n∑
i=1

π−1
i [δ{yi ≤ θ0} − q]

which is an Horvitz & Thompson (1952) estimator. Thus, (24) holds, and the empirical
log-likelihood ratio function has a chi-squared distribution asymptotically. Therefore, the
empirical log-likelihood ratio function can be used to derive confidence intervals for Yq.

Table 1: Coverages of the 95% confidence intervals. N = 800. θ0 = µ and gi(θ) =
yi −Nn−1θπi. The approach described in §3 is used to compute confidence intervals. For
the pseudo empirical likelihood (EL2) approach, the point estimator is the Hájek (1971)
estimator.

Type of confidence Coverage Lower tail Upper tail Average
cor(yi, ŷi) n intervals Probabilities error rates error rates Lengths

0.3 40 Proposed 91.5% 2.2% 6.3% 1.96
Pseudo EL2 91.2% 2.5% 6.3% 1.85
Normal 90.7% 0.7% 8.6% 1.87

80 Proposed 95.0% 2.5% 2.5% 1.42
Pseudo EL2 93.1% 3.1% 3.8% 1.32
Normal 92.3% 1.5% 6.2% 1.33

0.8 40 Proposed 94.2% 2.1% 3.7% 0.62
Pseudo EL2 91.9% 2.6% 5.5% 0.46
Normal 93.3% 1.3% 5.4% 0.59

80 Proposed 95.6% 1.4% 3.0% 0.45
Pseudo EL2 93.5% 2.5% 4.0% 0.33
Normal 93.9% 1.1% 5.0% 0.41

6. Simulation study

We generated several population data according to the following model proposed by Wu &
Rao (2006).

yi = 3 + ai + φ ei, (35)

where ai follows an exponential distributions with rate parameters equal to one and ei ∼
χ2
1 − 1. The πi are proportional to ai + 2. The constant 2 is added to ai to avoid having

very small πi. Populations of size N = 800 and N = 150 will be generated using (35).
The values yi and ai generated will be treated as fixed. The parameter φ is used to obtain
a weak and a strong correlation between the values yi and ŷi = 3 + ai. Let ρ(y, ŷ) denote
this correlation. The parameter of interest θ0 is the population mean.

We use the Chao (1982) sampling design to select 1000 samples with unequal proba-
bilities in order to compare the Monte-Carlo performance of the 95% empirical likelihood
confidence interval with the standard confidence interval based on the central limit theo-
rem and the pseudo empirical likelihood (EL2) confidence interval proposed by Wu & Rao
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Table 2: Coverages of the 95% confidence intervals. N = 150. θ0 = µ and gi(θ) =
yi −Nn−1θπi. The approach described in §4 is used to compute confidence intervals. For
the pseudo empirical likelihood (EL2) approach, the point estimator is the Hájek (1971)
estimator.

Type of confidence Coverage Lower tail Upper tail Average
cor(yi, ŷi) n intervals Probabilities error rates error rates Lengths

0.3 40 Proposed 91.6% 2.6% 5.8% 2.03
Pseudo EL2 90.6% 2.1% 7.3% 1.88
Normal 89.6% 0.4% 10.0% 1.90

80 Proposed 92.5% 4.3% 3.2% 1.29
Pseudo EL2 93.0% 2.0% 5.0% 1.15
Normal 93.5% 0.8% 5.7% 1.15

0.8 40 Proposed 94.6% 3.4% 2.0% 0.49
Pseudo EL2 93.9% 1.8% 4.3% 0.38
Normal 94.7% 1.1% 4.2% 0.48

80 Proposed 89.9% 9.6% 0.5% 0.29
Pseudo EL2 93.7% 2.4% 3.9% 0.22
Normal 93.5% 1.4% 5.1% 0.25

(2006, p. 362). We consider that we have a single stratum. The Sen-Yates-Grundy variance
estimator (Sen, 1953; Yates & Grundy, 1953) is used for standard confidence intervals and
for pseudo empirical likelihood approach. We used the statistical software R (R Develop-
ment Core Team, 2006). The observed coverage probability, the lower and the upper tail
error rates and the average length of the 95% confidence intervals are reported in Tables 1
and 2.

In Table 1, we used the approach described in §3, as the sampling fraction is negligi-
ble. The confidence intervals computed with the proposed empirical likelihood approach
perform better than the confidence intervals computed with the other approaches. The cov-
erages of the proposed approach are closer to 95% and the lower and upper tail error rates
are closer to 2.5%. In Table 2, we used the approach described in §4, as the sampling frac-
tion is not negligible. We see that the proposed approach gives better coverages which are
better than the pseudo empirical likelihood approach, except when the sample size n = 80.

7. Discussion

The proposed empirical likelihood approach can be easily generalised for multi-stage de-
signs (e.g. Särndal et al., 1992, §4.3.2), by using an ultimate cluster approach; where the
primary sampling units’totals play the role of the units. This approach gives consistent
confidence intervals when the sampling fractions are small.

The proposed empirical likelihood approach can be generalised in the presence of non-
response by using Fay (1991) reverse approach (Shao & Steel, 1999) which can accommo-
date imputation and weighting adjustment. Another approach consists in using auxiliary
variables to compensate for nonresponse (e.g. Särndal & Lundström, 2005).

Standard confidence intervals based on the central limit theorem and pseudo empirical
likelihood confidence intervals require variance estimates which often involve linearisa-
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tion or re-sampling. Even if the parameter of interest is no linear, the proposed method
does not rely on variance estimates, linearisation or re-sampling, and empirical likelihood
confidence intervals can be easier to compute than standard confidence intervals based on
variance estimates. It provides an alternative to more computationally intensive methods
such as bootstrap or jackknife, when linearisation cannot be used.

Bootstrap is an alternative approach which can be used to derive non-parametric con-
fidence intervals. The proposed approach is less computationally intensive than the boot-
strap. It is also possible to combine the empirical likelihood and the bootstrap approaches
to improve the coverage of the empirical likelihood confidence intervals, by replacing the
threshold χ2

1(α) in (28) by a quantity obtained by bootstrapping the empirical likelihood
ratio function (e.g. Owen, 2001, §3.3, Wu & Rao, 2010).
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