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Abstract
A mathematical formulation, based on a discrete time nonlinear state space formulation, is presented to char-
acterize Generalized AutoRegresive Conditional Heteroskedasticity (GARCH) models. In order to improve
the parameter and state estimation techniques in GARCH models, a novel estimation procedure for nonlin-
ear time series model with missing observations, based on anExtended Kalman Filter (EKF) approach, is
described and successfully evaluated herein. Finally, through a comparison analysis between our proposed
nonlinear estimation method and a Quasi Maximum LikelihoodEstimation (QMLE) technique based on dif-
ferent methods of imputation, some numerical results with real data, which make evident the effectiveness
and relevance of the proposed nonlinear estimation technique are given.

Key Words: GARCH models, Missing observations, Nonlinear state spacemodel, Nonlinear estimation,
Extended Kalman Filter.

1. Introduction

Most of the work on time series assume that the observations are consecutive and equally spaced.
In practice, however, in real time series data set it is not unusual to find a large number of missing
observations.
Missing values may follow a variety of pattern, however, twoschemas are of special interest:

• The Bernoulli pattern in which each measurement has a fixed probability of being missing,
and the missed are independent.

• The periodic pattern in which one or a few blocks of missing values are repeated periodically
(e.g. holiday or calendar effects). The time series is sampled in groups ofA consecutive data
separated byB missed observations.

Periodically or randomly missing data appear, either by nature, either because aberrant data were
detected and thus eliminated. The following examples of incomplete data seem to occur frequently
in practice: speech in presence of interference, fading communication channel, astronomical mea-
surements (available only during the night), informationsresulting from signals sonar and radar
(passive electronic intelligence) or radar studies of the moon surface.
Missing data are nonignorable in the context of time series analysis. When one or more obser-
vations are missing it may be necessary to estimate the modeland also to obtain estimates of the

∗Instituto de Estadı́stica, Pontificia Universidad Católica de Valparaı́so, Casilla 4059, Valparaı́so, Chile
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missing values. By including estimates of missing values, abetter understanding of the nature of
the data is possible with more accurate forecasting.
If we consider a time series studies with varying proportions of missing data, different strategies to
estimate these missing values it is necessary to use. Littleand Rubin (2002) classify missing data
mechanisms into three types: missing completely at random (MCAR), where the probability of
missingness does not depend on observed or unobserved data measures; missing at random (MAR),
where the probability of missingness depends only on observed data measures; and nonignorable
missing data (NI), where the probability of missingness depends on the unobserved data measures.
The process of estimating missing values in time series datafor univariate data is complex. The
more frequently strategy to the treatment of missing observations is to replace the unobserved
data for another value (e.g. mean, median or last observed data), which is know as imputation or
numerical interpolation methods. However we note that all the treatments of missing observation
in time series based on the standard imputation techniques will lead to biased estimates.
In practice, most of the literature above time series with missing observations is concerned with
linear processes with normal innovations. In addition, these perturbations are usually regarded as
strict white noise. This assumption is very restrictive; this characteristic implies only linear models
with homoskedastic conditional variances.
As far as we know, the first study that extended the sample autocorrelation function to the case of
missing observations is due to Parzen (1963). Their study formulated that the values of the ob-
served series at unequally spaced times can be represented as an amplitude modulated time series
Yk = CkXk where(Ck)k∈Z represents the censoring process, withCk = 0 whenXk is missing
at timek andCk = 1 in otherwise. The asymptotic properties of this modified autocorrelation
function, under various assumptions on the noise(εk)k∈Z, were investigated by Dunsmuir and
Robinson (1981). More recently, Yajima and Nishino (1999) compare three estimators of the au-
tocorrelation function for a stationary process with missing observations. The first estimator is
the sample autocorrelation function extended to the case with censored data proposed originally
by Parzen (1963). The others estimators are extensions of this first estimator. The authors derive
asymptotic distribution for both short memory and long memory models for the three estimators of
the autocorrelation function with missing observations. They impose the same assumptions on the
innovations(εk)k∈Z as those in Dunsmuir and Robinson (1981).
Autoregressive conditionally heteroscedastic (ARCH) type modeling, introduced by Engle (1982),
are often used in finance because their properties are close to the observed properties on empirical
financial data such as heavy tails, volatility clustering, white noise behavior or autocorrelation of
the squared series. Financial time series often exhibit that the conditional variance can change over
time, namely heteroskedasticity. The ARCH family of model is a class of nonlinear time series
models including the GARCH (General ARCH) process, introduced by Bollerslev (1986) and their
many variations and extensions. The GARCH(p,q) model with normal error is






rk = σkεk,

σ2
k = α0 +

p∑
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αir
2
k−i +

q∑

j=1

βjσ
2
k−j,

(1)
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whererk andσk (> 0,∀k) are, respectively the return and the volatility, in the discrete timek ∈ Z,
associated to a financial process, and{εk}k∈Z is a i.i.d. Gaussian sequence, withE(εk) = 0, E(εk ·
εj) = Qδk−j, and parametersα0 > 0, αi ≥ 0, p ≥ i ≥ 1, andβj ≥ 0, q ≥ j ≥ 1 and∑p

i=1 αi +
∑q

j=1 βj < 1. Moreover, let us considerr0 independent of sequence{εk}k>0.
Given thatrk follows Gaussian distribution conditional on past history, the log-likelihood function
of the GARCH model conditional on initial values is

− lnL = `(θ)

=
N

2
log(2π) +

1

2

N∑

k=1

log σ2
k +

1

2

N∑

k=1

εk

σ2
k

.
(2)

The conditional log-likelihood function is used in practice since the unconditional distribution of
the initial values is not known in a closed form expression. This method can not be easily imple-
mented, require numerical optimization procedures and thechoice of initial values.
For the class of GARCH models with complete data, the most commonly used estimation proce-
dure has been the QMLE approach. Weiss (1986) was the first to study the asymptotic properties of
QMLE in GARCH models. The asymptotic properties of the QMLE for classical GARCH models
have been extensively studied; see, for recent references,Berkes et al. (2003), Francq and Zakoı̈an
(2004), Hall and Yao (2003). Alternatively, other estimation procedures are available based on the
Autoregressive Moving Average Model (ARMA) representation of the squared GARCH process.
This idea was taken by Giraitis and Robinson (2001) who studied the Whittle estimator of para-
metric AutoRegresive Conditional Heteroskedasticity of(∞) order (ARCH(∞)) models, which
involve the GARCH(p, q) case. Recently Kristensen and Linton (2006) have proposed the use of
the Yule Walker estimator for the GARCH(1,1) model. In Bose and Mukherjee (2003) the asymp-
totic properties of two–stage least–squares estimator of the parameters of ARCH models is inves-
tigated, which has a closed–form expression and is computationally easy to obtain. Simulations
show that for small sample sizes, this estimator has a betterperformance than the QMLE.
As discussed by many authors, the most common problem with this estimation procedure is the
fact that the formula of the log-likelihood function requires calculating unobservable values from
the observed sampler0, . . . , rN . A common technique for solving this problem is to choose initial
values, hoping that the initial values dependence vanishesfor large values ofN . Once the log-
likelihood function is initialized, it can be maximized using numerical optimization algorithms.
GARCH models use a Quasi-Newton optimizer to find the maximumlikelihood estimates of the
conditionally normal model. The first max(p, q) values are assumed to be fixed. The optimizer
uses a hessian approximation computed from a method for solving nonlinear optimization update.
The gradient is either computed analytically or using a numerical approximation. Also there exist
some evidence that the Gaussian QMLE, using imputation methods, does not work too well in the
case of GARCH processes with missing observations, becausein a missing data scenario it is not
possible to apply directly QMLE approach, therefore we consider a QMLE based on a complete
data set, obtained after filling the missing observations bysome imputation procedures.
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It is well known that in linear time series analysis state space formulation (see Durbin and Koop-
man (2001)) and the associated Kalman Filter (KF), introduced by Kalman (see Kalman(1960) and
Kalman and Bucy (1961)), provide convenient tools to handlemissing observations in the mea-
surement equation. However, the applicability of this approach to GARCH processes with missing
observations is not immediately apparent. Let us remark that the dynamics of a GARCH process is
nonlinear, and consequently the associated state space formulation will follow the same type of be-
havior. Standard KF algorithm can not be applied to nonlinear state space formulation of GARCH
models, because this algorithm only works when the processes have a linear behavior. The orig-
inal idea of applying a KF to GARCH models was proposed by Harvey et al. (1992). In their
implementation, they consider only a GARCH linear equationand the state space representation of
volatilities is given by an ARMA model (see Wan et al. (2000) and Galka et al. (2004)).
The goal of this research is to develop a novel nonlinear estimation procedure, based on an EKF
approach, for GARCH models considering missing observations. The EKF technique proposed is
derived from a nonlinear state space formulation of the discrete time GARCH equation (see equa-
tion (1)). This method is adequate to obtain initial conditions for a maximum-likelihood iteration,
or to provide the final estimation of the parameters and the states when maximum-likelihood is
considered inadequate or costly.
The structure of the paper is as follows. Section 2 introduces the nonlinear state space formula-
tion for the GARCH(1, 1) model. The EKF methodology and the nonlinear estimation algorithm
are presented in Section 3 and 4 respectively. In order to evaluate the numerical performance of
the proposed methodology, a comparison between our proposed nonlinear estimation method and
QMLE based on different methods of imputation is carried outin Section 5. An analysis between
estimated states and simulated states (see equation (3)), using a EKF approach, is also detailed
herein. Finally some concluding remarks are given in Section 6.

2. Nonlinear state space formulation for GARCH(1,1)

A possible state space representation of equation (1) whenp = q = 1 is,






Xk :=

[
X

(1)
k

X
(2)
k

]

= f(Xk−1,θ) + B · wk,

Y k := rk = X
(2)
k

√
X

(1)
k ,

(3)

whereθ = (α0, α1, β1) ∈ R
3, B = (0, 1)> ∈ R

2, X
(1)
k = σ2

k ∈ R (> 0,∀k), X
(2)
k = rk/σk ∈ R,

wk = εk and

f(Xk−1,θ) :=

[
α0

0

]
+

[
α1

0

]
X

(1)
k−1(X

(2)
k−1)

2+

+

[
β1

0

]
X

(1)
k−1.

(4)
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For details see Ossandón and Bahamonde (2011).
A state space representation for the ARCH(1) model can be obtained from the state space formu-
lation of GARCH(1, 1), replacingf(Xk−1,θ) in this formulation by

f(Xk−1,θ) :=

[
α0

0

]
+

[
α1

0

]
X

(1)
k−1(X

(2)
k−1)

2. (5)

It is important to remark that rest of equations characterizing ARCH(1) state space representation
remains invariant in state space formulation for the GARCH(1, 1) model.

3. The Extended Kalman Filter

Let us consider the following general discrete time nonlinear state space mathematical model:

{
Xk =f(Xk−1,uk−1,θ)+σ(uk−1,θ)·wk,

Y k = h(Xk,uk,θ) + νk,
(6)

whereXk ∈ R
n is the state unknown vector,uk ∈ R

r is the input known vector,Y k ∈ R
m is

the noisy observation vector or output vector of the stochastic process,wk ∈ R
n andνk ∈ R

m

are, respectively, the process noise (due, mainly, to disturbances and modelling inaccuracies of the
process) and the measurement noise (due, mainly, to sensor inaccuracy). Moreoverθ ∈ R

l is the
parameter vector that is generally unknown,f(·) ∈ R

n, σ(·) ∈ R
n×n andh(·) ∈ R

m are nonlinear
functions that characterize the stochastic system.

With respect to the noises of the process, we assume the following assumptions:

• The vectorwk is assumed to be Gaussian, zero-meanE(wk) = 0 and white noise with
covariance matrixE(wk · wT

j ) = Q · δk−j.

• The vectorνk is assumed to be Gaussian, zero-meanE(νk) = 0 and white noise with
covariance matrixE(νk · νT

j ) = R · δk−j.

Whereδk−j = identity matrix whenk = j, otherwise,δk−j = zero matrix.

The EKF generalizes, for a discrete time nonlinear stochastic process, the standard KF used in
discrete time linear stochastic process. This extension isbased on a successive linearization of the
nonlinear state space model proposed for the stochastic process under study (see Wan and Nelson
(1997) and Wan et al. (2000)).
Let YN = [y0,y1,y2, ...,yk, ...,yN ] be a known sequence of measurement or observations. The
functionsf andh (see equation (6)) are used to compute the predicted state and the predicted
measurement from the previous estimate state.
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The following equation shows the computation of the predicted state from the previous estimate:

x̂k|k−1 = f(x̂k−1|k−1,uk−1,θ). (7)

To compute the predicted estimate covariance a matrixA of partial derivatives (the Jacobian ma-
trix) is previously computed. This matrix is evaluated, with the predicted states, at each discrete
timestep and used in the KF equations. In other words,A is a linearized version of the nonlinear
functionf around the current estimate.

Pk|k−1 = Ak−1Pk−1|k−1A
>
k−1 + Q. (8)

After making the prediction stage, we need to update the equations. So we have the residual
measure innovation

ỹk = yk − h(x̂k|k−1,uk,θ) (9)

and the conditional covariance innovation

Sk|k−1 = CkPk|k−1C
>
k + R, (10)

whereC is a linearized version of the nonlinear functionh around the current estimate.
The Kalman gain is given by

Kk = Pk|k−1C
>
k S−1

k|k−1
, (11)

and the corresponding updates by

x̂k|k = x̂k|k−1 + Kkỹk (12)

and

Pk|k = (I − KkCk)Pk|k−1. (13)

The state transition and observation matrices (the linearized versions off and h) are defined,
respectively, by

Ak−1 =
∂f

∂X

∣∣∣∣
x̂k−1|k−1,uk−1

(14)

and

Ck =
∂h

∂X

∣∣∣∣
x̂k|k−1

(15)
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4. Nonlinear estimation with missing observations

4.1 Nonlinear parameter estimation

Given a discrete time nonlinear stochastic system, as the presented in equation (6), the maximum
likelihood estimation technique can be used to find the unknown parametersθ, of the model, from
data of the state and output observations. In other words, given a sequence of measurement or ob-
servationsYN , the likelihood function is given by the following joint probability density function:

L(θ;YN ) = p(YN |θ), (16)

or equivalently:

L(θ;YN ) = p(y0|θ)
N∏

k=1

p(yk|Yk−1,θ). (17)

Since the dynamics of the stochastic system presented in equation (6) depends of Gaussian, white
noise processes, it seems reasonable to assume that under certain regularity conditions, the proba-
bility density functions can be approximated by functions of Gaussian probability densities. There-
fore we can rewrite equation (17) as follows:

L(θ;YN )=
p(y0|θ)

(2π)m/2

N∏

k=1

g(k)

det(Sk|k−1)1/2
, (18)

whereg(k)= exp{−0.5ỹ>
k · S−1

k|k−1
· ỹk}, ỹk is the residual measure innovation defined in equa-

tion (9), ŷk|k−1 = E(yk|Yk−1,θ) is the conditional mean ofyk given y0,y1,y2, ...,yk−1 and
θ, and finallySk|k−1 is the conditional covariance innovation, defined in equation (10), given
y0,y1,y2, ...,yk−1 andθ.
Conditioning ony0, and considering the function:

`(θ) = − ln(L(θ;Yk|y0)), (19)

the maximum likelihood estimator ofθ can be obtained solving the following nonlinear optimiza-
tion problem:

θ̂ = arg min
θ

(`(θ)). (20)

State space formulation and EKF provide a powerful tool for the analysis of data in the context
of maximum likelihood estimation. Let us remark that for a fixedθ, the values of̃yk andSk|k−1,
at each discrete timestep, can be obtained from the Kalman filter equations, described in section
3, and subsequently used in the construction of the log-likelihood function. In this context, the
success of the optimization of log-likelihood function depends strictly on the behavior of the EKF
designed.
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Under the assumption that there is a large number of missing values in the data, we use a Kalman
approach, as proposed by Brockwell and Davis (1991) for ARIMA processes, in the context of non-
linear parameter estimation. This procedure calculates maximum likelihood estimates by means of
a nonlinear space state formulation of models and then computing the Gaussian log-likelihood
function using Kalman recursive equations.
In a first time, we give the evaluation of the Gaussian log-likelihood function bases onYr =[
yi0 ,yi1 , . . . ,yir

]
, whereIr = [i0, i1, . . . , ir] are positive integers such that0 ≤ i0 < i1 < · · · <

ir ≤ N . This allows for observation of the process at irregular intervals, or equivalently for the
possibility that(N − r) observations are missing from the sequenceYN .
To deal with possibly irregularly spaced observations or data with missing values, we introduce a
new series{Y ∗

k}k, related to the state{Xk}k by the modified observation equation (see equation
(6)):

Y ∗
k = h∗(Xk,uk,θ) + ν∗

k, k = 0, 1, . . . , (21)

where

h∗(Xk,uk,θ)=

{
h(Xk,uk,θ) if k ∈ Ir,

0 otherwise,

ν∗
k =

{
νk if k ∈ Ir,

ηk otherwise,

andηk is a i.i.d. Gaussian, zero-mean and white noise sequence with covariance matrixE(ηk ·
ηT

s ) = Iw×w · δk−s (w is the dimension of noiseνk andηk at each discrete timestepk). Moreover
ηs⊥X0, ηs⊥wk, andηs⊥νk (s, k = 0,±1, . . . ).
Let us consider the joint Gaussian probability density function L1(θ;Yr) and the related Gaussian
log-likelihood function`1(θ) based on the measured valuesYr. From these measured values, let
us define the sequenceY∗

N = [y∗
0,y

∗
1, . . . ,y

∗
N ] as follows:

y∗
k =

{
yk if k ∈ Ir,

0 otherwise.
(22)

Let L2(θ;Y∗
N ) be the joint Gaussian probability density function based onthe valuesY∗

N and let
`2(θ) be the related log-likelihood function.
So it is clear thatL1(θ;Yr) andL2(θ;Y∗

N ) are related by:

L1(θ;Yr) = (2π)(N−r)w/2L2(θ;Y∗
N ), (23)

and consequentlỳ1(θ) and`2(θ) are related by:

`1(θ) =
ln(2π)(N − r)w

2
+ `2(θ). (24)
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Then we can now compute the requiredL1(θ;Yr) and the corresponding̀1(θ) of the realized
sequenceYr, using the Kalman approach described above and applying equations (23) and (24).

4.2 Nonlinear state estimation

Once estimated the parameters of the nonlinear stochastic process with missing observations, such
as described in the previous subsection, using the EKF, the next goal is to calculate from the data
values an estimation of the state of the nonlinear system. For this calculation, we use again EKF
equations described in section 3 (see particularly equations (7) and (12)).

5. Numerical results: a real time series example

In this section a real time series example is presented in order to make evident the effectiveness and
relevance of the proposed nonlinear estimation method. We consider daily real return observations,
using the Chile’s IPSA stock index, an index composed of the 40 most heavily traded stocks, from
1994 through 2004. These time series contains approximately 10% of missing observations on the
data considered. It is important to remark that numerical examples were made using simulated data
with different percentages (5%, 10% and15%) of missing data, obtaining, in all of cases, better
mean square errors with our methodology. In this article, these examples were not included, and
we only work with the real data from the IPSA.
Let rk = ln Pk − ln Pk−1 be the log return in the discrete timek, computed from the associated
IPSA stock price indexPk in the discrete timek. It should be noted that we will work directly with
daily log return time series (rk) for IPSA stock and not with the related price index time series.
Let us notice that for the treatment of missing data using QMLE technique is necessary to replace
the unobserved data by other values (which is know as imputation methods). Different imputation
methods can be applied to obtain a complete data set. In our real time series example presented in
this section, three imputation methods are used to replace the missing data: QMLE-Mean (replaces
unobserved data by mean of the observed values); QMLE-NonNA(when each missing value is
deleted and the observed data are bound together); QMLE-Last (replaces unobserved data by last
observed data).
Let us consider a GARCH(1,1) model, with initial random parametersθ = (α0, α1, β1)

>. The
GARCH(1,1) model is the most popular empirical specification because it performs well in a wide
range of applications. Also let us assume a initial noise process covarianceQ = I1×1. The data set
used, to adjust this model, consists of2000 daily observations on the IPSA Price Index considering
missing observations.
As seen in Figures 1, the simulated states, using equation (3) with the estimated parameters given
in Table 1 using a EKF technique, are very close to the estimated states, being the mean squared
errors5.1270 × 10−4 and2.5106 × 10−4 respectively. Also let us notice that a new noise process
estimated covariancêQ = 0.0111I1×1, which best fits the data set of the numerical example
proposed when the parameters are obtained using a EKF approach, is obtained from the recursive
equations described in section 3.
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Finally in Figure 2, a comparison between simulated log return and real log return, using EKF and
using QMLE with different imputation methods for the unobserved data, is presented. To measure
the performance of these methods, we computed the Mean Square Errors (MSE) of parameters
estimates. Clearly, as shown in Table 2, we can see that the return MSE (simulated return vs. real
return) is lower when the parameters are estimated using theEKF methodology proposed in this
work. For these reasons, the proposed nonlinear estimationmethod presents better performances
than the classical imputation techniques considered here.Also our methodology is readily extended
to other nonlinear time series models and non-stationary and asymmetric cases.

6. Discussion

This article introduces a new efficient numerical method, based on an EKF approach, for parameter
and state estimation of GARCH processes in a nonlinear statespace formulation. The framework
that we propose it is valuable if the processes have unobserved values. The strategy of estimation
associated with this representation allows computationally efficient parameter estimation.
Other state space representations of GARCH processes has been proposed in the literature. To the
best of our knowledge, there are two scenarios for state space representation proposed for GARCH
models: after replacing or approximating some variables inequation (1).
An estimation technique for GARCH models is suggested by Chou et al. (1992) and Harvey et al.
(1992). On the other hand, the Kalman filter approach is employed by Chou and Wu (2008) for
non-GARCH models applied in competition with GARCH for predicting the conditional beta in the
capital asset pricing model (CAPM). Other result related tostate space representation of GARCH
model can be found in Bougerol and Picard (1986) where the considered a multivariate stochastic
difference equations to give a condition for existence of a strictly stationary solution for GARCH
models.
Let us notice that quasi maximum likelihood methods are veryaccurate by estimating GARCH
parameters in a complete time series. In these cases, the EKFinvolve a more complex procedure
for the estimation and the gain is not realy significant. On the other hand, it is well known that time
series with missing values presents a serious problem to conventional estimation methodologies
such as QMLE. Studies show that, for linear time series models, the standard KF approach can be
easily modified in order to obtain an efficient method to deal with missing observations. A natural
extension, for nonlinear time series models, has been proposed in this work to treat problems
with missing values. The numerical results presented herein demonstrate the effectiveness of this
methodology, and show that it is more appropriate than otherQMLE-imputation methods used in
practice (see Table 2).
In conclusion, the methodology proposed in this article is an innovative and effective way to solve
the problem of estimation of parameters in GARCH processes with missing observations.
Future work will seek to exploit the nonlinear state space models, presented in this article, in
order to develop more optimized nonlinear techniques for parameter estimation, state estimation
and observation estimation. In addition, new procedures for prediction of observations in several
discrete time steps will be developed. Finally, we should mention that due to the versatility of
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Table 1: Parameter Estimation using different methods

EKF QMLE − Mean QMLE − NonNA QMLE − Last

α0 0.9992 3.8101 × 10−6 4.2709 × 10−6 4.9328 × 10−6

α1 0.1 0.1249 0.13904 0.1589
β1 0.2006 0.8466 0.8327 0.8081

Table 2: Mean Square Error using different methods

EKF QMLE − Mean QMLE − NonNA QMLE − Last

MSE 3.1365 × 10−4 0.0028 4.8087 × 10−4 4.8119 × 10−4

state-space models, important properties of GARCH models,such as stability, controllability and
observability, can be studied from a new perspective in future research.
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