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Abstract
Researchers often model folded protein 3D structures as graphs with amino acids as the
vertices and edges representing contacts between amino acids. Many possible constructions
exist based on whether the graph is made using all atoms or only C-alpha atoms or only
C-beta atoms, deciding what counts as contacting for determining the graph edges, and
deciding to ignore or not ignore trivial contacts from amino acids close in the protein
sequence. However, there is no consensus about what construction to use or what the major
issues are with each construction in the literature. We investigate different constructions
and examine their effect on various graph measures. We also consider the “small-world”
network model for proteins, discuss its validity under the different constructions, and discuss
random protein graph generation.
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1. Introduction

Understanding the mechanisms in protein folding and predicting the three-dimensional
structure of a protein are challenging problems. Research groups use physical mod-
els, simulations, and templates (portions of known proteins similar to the one under
investigation) in procedures to get the best realistic protein structure prediction
that they can. Other groups use known protein three-dimensional structures to
try to shed light on the protein folding problem. In many cases, the researchers
model the folded protein three-dimensional structures as a graph with amino acids
as the vertices and edges representing contacts between nearby amino acids. Many
possible graph constructions exist due to different representations of the protein,
and there is no consensus about which construction to use in the literature. After
some background information on proteins and graphs, we consider various graph
representations from the literature with their applications.

A graph is a collection of vertices and edges (V,E), where an edge is a 2-element
subset of the set V indicating a connection between those vertices. An edge may be
directed or undirected and may or may not have a weight. The graphs we consider
are undirected graphs. Most of these graphs are simple, i.e. they do not have
multi-edges (meaning there is either no edge or only one edge between any two
vertices), but one representation allows multi-edges. Our constructions do not have
self-edges. Each amino acid in the protein sequence is a vertex and edges reflect
that the amino acids are in contact in their three-dimensional folded structure. To
determine contacts, a distance between amino acids is calculated, and if it is below
a threshold, the amino acids are in contact. The most common distance used (and
what we use) is Euclidean distance between atoms while folded.

Proteins are chains of amino acids that fold into a specific shape to perform a job.
Each amino acid has a backbone, the same for all amino acids, except glycine, and a
sidechain which differs between amino acids. In the backbone, there are two carbon
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atoms - commonly called Carbon-alpha (C-alpha) and Carbon-beta (C-beta). These
atoms are convenient points of reference. When dealing with distances on this
atomic scale, the distance unit is the Angstrom (A). One additional consideration
is that because the amino acids are ordered, you expect connections between amino
acids near in sequence. In some applications, these contacts are considered trivial,
and may be removed. For example, you may not consider a contact to be a true
contact unless the amino acids are more than two apart in sequence. Finally, protein
structures in their folded state are determined using chemical techniques and the
results are entered into a freely available database (RCSB) (1). For our work, we
use the PDB (protein databank) files associated with our proteins downloaded from
RCSB.

We offer a representative literature review of applications where graph repre-
sentations of proteins with amino acids as the vertices have been used. For each
case, we note the application and the graph construction used (or implied) includ-
ing what atoms were used as references to determine distances, the distance cutoffs
used, and whether or not a filter was used to remove trivial contacts. For nota-
tion, a C-Alpha protein representation refers to only C-Alpha atoms being used
to determine distances. Other representations to determine distances are C-Beta
and all-atom representations. The literature review is summarized in Table 1, with
general patterns discussed in the text.

Table 1: Example Protein Graphs In the Literature.

First Author Year Rep. Dist. Filter Application Citation

Rodionov 1994 C-Beta - No contact substitution (12)
Plaxco 1998 All-atom 6A No folding rate prediction (11)

Gromiha 2001 C-Alpha 8A Yes folding rate prediction (4)
Vendruscolo 2002 C-Alpha 8.5A No small-world graphs (13)

Ivankov 2003 All-atom 6A No folding rate prediction (6)
Greene 2003 All-atom 5A Yes protein graphs (3)
Jung 2005 C-Alpha 8A No unfolding rate prediction (7)

Krishnan 2008 C-Alpha 6A Yes protein graphs (8)
Habibi 2010 C-Alpha 8A No protein graphs (5)

Protein graphs (contact maps) have been used since the 1970s (12). As seen in
Table 1, they continue to be used in current research. The most common represen-
tation is C-Alpha. Distances typically range from 5-10A. Filters are not universally
used. In our examples, the filters occurred at different sequence separations. For
example, amino acids needed to be more than 2 amino acids apart for contacts to
count in Krishnan’s work (8), but Gromiha focused on long-range contacts more
than 12 amino acids apart (4). All-atom graphs may allow multi-edges. Finally, we
see from the applications that much of the related work deals with protein folding,
but there has been a recent shift towards work with proteins as graphs.

As work has turned to understanding the protein graphs as graphs, little atten-
tion has been paid to how the various constructions affect values typically calculated
for graphs. In this work, we consider the effects of these various constructions on
graph properties and implications for generating random graphs that behave like
protein graphs. Our outline of the paper follows. First, we introduce relevant graph

Biometrics Section – JSM 2012

255



definitions in Section 2. We introduce our protein dataset in Section 3. Our meth-
ods for protein graph construction are presented in Section 4. Next, we show the
impact of the various construction methods on the “small-world” property of pro-
tein graphs in Section 5. We then discuss the impact of the different constructions
on some graph concepts in Section 6. In Section 7, we highlight some preliminary
results of work to develop a random protein graph generator, as well as show that
current random graph generators (even small-world generators) do not yield real-
istic protein-like graphs. Finally, we conclude with discussion, some suggestions
regarding the constructions, and future work in Section 8.

2. Definitions of Graph Concepts

As seen in the Introduction, some researchers computed graph concepts for protein
graphs and evaluated their use in understanding protein folding. We define the
properties we examine in this section. Note that many graph concepts do not have
appropriate adjusted computations for graphs with multi-edges. As a result, our
primary focus is to compare the simple graph constructions. The vertices of our
graphs are the amino acids, labeled from 1 to n in sequence order, and there are
a total of m edges determined by contacts, where m and n depend on the protein.
A typical representation of the graph is it’s adjacency matrix, A. The matrix A is
n by n and the ijth entry in the matrix is the number of edges between vertex i
and vertex j. For further details or as an additional reference on graph basics, the
reader is directed to (9). We begin our definitions with the degree of a vertex.

2.1 Degree, Number of Edges/Contacts, and Degree Distribution

For each vertex, qi, i = 1, . . . , n, is the degree of the vertex. This is simply the num-
ber of edges which connect to the vertex, and is easily computed as qi =

∑n
j=1Aij .

For the protein graphs, this is equal to the number of contacts determined for each
amino acid in the protein sequence.

One of the most important characteristics of a graph is its degree distribution.
We let pq be the fraction of vertices in the graph with degree q. For simple graphs,
the upper limit on q is n−1, and so

∑n−1
q=0 pq = 1. It is not uncommon for the degree

distribution to follow a power law, so that pq = Cq−α, 2 < α < 3, and where C is
an appropriate constant. Finally, degree is also a measure of centrality. A vertex is
more central if it has more connections. Not all neighbors are equivalent however,
so it is a good idea to consider alternative centrality measures (9).

2.2 Average Path Length (APL)

Shortest path length is the minimum number of edges that must be traversed to go
between two vertices. Average path length, APL, is the average of all the shortest
path lengths when considering all pairs of vertices.

2.3 Clustering Coefficient (CC)

There are several non-equivalent definitions of the clustering coefficient. In general,
the clustering coefficient is a measure of how tightly clustered the graph is. For the
first definition, it is computed as 6 times the number of triangles divided by the
number of paths of length 2 in the graph. In other words, the clustering coefficient
is the number of triangles out of the number of possible triangles starting from
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two connected sides. We decided to look at a second definition of the clustering
coefficient because we want to use graph concepts to identify important individual
vertices. This measure is computed for each vertex, and then averaged across all
vertices. For each vertex, v, the local clustering coefficient is the number of pairs of
neighbors of v which are also connected divided by the number of pairs of neighbors
of v (i.e. it is analogous to the first definition, just localized to each vertex), with
vertices ignored which have fewer than 2 neighbors. Then, the average is taken over
all vertices that have at least 2 neighbors. We refer to the clustering coefficient as
the average clustering coefficient, or CC. As we stated, these two definitions are not
equivalent, and we use the latter.

2.4 Small-world Properties

Many social and biological networks have been found to be much more highly clus-
tered than random graphs with similar numbers of vertices. Graphs with high clus-
tering coefficients and slightly higher values for average path length (but still low
overall) as compared to random graphs of the same size are often termed “small-
world” graphs (15). Researchers have shown protein graphs exhibit small-world
tendencies (3) (13).

2.5 New Graph Property: Contact Distribution

Contact distribution is a new graph property we developed for protein graphs due
to the natural ordering of vertices. When we considered degree distribution, we
wanted to know how many vertices had each degree value. Contact distribution is
the distribution of weights along the edges in the graph, where the weights are the
sequence separation between amino acids that are in contact. In other words, if the
edges were given weights according to how far apart their vertices were in sequence,
we want to understand how many edges have each possible weight value, and study
the weight distribution across the graph. Let ri be the fraction of contacts/edges
that occur at a sequence separation of i (out of the n − i possible edges at that
sequence separation distance). Each ri is between 0 and 1, and a simple rescaling
si = ri ∗ (n− i)/m allows for a constraint that

∑n−1
i=1 si = 1. In this rescaling, si is

the fraction of existing edges in the graph that occur at sequence separation i.

2.6 Other Graph Measures

Many other graph measures exist, and results for these measures are omitted in this
paper, but will be presented in future work. Briefly, we highlight some measures we
considered. We examined graph stability through edge removal impact probability
(ERIP). This measure was originally proposed in (7), and is computed based on
the average path length but with varying percentages of edges removed from the
graph. In our work, we modify this procedure and study similar relationships to
those in (7). We also examined several measures of centrality including eigenvector
centrality, betweenness centrality, and closeness centrality (9). Our centrality results
are promising because they may indicate important connections that occur in the
protein folding process. Finally, we also studied some connectivity measures, which
may be related to packing/size protein properties.
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3. Protein Data

Our data consists of 127 cases - distinct proteins which were collected to create a
database of proteins with thermodynamic and kinetic information available. The
database is currently maintained by Amherst College. Preliminary database details
are available in (14). For the analysis in this paper, the PDBs of the proteins were
downloaded from RCSB (1) and processed using a Perl script to obtain the protein
graphs under the methods described in the next section. The graph concepts were
then computed from the protein graphs using R, the igraph package, and original
code, and compared to other variables in the database. Reproducing the graph
concept analysis on a larger set of proteins sampled from RCSB is an area for
further investigation, but not all proteins have experimental thermodynamic and
kinetic data available.

To get a sense of the data, we consider a few descriptive statistics. For the 127
proteins, the average size is 107.5 amino acids, while the median size is 86 amino
acids. Twenty-eight of the proteins are multi-state folders, and 65 are two-state
folders. We have folding rate constants for 115 of the proteins and unfolding rate
constants for 49 proteins. The average helical content of a protein in the data set is
22.48 percent (median 16 percent) and average beta sheet content is 23.87 percent
(median 26 percent). Finally we have all four structural classes represented: 28 are
class α, 36 are class α+ β, 8 are class αβ, 48 are class β and 7 have unknown class
(or are fragments).

4. Methods for Protein Graph Construction

Recall that in the graphs we consider, each amino acid in the protein is a vertex,
labeled according to the amino acid sequence. Edges are added between amino
acids which are in contact when the protein is in its folded three-dimensional native
structure. There are several aspects of the graph construction that we examine: the
protein representation (atoms used to determine distance), the distance cutoff, and
filters, which are used to eliminate trivial (and other) contacts.

4.1 Protein Representation

We consider three different protein representations to determine distances between
amino acids in the three-dimensional structure of the protein. The first is the
common C-Alpha to C-Alpha representation, where only C-Alpha atoms are used.
We refer to this method as CA (C-Alpha).

The second is an all-atom representation where all atoms except hydrogens are
considered. For any two amino acids, all pairs of non-hydrogen atoms are examined
and the minimum distance between the pairs is set as the distance between the
amino acids. This method is referred to as AA (all-atom). Hydrogens are not
considered because their positions are often unresolved or are unclear in the three
dimensional native structure determined by X-ray crystallography or NMR.

Finally, we use the same all-atom representation, but count the number of pairs
of non-hydrogen atoms whose distance is less than our cutoff distance for each pair
of amino acids. In this final method, multi-edges may result between amino acids,
so we refer to the method as MC (multiple contacts).
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4.2 Distance

We examined distance cutoffs from 6-12 A in steps of .5. We did in-depth exami-
nations of graph concepts at 6, 8, and 10 A, though most of the patterns we found
are similar for each distance and we focus on 8 A for the discussion.

4.3 Filter

Filters are designed to remove trivial (and other) contacts from the graph. We al-
ready do not allow self-edges, so the diagonal of the adjacency matrix for each graph
is set to 0. Filters remove subsequent diagonals in the adjacency matrix, moving
out from the main diagonal. We set up our filter to be indexed by a parameter k.
k = 1 means the first diagonal is removed (the main diagonal) so this is equivalent
to the original adjacency matrix. k = 2 means that the second diagonal is removed
(all values set to 0)(so the main diagonal, and first diagonal on either side), etc.
Thinking about this in the protein context, a filter at value k means that amino
acids must be at least k apart in sequence in order for the contact to count. Suppose
we have amino acid i, i < n− 2, and a filter of k = 2. Then, this means that amino
acids i and i+ 2 could be in contact, but i and i+ 1 would not be allowed to be.

We note an important cutoff for choice of k. Alpha helices (an important part
of secondary structure in proteins) have natural contacts at amino acids i and i+ 4
all along the helix. So at a filter value of k = 5 or higher, those natural contacts
have been removed. We examined filters from 1-20 across our different distances
and methods, though at times we focus on filters of k = 1, 4, 10. Those filters
were chosen to compare the original graph (k = 1), a graph with trivial contacts
removed (k = 4) but where alpha helix contacts were retained, and a graph where
only long-range contacts remained (k = 10).

5. When Are Protein Graphs Small-World?

Several researchers have identified protein graphs as small-world graphs (3)(13).
We examine the effect of the various construction methods, distance cutoffs and
filters on the graphs in a small-world context. We found that the choice of distance
cutoff did not influence the overall pattern, so we fix it here at 8A. Figure 1 shows
the average clustering coefficients plotted against the average path length for our
data under the AA and CA methods and at filters of k = 1, k = 4, and k = 10.
Clearly, the non-filtered graphs (k = 1) are the ones that are small-world. Also,
the AA construction appears to have lower average path lengths and slightly higher
clustering coefficients than the CA method, which is expected. In summary, to pick
a construction that is small-world, one must use the non-filtered graph from an AA
representation at a reasonable distance. We note that our clustering coefficients are
higher than those in (3), but their graphs were constructed with a distance cutoff
of 5A, compared to ours at 8A.

It is clear from Figure 1 that the application of filters destroys the small-world
property. This is intuitive because the natural ordering of amino acids and meth-
ods of graph construction result in sequence neighbors being graph neighbors, and
the clustering coefficient should plummet when those trivial contacts are removed.
However, we also note that the CA construction seems to be much more sensitive
to the filter than the AA method. One can also note that for the CA method and
k = 10 filter, a group of proteins has zero as the value of the clustering coefficient, so

Biometrics Section – JSM 2012

259



Figure 1: Scatterplot of average clustering coefficient vs. average path length for
the AA (black) and CA (red) methods at 3 different filter levels at 8A. Circles are
k=1 filter (i.e. original graph), triangles are k=4, and plus signs are k=10.

that effectively all connected triples have been dismantled, or so many connections
have been removed that no amino acid has at least 2 neighbors.

6. Effects on Graph Concepts

6.1 Degree Changes

For our 127 proteins, we show how degree changes between the methods, over the
distances, and as we apply filters. The results are intuitive. We compute the average
and standard deviations of the mean degrees for our proteins at each distance, filter,
and method (for CA and AA) and report them in Table 2 for comparison.

Table 2: Averages (SDs) of the mean degrees for 127 proteins under different
representations, distances, and filters.

Rep. AA CA

Filter/Dist. 6A 8A 10A 6A 8A 10A

k = 1 12.54 (2.56) 21.39 (3.80) 30.38 (5.71) 5.48 (1.16) 9.66 (1.67) 16.50 (2.95)
k = 4 7.64 (2.41) 15.61 (3.78) 24.54 (5.68) 1.92 (0.96) 4.86 (1.64) 10.95 (2.91)
k = 10 5.30 (2.19) 11.39 (3.82) 18.58 (5.80) 1.33 (0.78) 3.30 (1.53) 7.74 (2.95)

It is clear that at each distance and for each filter, the degrees for CA graphs
will be less than or equal to those for AA graphs. Additionally, degrees can only
decrease or stay the same as we apply filters. For a distance increase however,
degrees are likely to increase. The general pattern to these differences in the graphs
is not surprising. But what other changes are there? Should we compute other
graph measures without accounting for filters? Can we say anything about the
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relationship between edges in the different graphs? What do these relationships tell
us about protein folding? These are example questions we seek to address.

6.2 Relationship between Absolute Contact Order and Folding Rate
Constants

Contact order is correlated with the natural log of the folding rate constant of
proteins. An MC graph is used for the computation of contact order (11). We
demonstrate that the AA graph results in very similar relationships to the natural
log of folding rates, and we know computation of the AA graph is faster than the
MC graph. Here, we examine how absolute contact order computed on MC, AA,
and CA graphs at each distance and filter relates to the natural log of folding
rate for the proteins in our data set, after describing the computation of contact
order. Contact order was proposed in 1998, and is easily constructed from a protein
graph. In the original notation, L is the chain length of the protein, N is the total
number of contacts and ∆Si,j is the sequence separation between residues i and j
for contacting residues. Then, using an MC graph representation with k = 1 filter
and distance cutoff of 6 A, contact order is computed as:

CO =
1

LN

N∑
∆Si,j , (1)

where the sum is over all contacting residues found based on the distance compu-
tation and cutoff chosen (11). Contact order was modified by multiplying by L to
form absolute contact order (ACO), and ACO was found to perform better than
contact order in predicting folding rate constants (6). For our work, we compute
ACO. For this part of the analysis, we use a subset of 50 proteins where we had
the folding rate available, as reported in (6) or (11). Table 3 contains correlations
between the natural log of the folding rate constant and the ACO under each repre-
sentation, at the three different distances for filters from k = 1 (no filter) to k = 10.
For reference, in the ACO paper, the observed correlations between ACO and lnkf
were: -.51 for two-state folders only, -.78 for multi-state folders only, and -.74 over
all proteins considered (6). Our data set has a mixture of two-state and multi-state
folders. We have results for filters 1-20, but because the pattern is clear, we omit
the results for filters 11-20.

Considering each distance in turn, a few things are clear. First, the AA corre-
lations with the natural log of the folding rate are very similar to the MC corre-
lations, while CA appears to have different (weaker) correlations (though at 10 A,
the difference is minor). Also, as the amount of filtering increases (k increases), the
correlations tend to decrease. Most distance/representation combinations have a
correlation drop around k = 5. Recall that starting at k = 5, the i to i+ 4 contacts
expected in alpha-helices are removed. We note that the correlations are also fairly
stable over the different distances within each method, except CA. Overall, it ap-
pears a filter to remove trivial contacts, say k = 3 or k = 4, does not significantly
impact the resulting ACO correlation with the natural log of the folding rate, and
that distance chosen really only affects results with a CA graph representation. Ad-
ditionally, based on our work, we have observed a relationship between the number
of contacts in the graphs under the different methods, especially once trivial con-
tacts (k = 4 or less) have been removed. We believe these relationships shed some
light on protein folding and packing, and have publication work in progress.
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Table 3: Absolute Contact Order correlation with LNKF (natural log of the folding
rate constant) across filters k = 1 to k = 10 (2 significant digits) at three distances
(6, 8, and 10 A) for the three different graph representations.

Distance/Rep. 6 A 8 A 10 A

Filter MC AA CA MC AA CA MC AA CA

k = 1 -.67 -.67 -.58 -.69 -.67 -.62 -.69 -.66 -.65
k = 2 -.67 -.67 -.57 -.69 -.67 -.62 -.68 -.66 -.65
k = 3 -.68 -.67 -.60 -.68 -.67 -.61 -.68 -.66 -.65
k = 4 -.67 -.67 -.59 -.66 -.67 -.61 -.67 -.66 -.65
k = 5 -.61 -.64 -.53 -.62 -.66 -.56 -.65 -.66 -.64
k = 6 -.58 -.59 -.49 -.59 -.65 -.54 -.63 -.65 -.61
k = 7 -.58 -.58 -.49 -.59 -.63 -.53 -.61 -.64 -.59
k = 8 -.59 -.59 -.49 -.58 -.61 -.53 -.60 -.63 -.58
k = 9 -.58 -.58 -.48 -.58 -.61 -.52 -.59 -.62 -.57
k = 10 -.58 -.58 -.47 -.58 -.60 -.52 -.59 -.61 -.57

6.3 Average Path Length

We considered average path length in our small-world discussion. Our analysis
shows that as expected, CA graphs have longer average path lengths than AA
graphs at the same filter and distances. Longer distances mean shorter average
path lengths, and higher filters mean longer average path lengths. Also, generally,
the AA graph with a k = 10 filter has a shorter average path length than the CA
graph with no filter, k = 1. At 10 A, most of the path lengths for AA or CA graphs
are between 2 and 4. Even when we look at 6A for CA graphs, the longest path
lengths are between 10 and 15, and most are between 4 and 7. Considering the size
of some of these graphs, that is impressive, and results for AA graphs are consistent
with the small-world belief we examined earlier.

Briefly, we consider the relationship between average path length and graph size
focusing on differences between AA and CA methods at 8A. Figure 2 is a scatterplot
showing the relationship with no filter applied. Average path length does increase
slightly as graph size increases, as expected. For the AA method, applying a filter
does not increase the average path length much. At 8 A, the average increase at
k = 4 is only .11 and at k = 10 this goes up slightly to .34, but is still less than
one additional edge, and is similar for the other distances we examined. CA graphs
have larger increases in average path length as filters are applied. In CA graphs,
at 8 A, for k = 4, average path lengths are on average, .64 longer than their k = 1
counterparts, and k = 10 average path lengths are .85 longer on average. This
is still less than a one edge increase, on average. So while filters do increase the
path length, the biggest differences are due to the method. The average difference
between AA and CA average path lengths at 10 A is .63, at 8 A is 1.22, and at 6 A
is 2.57. Thus, at higher distances, the method difference is not as pronounced.

6.4 Clustering Coefficient

We also considered the clustering coefficient in our small-world discussion. We al-
ready know that applying a filter reduces this measure significantly. Our results
show that notably, even at 10 A, some of the proteins have a 0 for their CC under
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Figure 2: Graph size versus average path length of each protein in the data set
at 8 A with no filter k = 1. CA average path lengths are blue squares, while AA
average path lengths are red circles.

a CA construction at k = 10 (this occurs even more at 6A). Clustering coefficients
increase as distance increases, and the methods do not result in terribly differ-
ent clustering coefficients if no filter is present (k = 1). Once filters are applied,
AA graphs have higher clustering coefficients than CA graphs, and this is more pro-
nounced at lower distances. Relating back to the small-world discussion, we already
stated that the breakdown of the small-world property when filters are applied is
due to the drops in clustering coefficients, not changes in average path lengths. This
has some implications for using the clustering coefficient as a measure of how tightly
clustered protein graphs are. For long-range filters, and especially if using the CA
method, the clustering cofficients drop to near 0 and there is not much variability
in their values. Hence, it might be best to only consider the clustering coefficient
without filters applied, or to develop a new way to quantify long-range triangle
neighbor relationships.

6.5 Summary of Results on Other Measures

We also examined the other graph measures we introduced in Section 2. Complete
results will be presented in forthcoming work, but we highlight a few aspects related
to centrality here. Centrality scores can increase or decrease as filters are applied.
Examining change or lack thereof in centrality across filters may allow important
vertices (amino acids) to be identified. These scores are also very different for CA
graphs at short distances than AA graphs and vertices with a high score in the
sparse CA graph might indicate a folding contact that must be achieved early in
the folding process.

7. Steps Toward Constructing a Random Protein Graph Generator

In this section, we give brief background on random graph generation, especially
small-world graph generation, and investigate if these graphs can mimic protein
graphs. The main feature we try to mimic is the protein contact distribution.
Developing a model to create protein graphs may shed light on protein folding
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depending on what properties must be enforced in order to achieve realistic protein
graphs.

7.1 Existing Methods for Random Graph Generation

The most basic random graph models are G(n,m) and G(n, p) models. The G(n, p)
model is often referred to as the Poisson model, because in the limit of large n,
the degree distribution that results is Poisson (9). Obviously, being restricted to
a Poisson degree distribution is a limitation, and other random graphs have been
developed that can model any degree sequence, such as the configuration model (9).
All of these models however, do not have high clustering coefficients, which often
occur in real-world graphs. Alternative models, including small-world models, were
developed to achieve that property.

Generating a small-world graph can be done in several ways. In the original
proposal of Watts/Strogatz, small-world graphs are generated by starting with a
ring of vertices. The vertices are all connected to some number of neighbors f , and
each edge has the same fixed chance of being re-wired (probability w). Using this
generation mechanism, long-range connections can be introduced, which decreases
the average path length. However, the clustering coefficient remains strong due
to the starting neighbor connections (15). A variant is to keep all the original
connections and add a few long-range ones with probability w.

Other models for generating small-world graphs exist. Nguyen and Martel de-
scribe Kleinberg’s model as well as a generalization (10). In Kleinberg’s model,
a grid is the basic starting unit for the graph. Each vertex is connected to its
neighbors on the grid. Then, q long-range connections are added based on a prob-
ability that is inverse squarely proportional to the grid distance between each pair
of vertices. Generalizations are made to models that start with a grid and add q
long-range edges under other probability distributions (that can be vertex specific)
(10). Many other random graph models exist, including models for directed graphs,
growing graphs, etc. For a broad review of graph generators, see (2).

7.2 Protein Contact Distributions

The main feature that makes protein graphs interesting is the natural order of the
vertices, and its consequences. If sequence separation is set as the edge weight
for a protein graph, then we define the distribution of the edge weights as the
contact distribution. The contact distribution may be scaled in one of two ways
- either consider the number of edges at each sequence separation as a fraction
of the maximum possible at each sequence separation (n − 1), or as a fraction of
existing edges. Contact distributions have interesting shapes due to protein folding
patterns. An example contact distribution under the AA construction at 8A for
PDB 1APS with no filter is shown in Figure 3. The graph has 98 vertices and 1658
edges. The rescaling was chosen as a fraction of existing edges. Unlike a degree
distribution, which can have significant shape changes (not just rescaling) due to
filters, the effect of a filter k on a contact distribution is just to remove the first
k− 1 sequence separations from consideration, and rescale the distribution if based
on fraction of existing edges.

The contact distribution example from 1APS shows interesting “humps”. These
humps occur due to the formation of long-range contacts. For example, the first
hump in Figure 3 occurs around sequence separation 30. This might be because
amino acid 12 was in contact with amino acid 42, which suggests amino acid 11
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Figure 3: Contact distribution of PDB 1APS under AA construction at 8A with
no filter (k = 1).

might be in contact with amino acids 42 or 43, and that amino acid 12 might be
in contact with amino acid 43, etc. There might also be multiple neighborhoods
involved. For example, it might be a contact between amino acids 12 and 42 and
another contact between amino acids 25 and 55 and related connections that cause
the hump.

It is not difficult to compute contact distributions for graphs generated from
random graph generators. An example contact distribution from a Watts/Strogatz
ring model (igraph function watts.strogatz.game(1, 100, 16, .3)) with 100 vertices,
1600 edges, and a rewiring probability of .3 is shown in Figure 4. The number
of vertices and edges were chosen to be similar to the graphs from 1APS. The
rewiring probability was chosen to provide a degree distribution similar to that of
1APS. Even with these similar settings, the contact distribution from the random
small-world graph does not look at all like the contact distribution of the protein
graph.

Figure 4: Contact distribution of a small-world graph generated from a
Watts/Strogatz ring model (100 vertices, 1600 edges, rewire probability =.3).

Currently, we are investigating ways of quantifying the differences - defining a
hump, number of humps, length of humps, etc. It is clear however that current
random graph generators do not provide contact distributions that mimic protein
graphs, even though their number of edges, vertices, degrees, clustering coefficients,
and average path lengths can be similar. This leads to some natural questions. How

Biometrics Section – JSM 2012

265



can we obtain random protein graphs? Can we put protein graphs in a framework
where they are a subset of small-world graphs (bur with ordered vertices)? What
do we learn about protein folding/packing from looking at how we make random
protein graphs?

7.3 Considerations for Random Protein Graphs

7.3.1 Using a Grid/Ring Building Block

The ring/grid building block of the small-world models considered as examples is a
good starting point. As seen in the example protein contact distribution, Figure 3,
there are a number of connections at small sequence separations. However, the drop-
off is pretty extreme, at around sequence separation 7-10 in most protein graphs
we examined. The grid/ring basis needs to accurately capture the drop-off. This
has several implications if starting from a Watts/Strogatz or Kleinberg model. The
Watts/Strogatz model needed is the variant where the original grid is kept, and
long-range edges added, with a small starting grid. Some minor rewiring of the
outer edge of the original grid will be needed to create the drop-off. Similarly, for
the Kleinberg model, some of the original grid edges will need dropped (or rewired
depending on how the graph is developed).

7.3.2 Reciprocal Attachment

The small-world graph generators we considered both have mechanisms to add long-
range connections to the graph. However, they do not reciprocally add connections
to other close neighbors, which is needed to generate the “humps” visible in the pro-
tein contact distributions. This could be added to the graph construction process
after an initial long-range connection has been made by adding connections to se-
quence neighbors with high probability but dropping off fast enough to accomodate
hump sizes/properties. As an analogy, I think of something along the lines of the
correlation structure associated with an AR(1) process with high ρ could be used
to govern the addition of edges. For example, after adding a random long-range
connection, treat that as the midpoint of a new neighborhood connection. Add
connections to sequence neighbors who are one away in sequence from each amino
acid in the long-range connection with probability ρ, where ρ ≥ .95 (.95 chosen as
an example). Add connections to sequence neighbors who are two away in sequence
with probability ρ2, etc. The distribution used to govern the reciprocal attach-
ments, if it generates graphs that look like the protein graphs, may shed some light
on protein packing. The long-range connection distribution also needs adjustment
to deal with the “hump” properties of the protein contact distributions.

7.3.3 Long-Range Connections

Adding reciprocal attachment will go a long way towards generating random graphs
that behave like protein graphs. However, adjusting the long-range connection dis-
tribution to accomodate “hump” properties is a challenge. Unlike the Kleinberg
model, where the long-range connection probability is governed by the inverse square
of the grid distance between two vertices, long-range connections will likely need to
be governed by sequence separation with intermediate distances given the highest
probabilities. Then, once an attachment is made, and reciprocal attachments com-
pleted, constraints should be made to avoid adding additional edges within those
neighborhoods. For example, if a protein has 100 amino acids, it is unlikely amino
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acid 1 and amino acid 100 are in contact. It is more likely that amino acid 1 con-
tacts amino acid 30, and amino acid 71 contacts amino acid 100. If a long-range
connection is added between say, amino acid 25 and amino acid 55, and recipro-
cal connections are completed, we should not add another long-range connection
between amino acid 26 and amino acid 53, because this was already a considered
reciprocal connection for a long-range connection. Additional challenges lie in cap-
turing differences by protein class.

8. Discussion, Conclusions, and Future Work

In this paper, we have discussed selected results on protein graph construction
mechanisms. We showed that all-atom single contact graphs with no filter can
be considered to be small-world. We also examined differences in average degrees
among the graph constructions. For predicting folding rate constants, we found
that all-atom single contact graphs perform comparably to the originally suggested
all-atom multiple contact graphs to form absolute contact order. We took a slightly
more in-depth look at the small-world graph properties of average path length and
clustering coefficient, before turning to questions about random graphs and gen-
erating protein graphs. After supplying evidence that current small-world graph
generators do not generate protein-like graphs, we outlined properties needed in a
model to succeed in generating protein-like graphs.

As suggested in various sections, particularly in Section 7, much related work
remains. In particular, we plan to look at graph properties as measures of pro-
tein stability and study relationships to folding/unfolding, such as ERIP (7), but
extended to other measures like centrality. Further examinations of centrality mea-
sures with different filters applied would also be interesting due to their potential
to identify important amino acid contacts for folding. Clearly, there is significant
work in determining an appropriate graph generator for protein graphs, and we have
active work in this area. We hope this work will shed light on protein folding and
amino acid packing properties. We may also investigate whether or not the protein
folds may be characterized by their graph properties. The different graph construc-
tions generate different numbers of edges, and we have work examining relationships
between the numbers of edges to examine packing properties as well. Finally, there
is significant work ahead in obtaining a larger, representative sample of proteins
and their graphs from the PDB, even if kinetic/thermodynamic information is not
available for those proteins.
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