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Abstract 

 
Creating a unit level public use file (PUF) with a rich set of analytic variables and high 

analytic utility has become a difficult problem due to increasing potential for availability 

of unit level information in public domains that could be used for matching purposes. 

Besides, unit level information is prone to possibly false perception of information 

disclosure about a target of interest which may be difficult to refute. The problem 

considered here arose in the context of CMS Medicare claims data where unit level 

corresponds to beneficiaries. To get around this problem, we propose a new approach of 

aggregate level PUF (or AL-PUF) where we modify the data structure by changing the 

unit of observation from beneficiaries to a small aggregate (termed micro-group or MG) 

signifying a group of beneficiaries having a common profile with respect to geo-

demographics and prescription drug enrolment. For analytic utility, MG sizes should not 

be too large in order to make them as close as possible to the unit level; i.e., as building 

blocks, and for this reason larger MGs could be subdivided using additional outcome 

variables such as total number of claims and cost for each beneficiary.  

 

The basic idea of MG structure and small MG sizes is motivated from the commonly 

used aggregate level modeling as an alternative to unit level modeling for small area 

estimation. In considerations of data confidentiality, however, MG sizes should not be 

too small either (e.g., not below 10) depending on the level of risk tolerance. Having 

MGs as building blocks goes a long way in reducing disclosure risk because there is no 

beneficiary level information.  To obtain true totals for various domains, it is sufficient to 

have only averages (termed micro-means or MMs which are common for all beneficiaries 

in the MG) of outcome variables for each MG along with MG counts; i.e., weighted up 

MG sizes. However, for MGs containing single beneficiaries in analytic profiles defining 

the domains of interest, actual beneficiary values of outcome variables could be disclosed 

by MG totals.  

 

To mitigate the above disclosure problem, two nested subsamples of the full sample are 

defined; the larger one for computing MMs for categorical outcome variables or 

proportions of beneficiaries belonging to analytic profiles for each MG, and the smaller 

one for MG counts, while the full sample is used to obtain MMs for continuous outcome 

variables. Subsampling provides unbiased total estimates as well as justification for using 

two phase sampling results for precision estimation. There is some information loss due 

to subsampling but it can be minimized by suitably choosing subsampling rates. For 

increased precision, sampling weights from subsamples are calibrated to the original full 

sample estimates for key analytic variables. In terms of modeling with AL-PUF data, it is 

observed that there might be need of instrumental variables (which might be available 

from a previous or separate independent sample) to avoid bias due to measurement errors 
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because both dependent variable and independent variables or covariates at the MG level 

in the form of estimated MMs from the full sample make the model error correlated with 

the covariates unless the full sample is a census. However, there is no such problem with 

descriptive inference. Measure sof analytic utility and confidentiality of the proposed 

method of AL-PUF are illustrated for a 5% sample of the 2008 Medicare Inpatient 

Claims data.  

 

Key Words: Aggregate Level Analysis; AL-PUF; Calibration; Micro-Group; Micro-

Mean; Subsampling; Unit Level Analysis. 

 

 

1. Introduction 

The problem considered in this paper arose in the context of creating unit-level public use 

files (PUFs) for CMS Medicare claims data where unit level corresponds to the 

beneficiary level microdata. For a nonsynthetic PUF creation, methods of perturbation 

and suppression for disclosure treatment are used in a controlled fashion so that 

information loss and disclosure risk can be kept at or below reasonable tolerance levels; 

see for example the method of GenMASSC (Singh, 2009). Under this method, 

uncertainty about the identity and presence of a beneficiary is introduced by random 

substitution and subsampling. For high analytic utility of the inpatient claims data, we 

need a rich set of analytic variables in PUF such as age, gender, state, and prescription 

drug enrolment from the beneficiary summary file, and diagnosis, treatment, cost, 

payment, utilization, and duration between health episodes. However, with any 

probabilistic treatment at the unit level, it is difficult to protect against possibly falsely 

perceived identity disclosure of a beneficiary (which may seem to lead to attribute 

disclosure as well) if the intruder believes the beneficiary’s profile in terms of a set of 

analytic variable values to be similar to the target.  Moreover, with an ever increasing 

potential of personal health information being available now or in future from various 

sources that could serve as matching files for identifying variables assumed to be known 

to the intruder, it makes it harder to refute such claims.  

 

The above concern about the problem of providing adequate data confidentiality led to a 

compromise solution of a treated controlled use file requiring a less stringent 

authorization of the data use agreement for access to the treated data housed in a secure 

environment as well as requiring only a simplified disclosure review before the analysis 

results could be exported; see Borton et al. (2011). Both user authorization and disclosure 

review processes can be made simpler and faster due to prior disclosure treatment of the 

raw microdata. The usual alternative of synthetic PUFs for the claims data is also not 

feasible because of the difficulty in joint parametric modeling of a large number of  

analytic variables or in joint nonparametric modeling via empirical distributions. Besides, 

the problem of perceived disclosure risk continues to persist even for synthetic PUFs. 

 

The dissemination model of treated controlled use file instead of the usual PUF is in line 

with the important paper of Gomatnam et al. (2005) who argue that the future of usual 

PUFs (synthetic or nonsynthetic) is rather limited due to the need in practice of a rich set 

of variables for high analytic utility which does not seem possible while maintaining high 

data confidentiality for reasons mentioned above. They advocate, instead, for remote 

analysis servers where the analyst would have only an indirect access to the microdata 

through web-queries while the raw data is housed in a secure environment. The idea of 

remote analysis servers has been around for over 30 years, but recently the concern about 
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PUFs has led to a rejuvenation of research; e.g., see Singh et al. (2012) for a query-based 

PUF and other references contained there-in. 

 

Despite the promising future of remote analysis servers, there is still need for an 

inexpensive option of PUF-type data for mass users to gain familiarity with the data, 

formulate the problem and perform initial analyses before submitting queries through 

remote analysis servers for final analysis if deemed necessary. In this paper, we propose 

such an alternative termed aggregate level PUF (AL-PUF for short) which provides a 

new type of PUF with high analytic utility and data confidentiality. The distinguishing 

feature of AL-PUF is that unlike usual PUFs which are at the unit or micro level, it is at a 

small aggregate level termed microgroup or MG. In the case of medicare claims data, the 

aggregate level signifies a group of beneficiaries having a common profile with respect to 

geo-demographics and prescription drug enrolment and possibly cross-classified further 

by total cost and number of claims. The problem of perceived disclosure risk even after 

sufficient disclosure treatment in unit level PUFs is considerably reduced as we move 

away from the beneficiary level profile to a beneficiary group level profile. For analytic 

utility, MG sizes should not be too large in order to make them as close as possible to the 

unit level; i.e., as building blocks, and for this reason larger MGs are subdivided using 

additional analytic variables if necessary. The basic idea of MG structure and small MG 

sizes is motivated from the commonly used aggregate level modeling as an alternative to 

unit level modeling for small area estimation. For data confidentiality, however, MG size 

should not be too small either (e.g., not below 10) depending on the level of risk 

tolerance.  

 

In AL-PUF, having MGs as building blocks goes a long way in reducing disclosure risk 

because there is no beneficiary level information that is released.  To obtain true totals for 

various domains defined by geo-demographics, diagnosis and treatment, it is sufficient to 

have only averages (termed micro-means or MMs which are common for all beneficiaries 

in the MG) of outcome variables for each MG along with MG counts; i.e., weighted up 

MG sizes. However, for MGs containing single beneficiaries in analytic profiles defining 

the domains of interest, actual beneficiary values of outcome variables could be disclosed 

by MG totals. To mitigate this problem, two nested subsamples of the full sample (  ) are 

defined; the larger one    (subsample of   ) for computing MMs or proportions for 

categorical outcome variables defined by beneficiaries belonging to analytic profiles for 

each MG, and the smaller one    (subsample of   ) for MG counts, while the full sample 

   is used to obtain MMs for continuous outcome variables. 

 

In the absence of any subsampling in AL-PUF, estimates of descriptive parameters such 

as analysis domain totals from unit level data can be obtained as sums of products of MG 

counts and MMs which match exactly with the original estimates. However, even if there 

is no subsampling, there is loss in precision in estimates of model parameters with 

aggregate level modeling because aggregate level predictors or covariates do not have as 

much discrimination power as unit level predictors. This is analogous to the use of 

grouped frequency distribution for estimating moments incurring some loss of efficiency 

compared to estimates from the ungrouped frequency distribution. Nevertheless, AL-PUF 

preserves the data integrity better than unit level PUFs by using only subsampling and 

avoiding distortions due to perturbation and suppression. It may be noted that although 

aggregate level models are commonly used in small area estimation (an area of great 

demand in practice; see National Research Council (2000) report on poverty estimation), 

it is for a different reason due to lack of availability of unit-level predictors and not for 

data confidentiality reasons. 
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It is important to note that use of subsampling mentioned above is desirable as it provides 

unbiased total estimates as well as justifies use of two phase sampling results for 

precision estimation. There is some information loss due to subsampling but it can be 

reduced by suitably choosing subsampling rates. For increased precision, sampling 

weights from subsamples are calibrated to the original full sample estimates for key 

analytic variables. In terms of modeling with AL-PUF data, it is observed that there 

would be need of instrumental variables (which might be available from a previous or 

separate independent sample) to avoid bias due to measurement errors because both 

dependent and independent variables at the MG level in the form of estimated MMs from 

the full sample make the model error correlated with the covariates unless the full sample 

is a census. However, there is no such problem with descriptive inference. It may be 

remarked that if the microdata are at two levels such as beneficiaries and claims within 

beneficiaries in the case of medicare (or households and individuals within households in 

a population survey), separate AL-PUFs can be created at the two levels but employing 

the same nested subsamples; for instance, MGs can be defined in terms of groups of 

beneficiaries for the beneficiary level data and in terms of claims from the same groups 

of beneficiaries for claim level data.  

 

The organization of this paper is as follows. Section 2 provides a heuristic motivation of 

the proposed method of AL-PUF followed by a stepwise description in Section 3 using 

the Medicare Claims data as an example. In Section 4, we consider properties of AL-PUF 

in terms of analytic utility and confidentiality for a given set of subsampling rates using a 

small simulation study from the 2008 Medicare Inpatient Claims data. An example of the 

analysis of AL-PUF data in terms of point and variance estimates of descriptive 

parameters (means, totals, and ratios) and model parameters is discussed in Section 5. In 

the modeling context, we consider how with two AL-PUFs created from independent 

samples, one dataset can be used to provide instrumental variables for the other dataset 

for fitting models. However, for descriptive inference, only one dataset may be used. The 

last Section 6 contains concluding remarks. 

 

2. Heuristic Motivation of the Proposed Method of AL-PUF 

To overcome the difficulty in providing high data confidentiality in the presence of a rich 

set of analytic variables in PUF, it is clear that some reasonable compromises need to be 

made. By moving away from unit-level to aggregate-level data, the major problem of 

possibly false perception of disclosure of individual records essentially disappears by 

construction as long as the number of observations in each aggregate is not too small. 

With this in mind, we create aggregates (or micro-groups denoted by MG) of individual 

records such that eaxh MG size is around 20 (for example) with respect to the full sample 

or the whole population, thus easily satisfying the rule of 11 provided in CMS data 

dissemination guidelines. MGs form a partition of the beneficiary population for a given 

year and can be constructed in terms of basic beneficiary profiles defined by a cross-

classification of age, gender, state, beneficiary enrolment, and if necessary, cost and 

number of claims. Collapsing of MGs may sometimes be necessary to meet the minimum 

MG size restriction. 

 

To fix ideas, it would be useful to contrast the structure and contents of a unit level with 

an aggregate level dataset. Table 1 presents unit level data with rows corresponding to 

different beneficiaries but grouped together in MGs to facilitate comparisons with its 

aggregate level version in Table 2. Under column 1, he first subscript g in the beneficiary 
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identification (ID0 is the MG ID and the second subscript k is the beneficiary number 

within MG. The second column shows the sampling weight for each beneficiary based on 

the original full sample   . The third column represents beneficiary’s basic profile in 

terms of binary auxiliary variables             (or the row vector   ) defining the gth 

MG. The x-variables are simply category indicators of variables age, gender, state, 

enrolment etc. whose cross-classified categories define MGs. For each MG g and the 

beneficiary k within MG, the fourth column shows various claim-level analytic profiles 

(f) of interest where f varies from 1 to F. In the case of Inpatient Claims data, analytic 

profiles are typically defined by diagnosis and treatment. For each analytic profile, 

outcome variables corresponding to the kth beneficiary within the gth MG could be 

categorical ( ̃     —indicating presence or absence of the profile f) or continuous 

(      
   

; i=1, 2,..) where the ith variable denotes length of stay (LOS), cost, or payment, 

for example, as shown in the last two columns.  

 

In Table 2 representing AL-PUF, all the entries are at the MG level. For the gth MG, we 

have the MG profile (  ), estimated MG count  ̂      of beneficiaries, based on a 

subsample     nested within a larger subsample     of the original full sample    , and a 

set of MG level MMs--proportions  ̂         based on the subsample    , and averages 

 ̂          
    based on the full sample     corresponding respectively to categorical and 

continuous outcome variables for each profile f. Note that estimated MG counts  ̂     , 

and estimated MMs  ̂          ̂          
    use samples   ,     and    respectively and 

corresponding weights        ,        , and         although weights for subsamples   , 

    are not shown in Table 1. All weights are calibrated to control totals for key analytic 

variables from the full sample which itself is calibrated first to a key set of known control 

totals from the 100% claims data. Need for subsampling for protecting confidentiality in 

AL-PUF is explained below We note that for AL-PUF, MGs serve as building blocks for 

computing estimates for a variety of analysis domains defined by variables coming from 

different types of claims data such as inpatient, outpatient, carrier, prescription drug 

event, skilled nursing facility, home health agency, hospice, and durable medical 

equipment. MGs are defined such that each beneficiary is assigned to a unique MG. It is 

for this reason, claims data should not be used for defining MGs because a beneficiary 

may have different claim types and different claims within a claim type. In any 

application of AL-PUF, MGs are formed in advance and users are not free to define their 

own MGs. This restriction is not serious since choice of MGs is based on common 

analytic needs and is at low levels of aggregation. Incidentally, the above restriction is 

somewhat analogous to pre-specified coarsening of analytic variables in creating usual 

PUFs.  

 

Next we consider the need of nested subsampling for AL-PUF in order to create 

uncertainty in estimated totals for disclosure safety. It has to do with the problem of 

possible disclosure risk due to rare analytic profiles when MG counts and MMs are 

computed from the same data set (such as the full sample    ) which could be the 5% 

sample of Medicare Claims data commonly used for analysis. By multiplying MMs by 

the MG count, one could easily obtain the numerator (because MG count is in the 

denominator of MMs), and if the analytic profile is rare, numerators are likely to be based 

on a single beneficiary and their values would simply be the product of the sampling 

weight and values of outcome variables for the beneficiary in the rare profile. Thus the 

sensitive values might be at risk of disclosure. To avoid this problem, we propose using a 

subsample such that the full sample is used to estimate MMs for each MG and the 
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subsample to estimate MG counts. It is easily seen that in estimating total for any 

outcome variable, the product of MG count and MM will no longer yield the numerator 

because MG counts (in numerator and denominator) do not cancel out.  

 

There is still one more problem. The MM for the variable  ̃      indicating presence or 

absence of a beneficiary in an analytic profile has the same denominator (i.e., the 

estimated MG count based on the full sample   ) as the other MMs for continuous 

outcome variables       
   

. Therefore, by dividing any one of the MMs of       
   

 by MM 

of  ̃     , we can recover the ratio of the numerators of MMs. Now, if the analytic profile 

is rare, again the value of a sensitive variable might be at risk of disclosure. To counter 

this problem, we propose to use two nested subsamples    and     of      where    is a 

subsample of    , such that for each analytic profile,     is used for estimating all MMs 

 ̂          
   ,     is used for estimating the MM  ̂        , and    is used for estimating the 

MG count  ̂      as shown in Table 2. In terms of estimation efficiency, it implies that 

the resulting domain estimates will be more efficient than just using the smallest    

sample, but less efficient than using the largest     sample for all components—MG 

counts and MMs. 

 

So far we were mainly concerned with estimating domain totals; i.e., descriptive 

parameters. However, for fitting models for a dependent variable defined by MM of an 

outcome variable at the MG level, we can use covariates defined by MMs for related 

analytic variables. However, this will lead to biased estimates as in the case of models 

with measurement errors in covariates because covariates are estimated MMs which are 

correlated with model errors as both dependent and independent variables are based on 

the same sample dataset. To remedy this problem, we propose using two independent sets 

of three nested samples (           ) and (  
 ,   

 ,   
 ) so that MMs from the second set 

serve as instrumental variables for fitting models based on the first set. In practice, MGs 

may have to be grouped to form small domains before model fitting to obtain a stable 

error covariance structure at the domain level as in aggregate level small area modeling.  

 

3. Description of the Proposed Method for Creating AL-PUF 

Based on the brief description of AL-PUF in the previous section, it is observed that once 

the MG structure along with MG counts for creating AL-PUF from a dataset is specified, 

it may be more convenient for analysts if the AL-PUF is expressed in a different order 

from the order in Table 2. Specifically, consider subtables consisting of MGs with MMs 

where each subtable corresponds to a given analytic profile (f) as shown in Table 3. This 

is in contrast to using subtables of analytic profiles with MMs where each subtable 

corresponds to a given MG shown within a given row of MG, and together forming the 

very large complete Table 2. It follows that in practice a library of analytic profiles with 

unique IDs can be constructed and updated over time as more years of data and new 

requests arrive for analysis domains defined by basic beneficiary level profiles and cliam 

level analytic profiles. The number of such subtables is likely to be rather large because 

the number of possible analytic profiles of interest could be very large. However, in 

practice, this may not be of much concern in view of ever increasing memory and storage 

capabilities of modern computers. Besides, having information on analytic profiles in 

AL-PUF avoids the tedious task for analysts to extract it directly from the complex raw 

claims data.  
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It may be noted that after the initial construction of AL-PUF, it remains quite flexible 

with regard to updating it with more subtables for new analytic profiles over time without 

any impact on earlier ones. This feature renders AL-PUF user-friendly with high analytic 

utility. Here, it may be illustrative to list some  examples of clinical or analytic profiles 

(AP) from inpatient claims data: AP1: Diabetes in Yr 1; AP2: Diabetes in Yr 2; AP3: 

Diabetes in Yr 3; AP4: CAD in Yr 1; AP5: CAD in Yr 2; AP6: CAD in Yr 3; AP7: Bypass 

in Yr 1; AP8: Bypass in Yr 2; AP9: Bypass in Yr 3; AP2,5: Diabetes in Yr 2 and CAD in 

Yr 2; AP1,2,5,8: Diabetes in Yr 1 and Yr 2, CAD in Yr 2, and Bypass in Yr 2, and so on. 

Analytic profiles may have detailed ICD-9 codes for diagnoses and procedures and there 

is no suppression of any analytic profile in AL-PUF unless some reasonable broad 

requirements are imposed; e.g., at least three MGs with nonzero values of outcome 

variables for each analytic profile may be required. 

  

A detailed stepwise description of AL-PUF now follows. 

 

Step I. Partition the full sample (  ) of beneficiaries into small subgroups or micro-

groups (MGs) of size around 20 by cross-classifying demography, geography, and 

enrolment. Split large MGs into smaller ones by further cross-classifying with other 

outcome variables such as cost and number of claims which are not specific to a 

particular claim type. Collapse MGs if necessary to satisfy the minimum sample size.  

 

Step II. Obtain suitable control totals for calibration from a larger dataset such as the 

complete Medicare claims data. Choose a sample (  ) as a subsample of   and then a 

sample (  ) as a subsample of   . Perform weight calibration for all the three samples 

(        ) to the same set of calibration controls.    

 

Step III. Estimate MG counts using calibrated weights from the    sample. Next, for 

each analytic profile of interest from a given claims file, define MMs ( ̂          
   ) using 

calibrated weights for the    sample except using    weights for the proportion ( ̂        ) 

of beneficiaries in the analytic profile. Thus the variables MG count and MM can be 

populated for each claims data file corresponding to all MGs for which MG count is not 

zero in the    sample; see Table 3. Also add columns of MMs for squares and cross-

products of outcome variables needed for variance estimation as explained in Section 5. 

 

Step IV. Depending on the analysis, extract suitable subsets of data on analytic profiles 

of interest from profile-specific files using profile IDs; each profile-specific file gives rise 

to a subtable of the form Table 3. For instrumental variables required in modeling, repeat 

the above process with an independent sample and its subsamples (  
 ,   

 ,   
 ). 

 

4. Measures of Analytic Utility and Confidentiality of AL-PUF 

 

If the full sample    were used without subsampling, there would have been no loss of 

information for estimating descriptive parameters and the analytic utility of AL-PUF 

same as that of the original data. However, subsampling is needed for protecting 

confidentiality as explained in Section 2. In this process of trade-off, analytic utility is 

affected. With suitable choices of subsampling rates for    out of   , and    out of   , it is 

possible to have both high confidentiality and analytic utility. With Medicare Claims 

data, typically 5% files based on simple random samples of the whole administrative 

dataset are made available to researchers. It seems natural then to consider three non-
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overlapping and (approximately) independent 5% samples and treat the combined 15% 

sample as   , a combination of two 5% samples as   , and one of the 5% samples as   . 

With respect to the full sample, this amounts to subsampling rates of 50% for    and 

33.33% for   . For protecting confidentiality, we need to check whether there is sufficient 

fluctuation in estimated MG counts  ̂      in relation to  ̂     , and  ̂      in relation to 

 ̂     . This can be measured through simulations of nested subsamples to compute mean 

absolute relative error (MARE) for each MG for each of the two subsamples for a given 

full sample.  It turns out that several versions of the AL-PUF framework MG counts for a 

given set of MGs based on the original full sample can be easily created by repeated 

subsampling (typically stratified simple random) of the full sample if sampling weight for 

subsamples are not calibrated. Calibration step can be omitted for simulations because it 

is not likely to affect much the variability in MG counts. However, it is needed for the 

final AL-PUF based on one set of subsamples for improved precision in analysis domain 

estimates.  

 

We now consider confidentiality (or inverse disclosure risk) measures. For the mth 

simulation, m= 1, …,M, we define  

                                          ( ̂     )  
 

 
∑

| ̂     
   

  ̂     |

 ̂     

 
    ,  (1a) 

and for each subsubsample   
   

 of the subsample   
   

 over M simulations, define 

 

                                             ( ̂     )  
 

 
∑

| ̂     
   

  ̂     
   

|

 ̂     
   

 
    .                       (1b) 

 

From the above MAREs for each MG, two sets of confidentiality measures can be 

computed based on quantiles of     ( ̂     ), and     ( ̂     ). A rule of thumb in 

practice might be to choose subsampling rates such that these confidentiality measures 

are not below 20%. 

 

For measures of information loss (or inverse analytic utility), we can again use 

simulations to define MARE of analysis domain level count or total estimates where 

domains are defined by basic beneficiary and claim level analytic profiles. Thus each 

analysis domain d (varying from 1 to D) can be defined as a universe    consisting of a 

group of g’s crossed by a group of f’s. Now for the categorical outcome variable  ̃     , 

consider the estimated count  ̂  for domain d given by 

 

                                     ̂  ∑ ∑  ̂     
 
   

 
    ̂                 

                           (2a) 

 

where          
 takes the value of 1 if      belong to the domain d and 0 otherwise. The 

true domain count   
  based on the sample   is given by 

 

                                     
  ∑ ∑  ̂     

 
   

 
    ̂                 

                            (2a)  
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where both  ̂      and  ̂         are based on the full sample    . Similarly, the estimated 

total for a continuous variable       
   

 for domain d is given by 

 

                              ̂       ∑ ∑  ̂     
 
   

 
    ̂          

            
                          (3a) 

 

and the corresponding true total based on the full sample is given by 

 

                              
      
  ∑ ∑  ̂     

 
   

 
    ̂          

            
 

                                         ∑ ∑  
          

   
  

   
 
            

.                         (3b) 

 

Now measures of information loss over a set of domains can be defined as quantiles of 

MARE of  ̂  relative to   
 , and MARE of   ̂       relative to  

      
  from M simulations 

as before. Note that for expediency at the design stage of AL-PUF, the subsampling 

weights for each simulation are not calibrated which would tend to reduce the precision 

of domain estimates; i.e., observed MARE are likely to appear greater than they really are 

with calibrated weights. This gives rise to a conservative rule of thumb which we could 

set at 20% for the upper limit on MARE for domain estimates but for most estimates 

preferably under 15%.  

 

To illustrate computation of above measures of disclosure risk and information loss, we 

considered a limited simulation study with M=1000 subsamples from a 2008 5% sample 

of Inpatient Claims data with subsampling rates of 40% for     (i.e., a 2% sample of the 

claims data) and 20% for   (i.e., a 1% sample of the claims data). Stratified simple 

random sampling was used for subsampling within strata of the full sample defined by 

broad categories of age, race/ethnicity, state and gender. Sampling weights were not 

calibrated for reasons mentioned above. For measuring disclosure risk, MARE was 

computed somewhat differently from the formulas 1(a) and (b). MARE of  ̂     
   

 was 

calculated relative to  ̂      and not  ̂     
   

, and  instead of     ( ̂     ), we computed 

MARE (  ̂        
⁄   where the analytic profile f was taken as cardiac bypass with and 

without MCC.  The simplified measures of risk proposed here were not developed before 

the simulation study was conducted. For measuring information loss, MARE was 

computed for two outcome variables: basic demographic domain counts, and analytic 

domain counts defined by demographic and analytic profile of cardiac bypass with and 

without MCC, where demographic domains were defined by gender by age categories in 

terms of year of birth (1922 or before, 1923-1927, 1928-1932, 1933-1937, 1938-1942, 

1943 or later); twelve in all. Table 4 shows various measures. The number of MGs 

formed was 95664 varying in size from 25 to 37, and the number of MGs with at least 

one claim for the analytic profile considered was 2213. It is seen that for the particular 

choice of subsampling rates, confidentiality measures for both subsamples are reasonably 

large (above 20% for all MGs), and measures of information loss for both domain types 

are reasonably small (below 20% for all domains).  
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5. Analysis Examples with AL-PUF (Medicare Inpatient Claims Data) 

We describe a few simple examples of descriptive inference from an AL-PUF data for 

Medicare Inpatient Claims. Consider three analysis domains defined by diagnosis and 

treatment profiles only; i.e., without being crossed by basic beneficiary geo-demographic 

profiles: 

 

  : Beneficiaries diagnosed with coronary artery disease (CAD), 

  : Beneficiaries diagnosed with coronary artery disease and received bypass, and 

  : Beneficiaries with coronary artery disease and received angioplasty.   

 

The parameters of interest are    
,    

,    
, and their ratios    

   
⁄ ; i.e., proportion of 

beneficiaries diagnosed with CAD that received bypass, and    
   

⁄ ; i.e., the proportion 

of beneficiaries diagnosed with CAD that received angioplasty. The point estimates of 

total counts are: 

 

                      ̂  
=Estimated total number of beneficiaries diagnosed with CAD 

                           = Sum over all MGs of MM (proportion of MG with CAD based on   )  

 times MG Count (based on   ) 

 

                           =  ∑ ∑  ̂     
 
   

 
    ̂               

 

Similarly,  

                      ̂  
 ∑ ∑  ̂     

 
   

 
    ̂                          , 

 

            and    ̂  
 ∑ ∑  ̂     

 
   

 
    ̂                              . 

 

All the above estimates are unbiased using standard arguments of two-phase sampling. If 

interested in average cost per beneficiary, the parameters of interest become         
⁄ , 

and         
⁄ where y is the cost variable. These parameters can be estimated in an 

analogous manner with  ̂         replaced by  ̂           in the above formulas. 

 

For variance estimation, two-phase results are applicable after linearization of ratio 

estimates. In particular, as shown in Appendix I, for simple random samples at both 

phases, usual variance estimate can be approximated quite well by aggregate level data 

(MMs and MG counts) in AL-PUF as long as number of MGs is large enough which 

holds for large samples. If the data is from a complex multistage design, usual with 

replacement primary sampling unit (PSU) formulas can be used provided MGs are 

formed within PSUs, and PSUs are treated as strata for second phase subsampling. This 

ensures PSU level estimates from AL-PUF to be unbiased and independent across PSUs. 

However, some PSUs may need to be collapsed in order to have a sufficient number of 

individuals for forming MGs. Moreover, PSU IDs for each MG need to be added to AL-

PUF for above variance estimation. 

 

For model fitting under analytic inference based on a given AL-PUF with some MMs as 

auxiliary variables and other MMs as dependent variables, we will need a second AL-

PUF to provide corresponding MMs for auxiliary variables as instrumental variables for 

unbiased parameter estimation. The method of quasi-likelihood under a given error 
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covariance structure can be used for this purpose. For example, a log-linear model for 

total in-patient expenditure as a function of demographic and chronic conditions can be 

fitted using the aggregate level data of AL-PUF. Aggregate level model diagnostics can 

also be performed as in aggregate level approach to small area estimation.  

 

6. Concluding Remarks 

In this paper we exploit the connection between aggregate level modeling and unit level 

modeling when unit level auxiliary information is not available or cannot be released due 

to confidentiality reasons. The basic idea is rooted in commonly used aggregate level 

modeling approach for small area estimation. It gives rise to a new PUF, termed AL-

PUF, which has high analytic utility and data confidentiality compared to traditional unit 

level PUFs. In using AL-PUF the confidentiality protection is high because with 

aggregate level, the most difficult problem of protecting against perceived disclosure risk 

associated with unit level files even after disclosure treatment disappears. It is further 

controlled by subsampling. The analytic utility remains high for several reasons: one, the 

MG size is kept small to make it close to the unit level; two, there is no problem of bias 

due to usual perturbation and suppression needed for unit level PUF because only 

subsampling is used for introducing uncertainty; three, subsampling rates can be made 

reasonably high while controlling disclosure risk; and four, there is no problem in adding 

information about more analytic variables as need arises. 

 

The basic structure of AL-PUF consists of MGs whose formation is based on a large 

sample such as the combined three 5% samples from Medicare Claims data, and two 

nested subsamples (such as 10% and 5% for claims data) whose weights are calibrated to 

the full sample to obtain calibrated MG counts. Next for each analytic variable (defined 

in general by basic beneficiary profile, clinical or analytic profile, and outcome 

variables), MMs are computed for each MG and analytic profile. Thus there is no 

problem in adding more claim-type analytic variables for a given year. All that is needed 

is to compute MMs for each MG. Similarly, for adding analytic variables across years, 

we can make MGs common over years by using a particular year (such as 2008) as the 

reference year, and then new MMs can be easily added. Thus for longitudinal data such 

as a 3-year CMS claims data, MGs can be used to link data over time even though there 

may not be a complete overlap of beneficiaries for the same MG between two years due 

to population changes by birth or death of beneficiaries or other reasons. So MMs from 

corresponding year-specific claims files for each MG can be linked together to construct 

a three year AL-PUF.  

 

It follows that AL-PUF is quite flexible and adaptable to including a rich set of analytic 

variables. Even for sequence of health events over time, suitable analytic profiles can be 

constructed that capture patterns of interest. For dealing with provider information while 

protecting their IDs, again suitable analytic profile capturing provider preference by 

beneficiaries or type of service provided can be constructed. Finally we note that the AL-

PUF data structure may, in fact, be preferable to analysts instead of the microdata 

because there is no need to go through the tedious task of creating a user-friendly analytic 

summary file from the original raw microdata before performing any analysis. Al-PUF 

essentially consists of subfiles, each subfile corresponds to a given analytic variable. 

Instead of users creating their own subsets of data needed for a given analysis, the AL-

PUF data producer creates appropriate subfiles. Moreover, with AL-PUF being a public 

use file, there is no need for any data use agreement for users typically required for 

access to the raw microdata.  
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Appendix I 
 

If a multi-stage design is used for the full sample   , we could use the usual with 

replacement PSU assumption to obtain conservative variance estimates of a domain total 

estimate  ̂    defined in (3a). We express the total estimator as a sum of PSU-level 

estimates         , j=1,.., J; J being the total number of PSUs. An estimate of the variance 

of  ̂    is then obtained as 

                                
 

   
∑            ̅   

  
   , where   ̅   

∑        
 
   

 
                   (A1) 

 

Note that         involves calibrated weights from both samples   ,   . If the design is 

simple random sample without replacement, an approximation to the usual two phase 

variance estimator can be obtained that relies on only aggregate level data as in AL-PUF. 

More specifically, we have   

 

               ̂         (∑ ∑  ̂     
 
   

 
    ̂                   

)                 (A2) 

 

where    is the second phase variance based on the subsample    conditional on the first 

phase sample   , and   is the first phase variance based on   . Observe that the estimator 

 ̂    can be expressed as a sum of contributions from each MG; i.e., ∑  ̂      
 
    ̂      

where  ̂       is defined as ∑  ̂                   

 
   . It follows that given   ,   ̂    is a 

linear combination of G MG-count estimates  ̂      and so an estimate of    can be 

easily obtained from the variance-covariance matrix of the G-vector of counts  ̂      

under simple random sampling. Next observe that    is the variance of     
  defined in 

(3b) which can be re-expressed as ∑ (∑            
          

 
   ) 

    or 

∑ ∑ ∑                
    

 
   

  

   
 
    where     is the calibrated weight for sample   . 

Denoting                
     by       ,     under simple random sampling is estimated  

as  

                                       (  
  

 
)

  

    
 ∑ (        ̅)

 
      .                           (A3) 

 

However, under AL-PUF,        are not available but we do have estimates of the total 

       
  as   ̂       = ∑  ̂      

 
    ̂      which also estimates MG total for       . If in 

AL-PUF, we also include the column of     as shown in Table 3, estimates of MG 

totals of       
  (to be denoted by  ̂         

) can be obtained. Now for large G,   can be 

estimated by  

 

                                     (  
  

 
)

  

    
(∑  ̂           

 ̂   
 

  
).                       (A4) 

 

It is remarked that the condition of large G is required so that  ̂   
 
 can consistently 

estimate     
  . Also note that in Table 3, the column for the outcome variable for squares 

are multiplied by   —calibrated weight for     so that we automatically get   
  in 

expressions for  ̂         
 . Similarly, the column for cross-products of y-variables is also 

multiplied by    which makes the appropriate adjustment when finding covariances of 
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total estimates. Finally, we note that the above formulas can be easily modified if 

stratified random sampling is used in phase 1 or phase 2.  
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Table 1: Unit Level Representation of Medicare Beneficiary and Inpatient Claims 

Data (Full Sample s1) 

 
Bene 

ID 

 

Sample 

Weight 

        

Bene Basic 

Profile in MG 

(  ) 

Claims 

Analytic 

Profile (f) 

for each 

Bene (gk) 

Outcome Variables 

Categorical ( ̃) 

Presence or 

Absence of the 

profile ‘ f’ 

Continuous (y): 

     --LOS,      --Cost, 

    --Payment 

  
 

  
 

   

⟩ 

       

 
       

 
        

⟩ 

common 

Profile for all 

bene in g=1 

(           

. . . 

 
 
 
 
 

⟩ 

 
 
 
 
 

⟩ 

. . . . 

  
 

  
 

   

⟩ 

       

 
       

 
        

⟩ 

 

 

(            gk ⟨

 
 
 
 
 

 ⟨

 ̃     

 
 ̃     

 
 ̃     

 ⟨

      
   

       
   

       
   

 

      
   

       
   

       
   

 

      
   

       
   

       
   

 

 
 
 
 
 

⟩ 

 
 
 
 
 

⟩ 

. . . . 
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⟩ 

 

 

(           

. . . 

 

 

Table 2: Aggregate Level Representation of Medicare Beneficiary and Inpatient 

Claims Data (Full Sample s1, and Nested Subsamples s2, s3) 

 
MG 

ID 

(g) 

MG or Bene 

Basic Profile 

(  ) 

MG Count 

 ̂      

 

Claims 

Analytic 

Profile (f) 

Average Outcome Variable (MM) 

Proportion of  ̃ for 

f,     ̂         

 

Average of y for f, 

 ̂          
    ,  

for i=1, 2, 3 

1 . . . . . 

. . . . . . 

 

 

 

g 

 

 

 

(           

Using 

Subsample    

 

 ̂     = 

 

∑        
 

 

 

⟨

 
 
 
 
 

 

Using  

Subsample   , 

 

 ̂         =  

 
∑         ̃      

 ̂     

 

 

Using full  

sample     

 

 ̂          
   = 

∑              
   

 

 ̂     

 

. . . . . . 

G  . . . . 
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Table 3: AL-PUF Subtable for a Given Analytic Profile f  

 
MG 

ID 

MG 

Profile 

 

MG 

Count 

 

MM for  ̃ MM for      MM for  

(    )
 
    

MM for 

           

1     ̂      

 

 ̂          ̂          
     ̂

         ( 
   )

 
  

  ̂          
         

 

. . . . . . . 

g     ̂      

  

 ̂          ̂          
     ̂

         ( 
   )

 
  

  ̂          
         

 

. . . . . . . 

G     ̂      

 

 ̂          ̂          
     ̂

         ( 
   )

 
  

  ̂          
         

 

Footnote:    denotes the calibrated weight for sample    . 

 

 

 

Table 4: Simulation-based Measures of Disclosure Risk and Information Loss 

(   =5%,    =2%,   =1%; M=1000) 

 
 Minimum Median Maximum 

Confidentiality (or Inverse Disclosure Risk) Measures  

    ( ̂     ) 24.83% 31.36% 36.03% 

MARE (  ̂        
⁄ ) 20.06% 23.01% 57.01% 

Information Loss Measures 

MARE ( ̂ ) 0.27% 0.34% 0.55% 

MARE ( ̂  ) 5.31% 8.30% 18.86% 
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