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Abstract

A mathematical formulation, based on a discrete time nealistate space formulation, is presented to char-
acterize Generalized AutoRegresive Conditional Hetexdakticity (GARCH) models. In order to improve
the parameter and state estimation techniques in GARCH Isyaaovel estimation procedure for nonlin-
ear time series model with missing observations, based dixtanded Kalman Filter (EKF) approach, is
described and successfully evaluated herein. Finallgutiin a comparison analysis between our proposed
nonlinear estimation method and a Quasi Maximum LikelihBstimation (QMLE) technique based on dif-
ferent methods of imputation, some numerical results vatl data, which make evident the effectiveness
and relevance of the proposed nonlinear estimation teakrace given.

Key Words: GARCH models, Missing observations, Nonlinear state spaodel, Nonlinear estimation,
Extended Kalman Filter.

1. Introduction

Most of the work on time series assume that the observatiensamsecutive and equally spaced.
In practice, however, in real time series data set it is nosual to find a large number of missing
observations.

Missing values may follow a variety of pattern, however, sebemas are of special interest:

e The Bernoulli pattern in which each measurement has a fixalolglility of being missing,
and the missed are independent.

e The periodic pattern in which one or a few blocks of missinigi@a are repeated periodically
(e.g. holiday or calendar effects). The time series is sathipl groups of4 consecutive data
separated by3 missed observations.

Periodically or randomly missing data appear, either byneateither because aberrant data were
detected and thus eliminated. The following examples afrimglete data seem to occur frequently
in practice: speech in presence of interference, fadingwwonication channel, astronomical mea-
surements (available only during the night), informatioesulting from signals sonar and radar
(passive electronic intelligence) or radar studies of tik@msurface.

Missing data are nonignorable in the context of time seriedlyais. When one or more obser-
vations are missing it may be necessary to estimate the nandehlso to obtain estimates of the
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missing values. By including estimates of missing valudsetéer understanding of the nature of
the data is possible with more accurate forecasting.

If we consider a time series studies with varying propodiohmissing data, different strategies to
estimate these missing values it is necessary to use. aittdeRubin (2002) classify missing data
mechanisms into three types: missing completely at randd@AR), where the probability of
missingness does not depend on observed or unobservedekmanes; missing at random (MAR),
where the probability of missingness depends only on obsedata measures; and nonignorable
missing data (NI), where the probability of missingnesseaiels on the unobserved data measures.
The process of estimating missing values in time series fdatanivariate data is complex. The
more frequently strategy to the treatment of missing olaEms is to replace the unobserved
data for another value (e.g. mean, median or last observed, déhich is know as imputation or
numerical interpolation methods. However we note thathaltteatments of missing observation
in time series based on the standard imputation techniqildead to biased estimates.

In practice, most of the literature above time series witBsimig observations is concerned with
linear processes with normal innovations. In additionséhperturbations are usually regarded as
strict white noise. This assumption is very restrictives ttharacteristic implies only linear models
with homoskedastic conditional variances.

As far as we know, the first study that extended the sampleautdation function to the case of
missing observations is due to Parzen (1963). Their studndtated that the values of the ob-
served series at unequally spaced times can be represamadamplitude modulated time series
Y = Cp Xk Where(Cy)rez represents the censoring process, with= 0 when X, is missing

at timek andCy, = 1 in otherwise. The asymptotic properties of this modifiedbaatrelation
function, under various assumptions on the ndisgxcz, were investigated by Dunsmuir and
Robinson (1981). More recently, Yajima and Nishino (1999npare three estimators of the au-
tocorrelation function for a stationary process with nrigsobservations. The first estimator is
the sample autocorrelation function extended to the caie agnsored data proposed originally
by Parzen (1963). The others estimators are extensiongsdirtt estimator. The authors derive
asymptotic distribution for both short memory and long meymodels for the three estimators of
the autocorrelation function with missing observationseyrimpose the same assumptions on the
innovations(ex ) ez as those in Dunsmuir and Robinson (1981).

Autoregressive conditionally heteroscedastic (ARCHEetymodeling, introduced by Engle (1982),
are often used in finance because their properties are ddke bbserved properties on empirical
financial data such as heavy tails, volatility clusterindpiter noise behavior or autocorrelation of
the squared series. Financial time series often exhiltithieeconditional variance can change over
time, namely heteroskedasticity. The ARCH family of modehiclass of nonlinear time series
models including the GARCH (General ARCH) process, intoatliby Bollerslev (1986) and their
many variations and extensions. The GAR@}d] model with normal error is

Tk = OkEk,

) SITEIIR S (1)
O = Qo+ Zaﬁk—i + Zﬁjak_j,

i=1 j=1
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wherer;, andoy, (> 0, Vk) are, respectively the return and the volatility, in thecde$e timek € Z,

associated to a financial process, dagl} <z is ai.i.d. Gaussian sequence, Witfe;) = 0, E(gy -

£j) = Qdr—;, and parametersg > 0, oy > 0,p > i > 1, and3; > 0,¢ > j7 > 1 and
>or—y i +329_, B < 1. Moreover, let us considey, independent of sequendey } 1~

Given thatry, follows Gaussian distribution conditional on past histaimg log-likelihood function
of the GARCH model conditional on initial values is

—InL = ¢(6)

N N
N 1 s 1= e (2)
=3 log(27m) + 3 ,}_1 log oj, + 3 ,;_1 U—z.

The conditional log-likelihood function is used in praetisince the unconditional distribution of
the initial values is not known in a closed form expressiohisTmethod can not be easily imple-
mented, require numerical optimization procedures andhioéce of initial values.

For the class of GARCH models with complete data, the mostconty used estimation proce-
dure has been the QMLE approach. Weiss (1986) was the fitstdg the asymptotic properties of
QMLE in GARCH models. The asymptotic properties of the QMIOE ¢lassical GARCH models
have been extensively studied; see, for recent refereBegkes et al. (2003), Francq and Zakoian
(2004), Hall and Yao (2003). Alternatively, other estiratprocedures are available based on the
Autoregressive Moving Average Model (ARMA) representatif the squared GARCH process.
This idea was taken by Giraitis and Robinson (2001) who stuttie Whittle estimator of para-
metric AutoRegresive Conditional Heteroskedasticity(@f) order (ARCH o)) models, which
involve the GARCHp, ¢) case. Recently Kristensen and Linton (2006) have propdsedge of
the Yule Walker estimator for the GARCH(1,1) model. In Bosd 8ukherjee (2003) the asymp-
totic properties of two—stage least—squares estimatdreoparameters of ARCH models is inves-
tigated, which has a closed—form expression and is compnégdy easy to obtain. Simulations
show that for small sample sizes, this estimator has a h@dtésrmance than the QMLE.

As discussed by many authors, the most common problem wghestimation procedure is the
fact that the formula of the log-likelihood function regesrcalculating unobservable values from
the observed samplg, ..., 5. A common technique for solving this problem is to choosgahi
values, hoping that the initial values dependence vanifidrearge values ofV. Once the log-
likelihood function is initialized, it can be maximized ngi numerical optimization algorithms.
GARCH models use a Quasi-Newton optimizer to find the maxiniiketihood estimates of the
conditionally normal model. The first max(g) values are assumed to be fixed. The optimizer
uses a hessian approximation computed from a method fangahonlinear optimization update.
The gradient is either computed analytically or using a mitakapproximation. Also there exist
some evidence that the Gaussian QMLE, using imputationadstidoes not work too well in the
case of GARCH processes with missing observations, bedawasmissing data scenario it is not
possible to apply directly QMLE approach, therefore we atgrsa QMLE based on a complete
data set, obtained after filling the missing observationsdsye imputation procedures.
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It is well known that in linear time series analysis statecgpmrmulation (see Durbin and Koop-
man (2001)) and the associated Kalman Filter (KF), intreduzy Kalman (see Kalman(1960) and
Kalman and Bucy (1961)), provide convenient tools to hamdigsing observations in the mea-
surement equation. However, the applicability of this apph to GARCH processes with missing
observations is not immediately apparent. Let us rematitieadynamics of a GARCH process is
nonlinear, and consequently the associated state spawel&tion will follow the same type of be-
havior. Standard KF algorithm can not be applied to nonlistate space formulation of GARCH
models, because this algorithm only works when the prosdsaee a linear behavior. The orig-
inal idea of applying a KF to GARCH models was proposed by ewamt al. (1992). In their
implementation, they consider only a GARCH linear equatind the state space representation of
volatilities is given by an ARMA model (see Wan et al. (2000ji&Galka et al. (2004)).

The goal of this research is to develop a novel nonlineamesion procedure, based on an EKF
approach, for GARCH models considering missing obsematidhe EKF technique proposed is
derived from a nonlinear state space formulation of therdisdtime GARCH equation (see equa-
tion (1)). This method is adequate to obtain initial cormit for a maximum-likelihood iteration,
or to provide the final estimation of the parameters and tAestwhen maximum-likelihood is
considered inadequate or costly.

The structure of the paper is as follows. Section 2 introdube nonlinear state space formula-
tion for the GARCHY(, 1) model. The EKF methodology and the nonlinear estimatigorithm
are presented in Section 3 and 4 respectively. In order tlua&eathe numerical performance of
the proposed methodology, a comparison between our propasdinear estimation method and
QMLE based on different methods of imputation is carriedinu@ection 5. An analysis between
estimated states and simulated states (see equation £B8)Y @& EKF approach, is also detailed
herein. Finally some concluding remarks are given in Sadio

2. Nonlinear state space formulation for GARCH(1,1)

A possible state space representation of equation (1) when = 1 is,

_ [Xé”

X,f)] = f(Xk-1,0) + B wy,

3
Yii=r = X2/ xY,

whered = (ag,a1,61) € R%, B=(0,1)T € R2, X" = 02 € R (> 0,Vk), X2 = ri/oy, € R,
wy, = ¢ and

(4)
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For details see Ossandbén and Bahamonde (2011).
A state space representation for the ARCH(odel can be obtained from the state space formu-
lation of GARCH(, 1), replacingf (X _1, @) in this formulation by

F(Xy-1,0) = [050} + m X2 X2 (5)

It is important to remark that rest of equations charadregiARCH(1) state space representation
remains invariant in state space formulation for the GARGH) model.

3. TheExtended Kalman Filter

Let us consider the following general discrete time norir&ate space mathematical model:

(6)

Xp=f(Xp-1,ur-1,0)+0o(up_1,0) wy,
Y = h(Xy, ug, 0) + v,

where X, € R" is the state unknown vecton, € R" is the input known vectory', € R™ is
the noisy observation vector or output vector of the stadh@socessw; € R™ andv, € R™
are, respectively, the process noise (due, mainly, toriahces and modelling inaccuracies of the
process) and the measurement noise (due, mainly, to sersmuracy). Moreovef ¢ R' is the
parameter vector that is generally unknowfit;) € R”, o(-) € R**" andh(-) € R™ are nonlinear
functions that characterize the stochastic system.

With respect to the noises of the process, we assume thafojassumptions:

e The vectorw,, is assumed to be Gaussian, zero-m& ;) = 0 and white noise with
covariance matrisE(wy, - w} ) = Q - 65— ;.

e The vectorvy, is assumed to be Gaussian, zero-m&4m;) = 0 and white noise with
covariance matri€ (v, - v]) = R - 6.

Whereé,,_; = identity matrix wherk = j, otherwised,_; = zero matrix.

The EKF generalizes, for a discrete time nonlinear sto@hasbcess, the standard KF used in
discrete time linear stochastic process. This extensibased on a successive linearization of the
nonlinear state space model proposed for the stochastiegsainder study (see Wan and Nelson
(1997) and Wan et al. (2000)).

Let Vv = [Yo,¥Y1: Y2y - Ypks -, Y 5] DE @ KNOWN Sequence of measurement or observations. The
functions f and h (see equation (6)) are used to compute the predicted stdt¢harpredicted
measurement from the previous estimate state.
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The following equation shows the computation of the predicttate from the previous estimate:

Zpjk—1 = F(@p_1jk—1, Uk-1,0). (7)

To compute the predicted estimate covariance a matrof partial derivatives (the Jacobian ma-
trix) is previously computed. This matrix is evaluated, wihe predicted states, at each discrete
timestep and used in the KF equations. In other woAd$s a linearized version of the nonlinear
function f around the current estimate.

Pt = A1 P11 Al + Q. (8)

After making the prediction stage, we need to update thetimsa So we have the residual
measure innovation

gk =Y — h’(ildk—lv ug, 0) (9)
and the conditional covariance innovation

Skik-1 = CiPyi_1C, +R, (10)

whereC is a linearized version of the nonlinear functibraround the current estimate.
The Kalman gain is given by

Kj = Pk\k—lcgslz‘i_p (11)
and the corresponding updates by
Ty = Trp—1 + KiYy, (12)
and
Py = (I — KpCp)Ppjp—1- (13)

The state transition and observation matrices (the limedriversions off and h) are defined,
respectively, by

_ of
A= x| (14)
Lp—1|k—1,Uk—1
and
oh
Cp= x| (15)

Lr|k—1
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4. Nonlinear estimation with missing observations

4.1 Nonlinear parameter estimation

Given a discrete time nonlinear stochastic system, as #septed in equation (6), the maximum
likelihood estimation technique can be used to find the unknparameter§, of the model, from
data of the state and output observations. In other wordengi sequence of measurement or ob-
servations)y, the likelihood function is given by the following joint poability density function:

L(0; Yn) = p(In6), (16)
or equivalently:

N
L(6; Yn) = p(y,|0) H (Yil V1,0 (17)

Since the dynamics of the stochastic system presented atiequ6) depends of Gaussian, white
noise processes, it seems reasonable to assume that unider @gularity conditions, the proba-
bility density functions can be approximated by functioh&aussian probability densities. There-
fore we can rewrite equation (17) as follows:

oy P(yolo) T g9(k)
L(07yN)_ (27T)m/2 P det(sklk_l)l/zv (18)

whereg(k) = exp{—0.5g, - S;ﬁg_l -9}, U5 is the residual measure innovation defined in equa-
tion (9), Ypk—1 = E(yx|Vk—1,0) is the conditional mean of,, givenyy, y1,Ys, -, Y1 and
6, and finally S, ;,_, is the conditional covariance innovation, defined in equa{{10), given

Yo, Y1,Y25 -y Yp—1 anda.
Conditioning ony,,, and considering the function:

£(0) = —In(L(0; Vk|yo)), (19)

the maximum likelihood estimator éf can be obtained solving the following nonlinear optimiza-
tion problem:

0 =arg mein(ﬁ(e)). (20)

State space formulation and EKF provide a powerful tool far analysis of data in the context
of maximum likelihood estimation. Let us remark that for &0, the values ofy;, andSy;,_;,

at each discrete timestep, can be obtained from the Kalmtan édjuations, described in section
3, and subsequently used in the construction of the loditiked function. In this context, the
success of the optimization of log-likelihood function dags strictly on the behavior of the EKF
designed.
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Under the assumption that there is a large number of missihges in the data, we use a Kalman
approach, as proposed by Brockwell and Davis (1991) for ARWocesses, in the context of non-
linear parameter estimation. This procedure calculatesmman likelihood estimates by means of
a nonlinear space state formulation of models and then ctingpthe Gaussian log-likelihood
function using Kalman recursive equations.

In a first time, we give the evaluation of the Gaussian loghifood function bases op, =
[yio,yil, . ,yir] , whereZ, = [ig, i1, ..., .| are positive integers such that ig < i; < -+ <

i, < N. This allows for observation of the process at irregulagrnvdls, or equivalently for the
possibility that(N — ) observations are missing from the sequedige

To deal with possibly irregularly spaced observations d¢a d@éth missing values, we introduce a
new seried Y} }, related to the statéX ; }; by the modified observation equation (see equation

(6)):

Yi=h"(Xpup0)+vh,  k=01,..., (21)

Wllere
h(X, ug, 0 if ke Z,n,
h*(Xk,uk,O)_—{ ( ko T ) !

0 otherwise

" v ifkel,.,
vV, —
b n, Ootherwise

andn,, is a i.i.d. Gaussian, zero-mean and white noise sequenbecaifariance matri(n,, -

nST) = I,xw - 0r_s (wis the dimension of noise;, andn,, at each discrete timestép. Moreover

nsL X0, nsLwy, andn, Lvy (s,k =0,£1,...).

Let us consider the joint Gaussian probability density fiemcZ, (6; ),.) and the related Gaussian

log-likelihood function/; (@) based on the measured valyds From these measured values, let

us define the sequeng&; = [y;, y7,-- .,y ] as follows:
vi = {y’“ kel (22)

0 otherwise

Let L2(0; V}) be the joint Gaussian probability density function basedhenvalues)’y, and let
l2(0) be the related log-likelihood function.
So itis clear thatl,(6; Y,) andL,(6; Vy) are related by:

Ly(8;Yy) = 2m) N =02 Ly (0: V), (23)
and consequently; (6) and/,(0) are related by:

bo) = EDUTZ00 4y ), (24)
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Then we can now compute the requirég(6; ;) and the corresponding; (6) of the realized
sequence),, using the Kalman approach described above and applyirgtiegs (23) and (24).

4.2 Nonlinear state estimation

Once estimated the parameters of the nonlinear stochastiegs with missing observations, such
as described in the previous subsection, using the EKF,akiegoal is to calculate from the data
values an estimation of the state of the nonlinear systemthi®calculation, we use again EKF
eqguations described in section 3 (see particularly egusiid) and (12)).

5. Numerical results. areal time series example

In this section a real time series example is presented &r dodnake evident the effectiveness and
relevance of the proposed nonlinear estimation method.dfVsider daily real return observations,
using the Chile’s IPSA stock index, an index composed of thendst heavily traded stocks, from
1994 through 2004. These time series contains approxiynadé) of missing observations on the
data considered. It is important to remark that numericahgdes were made using simulated data
with different percentage$%, 10% and 15%) of missing data, obtaining, in all of cases, better
mean square errors with our methodology. In this articles¢hexamples were not included, and
we only work with the real data from the IPSA.

Letr, = In P, — In P._; be the log return in the discrete timke computed from the associated
IPSA stock price indexX?; in the discrete timé:. It should be noted that we will work directly with
daily log return time series-() for IPSA stock and not with the related price index time e®ri

Let us notice that for the treatment of missing data using @\tchnique is necessary to replace
the unobserved data by other values (which is know as impuatatethods). Different imputation
methods can be applied to obtain a complete data set. In altime series example presented in
this section, three imputation methods are used to repteceissing data: QMLE-Mean (replaces
unobserved data by mean of the observed values); QMLE-Nofen each missing value is
deleted and the observed data are bound together); QMLEdegdaces unobserved data by last
observed data).

Let us consider a GARCH(1) model, with initial random parametets = (ag,a1,31)". The
GARCH(1,1) model is the most popular empirical specificatiecause it performs well in a wide
range of applications. Also let us assume a initial noisegse covarianc€ = I,;. The data set
used, to adjust this model, consist20600 daily observations on the IPSA Price Index considering
missing observations.

As seen in Figures 1, the simulated states, using equatjonitf8the estimated parameters given
in Table 1 using a EKF technique, are very close to the estidhstates, being the mean squared
errors5.1270 x 10~* and2.5106 x 10~* respectively. Also let us notice that a new noise process
estimated covariancé = 0.0111I;«, which best fits the data set of the numerical example
proposed when the parameters are obtained using a EKF appisabtained from the recursive
equations described in section 3.
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Finally in Figure 2, a comparison between simulated logrre&und real log return, using EKF and
using QMLE with different imputation methods for the unobh®sel data, is presented. To measure
the performance of these methods, we computed the Mean &Sguaors (MSE) of parameters
estimates. Clearly, as shown in Table 2, we can see thattilve i SE (simulated return vs. real
return) is lower when the parameters are estimated usingkttemethodology proposed in this
work. For these reasons, the proposed nonlinear estimat@hod presents better performances
than the classical imputation techniques considered dse.our methodology is readily extended
to other nonlinear time series models and non-stationadyaagmmetric cases.

6. Discussion

This article introduces a new efficient numerical methogglleon an EKF approach, for parameter
and state estimation of GARCH processes in a nonlinear spatee formulation. The framework
that we propose it is valuable if the processes have unobdemlues. The strategy of estimation
associated with this representation allows computatiprdiicient parameter estimation.

Other state space representations of GARCH processes éraplmposed in the literature. To the
best of our knowledge, there are two scenarios for stateesgacesentation proposed for GARCH
models: after replacing or approximating some variablesgjimation (1).

An estimation technique for GARCH models is suggested byu@&ia@l. (1992) and Harvey et al.
(1992). On the other hand, the Kalman filter approach is epaoldy Chou and Wu (2008) for
non-GARCH models applied in competition with GARCH for pictthg the conditional beta in the
capital asset pricing model (CAPM). Other result relatedtate space representation of GARCH
model can be found in Bougerol and Picard (1986) where theidered a multivariate stochastic
difference equations to give a condition for existence dfiatk/ stationary solution for GARCH
models.

Let us notice that quasi maximum likelihood methods are \amgurate by estimating GARCH
parameters in a complete time series. In these cases, thénkélife a more complex procedure
for the estimation and the gain is not realy significant. Gndtiner hand, it is well known that time
series with missing values presents a serious problem teentinnal estimation methodologies
such as QMLE. Studies show that, for linear time series nspde¢ standard KF approach can be
easily modified in order to obtain an efficient method to deigth wmissing observations. A natural
extension, for nonlinear time series models, has been pegpo this work to treat problems
with missing values. The numerical results presented helemnonstrate the effectiveness of this
methodology, and show that it is more appropriate than afiidtE-imputation methods used in
practice (see Table 2).

In conclusion, the methodology proposed in this articlenisnmovative and effective way to solve
the problem of estimation of parameters in GARCH processtssmissing observations.

Future work will seek to exploit the nonlinear state spacele® presented in this article, in
order to develop more optimized nonlinear techniques foampater estimation, state estimation
and observation estimation. In addition, new proceduregffediction of observations in several
discrete time steps will be developed. Finally, we shouldtioa that due to the versatility of
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Table 1: Parameter Estimation using different methods
EKF QMLE — Mean QMLE — NonNA QMLE — Last

ap  0.9992  3.8101 x 1076 4.2709 x 10~° 4.9328 x 1076
aq 0.1 0.1249 0.13904 0.1589
B1 0.2006 0.8466 0.8327 0.8081
Table 2: Mean Square Error using different methods
EKF QMLE — Mean QMLE — NonNA QMLE — Last

MSE 3.1365 x 10~* 0.0028 4.8087 x 10~* 4.8119 x 10~*

state-space models, important properties of GARCH modals) as stability, controllability and
observability, can be studied from a new perspective inréutasearch.
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