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Abstract
In the field of item response theory, G-H quadrature based EM algorithm proposed by Bock and

Aitkin (1981) has been widely recognized as the gold standard for model estimation because of
its several appealing properties. However, these advantages are overshadowed by a number of
important issues that has not been resolved successfully. Furthermore, recent developments in item
factor analysis, for example, confirmatory analysis, also impair EM’s advantages. On the other
hand, Newton algorithms do not suffer these problems, but are computationally more expensive
than EM. During the last twenty years, statistical researches have been impacted dramatically by the
advances in computational sciences. Thus it is worthwhile to apply these computational advances
to Newton and EM type algorithms and re-evaluate their relative advantages. To this end, the focus
of this research is to (1) introduce some Newton type algorithms for item factor analysis; and (2)
investigate the computational properties of these Newton type algorithms as compared with the EM
algorithm.
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1. Introduction

Item response theory (IRT) was first proposed in the field of psychometric for the purpose
of educational testing and personality assessment. During the last ten years, it has became
increasing popular in other fields, such as health behavior and health policy research. The
most widely used estimation method for IRT model is the Gauss-Hermite quadrature based
EM algorithm proposed by Bock and Aitkin (1981). Because of its several appealing prop-
erties, it has become the gold standard and the most popular method used by all the major
IRT packages, such as BILOG and TESTFACT. However, these advantages are overshad-
owed by a number of important issues, among which slow convergence rate and the lack
of standard error estimates and reliable convergence criteria are the most serious. While
several attempts, such as the SEM algorithm (Meng and Rubin 1991), have been made,
these problems have not been well addressed. The convergence rate of EM algorithm is
linear at most and in practice it is often much slower, especially when the fraction of miss-
ing information is large. The convergence of EM algorithm is monitored by the biggest
parameter change after each iteration which is not reliable, since small parameter change
can also be attributed to slow convergence rate instead of convergence. Without a reliable
convergence criteria, estimates could be seriously biased because of spurious convergence.
On the other hand, standard error plays an important role in testing whether a parameter
is significantly different from zero. In comparison, the convergence rates of Newton type
algorithms are quadratic or super linear, and gradient based convergence criteria and stan-
dard errors are readily available . As a result, Newton type algorithms rather than EM
algorithms are often used by major statistical packages, such as SAS and STATA. While a
Newton type algorithm was proposed by Bock and Lieberman (1970), it has been ignored
since the EM algorithms was introduced, because it is computationally more expensive than
the EM algorithm.
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During the last twenty years, statistical researches have been impacted dramatically
by the advances in computational sciences. Tasks that used to be difficult, such as big
matrix inverse, nowadays may become very easy. Several computationally efficient Newton
type algorithms, such as Quasi-Newton, have been proposed and widely used in many
different areas, but have not yet been applied for IRT. Furthermore, recent developments in
IRT, for example, confirmatory analysis, also impair EM’s advantages. Thus it is valuable
to re-evaluate their relative advantages. To this end, the focuses of this research are to
(1) introduce some Newton type algorithms for the estimation of IRT; and (2) investigate
the computational properties of these algorithms. The purpose of this paper is to raise
attentions of recent advances in computational tools that are potentially useful for IRT
model estimation.

The rest of the paper is organized as follows. First, one dimensional IRT model with
binary responses is presented in section 2 for illustration purpose. In section 3, the EM al-
gorithm and several Newton type algorithms are introduced. The computational properties
of these algorithms are investigated in section 4. The paper concludes with some remarks
on future researches.

2. Model Specification

Investigations of the computational properties of different estimation algorithms in this
paper are based on the one dimensional IRT model with binary responses, which can be
expressed by the following equations.

yi = Ληi + ϵi (1)

P (uij = 1) = P (yij > αj) (2)

where uij is the observed binary response from subject i for item j, yij is a continuous
latent response underlying uij , α = (α1, . . . , αJ) is a vector of the difficulty (or threshold)
parameters, Λ is a matrix of the slop (or discrimination) parameters, ηi and ϵi are the latent
factor and unique factor for subject i, and ηi ∼ N(0, I), ϵi ∼ Np(0, I) or Lp(0, I), and
ηi⊥ϵi. Based on the above model specification, we have

Pij = P (uij = 1) = P (yij > αj) =

∫ ∞

αj−λjηi

f(y; 0, 1)dy, (3)

where f(y; 0, 1) is the density function of normal or logistic distribution with mean 0 and
variance 1. To simplify notations, let Qij = 1− Pij and vij = 1− uij .

3. Model Estimation

One of the most popular estimation methods for latent variable models with categorical
responses is based on the marginal likelihood. Parameter estimates can be obtained by
maximizing the marginal likelihood using either EM or Newton type algorithms.

3.1 EM algorithm

The EM algorithm starts from the complete data log likelihood that can be expressed as
follows

logL(θ|u, η) =
N∑
i=1

[(
J∑

j=1
uijlogPij + (vij)log(Qij)

)
+ logϕ(ηi)

]
∝

J∑
j=1

N∑
i=1

[uijlogPij + (vij)log(Qij)]

(4)
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where ϕ(ηi) is the prior distribution for latent factor ηi.
In the E step, we calculate the expectation of the complete data log likelihood with

respect to the conditional distribution of η, f(ηi|ui, θ(t)),

f(ηi|ui, θ(t)) =
f(ui|η, θ(t))ϕ(η)∫
f(ui|η, θ(t))ϕ(η)dη

=
f(ui|η, θ(t))ϕ(η)

f(ui)
. (5)

Let Q(θ|θ(t)) denote the conditional expectation of the complete data log likelihood,
and we have

Q(θ|θ(t)) =
J∑

j=1

N∑
i=1

[
uijE

[
logPij |ui, θ(t)

]
+ (vij)E

[
log(Qij)|ui, θ(t)

]]
=

J∑
j=1

Qj . (6)

Expectations involved in the above equation are often approximated with either numerical
or Monte Carlo integration. Let Q̃(θ|θ(t)) denote the approximated conditional expectation
of the complete data log likelihood.

In the M step of the EM algorithm, parameters are updated by maximizing Q̃(θ|θ(t)).
To summarize, the EM algorithm consists the following two steps

E Step: Approximate Q(θ|θ(t)) with either numerical or Monte Carlo integration;

M Step: Update parameter estimates by maximizing Q̃(θ|θ(t)) with one step Newton-
Raphson algorithm.

Technical details about the EM algorithm are provided in appendix A.

3.2 Newton Type Algorithms

Compared with the EM algorithms which start from the complete data log likelihood, New-
ton type algorithms maximize the marginal log likelihood directly. Based on the model
specified in the last section, the marginal likelihood is

L(θ|U) =
N∏
i=1

∫ J∏
j=1

(Pij)
uij (Qij)

vijϕ(η)dη (7)

where ϕ(η) is the density function for latent factor η. The corresponding log likelihood is

LogL(θ|U) =
N∑
i=1

logLi =
N∑
i=1

log

∫ J∏
j=1

(Pij)
uij (1− Pij)

1−uijg(η)dη (8)

Similar to the EM algorithm, integrations involved in the above equation are often approx-
imated with either numerical or Monte Carlo integration.

Let LogL̃(θ|U) denote the approximated marginal log likelihood. Parameter estimates
can be obtained by maximizing LogL̃(θ|U) with Newton type algorithms. Two of the most
widely used estimation algorithms are Newton-Raphson and Fisher Scoring which rely on
the gradient and Hessian of the log likelihood. However, for latent variable models with
categorical responses, the Hessian matrix is often expensive to compute. As a result, several
Quasi-Newton algorithms only requiring gradients have been proposed. In the field of IRT,
Bock and Lieberman (1970) proposed replacing the Hessian with the following information
matrix

I(θ) = E

∂LogL̃(θ|U)

∂θ

(
∂LogL̃(θ|U)

∂θ

)T
 =

2J∑
h=1

∂logL̃i

∂θ

(
∂logL̃i

∂θ

)T

.

 (9)
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To calculate the above expectation, we need to sum over not just the observed but all 2J

possible response patterns which will become computationally very intensive when the
number of item is large. Fortunately, other Quasi-Newton algorithms that do not suffer this
computational difficulty have been proposed but have not been used for IRT. Notable exam-
ples include Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, one of the most popular
Quasi-Newton algorithms that approximate the Hessian matrix with gradient. It is a general
algorithm that does not rely on any statistical properties and its usages are far beyond statis-
tics. The second one is proposed by Berndt et al. (1974) which replaces the expectation in
equation (7) with summations runs over only the observed response patterns. The accuracy
of this algorithm depends on two statistical properties: the model is correct and the sample
size is relatively large. This algorithm has been used for the estimation of generalized linear
mixed model (GLMM) and is shown to work well even with bad starting values (Skrondal
and Rabe-Hesketh 2004).

4. Comparison of Computational Efficiency

In this section, we will investigate the relative computational properties of the EM and the
Quasi-Newton type algorithms. Since the EM and Quasi-Newton algorithms use different
convergence criteria and computational efficiency of the algorithm can greatly affected by
the implementation, it is very hard to conduct a meaningful comparison with numerical
examples. Thus, instead, we will discuss some analytical results that will affect the perfor-
mance of these algorithms. The purpose of this study is to illustrate the potential advantage
of Quasi-Newton algorithms in the filed of IRT. It is not meant to be extensive that will
cover all the aspects of the problem.

As shown by equation 6, the Q function is a summation of J functions that involve
independent parameters. As a result, maximizing the Q function is equivalent to maxi-
mizing J separate functions with 2 parameters each. In contrast, directly maximizing the
marginal likelihood of (8) requires handling all 2J parameters simultaneously. This is the
most important advantage for the EM algorithm. This advantage become more significant
as the number of items increases. On the other hand, the advantage of the Quasi-Newton
algorithms lies in the calculation of derivatives. To implement the Quasi-Newton algo-
rithm, we only need to calculate the gradient that involve 2J elements. In contrast, the M
step of the EM algorithm needs to calculate 3J elements of the Hessian matrix on top of
the gradient. For a multidimensional IRT model with d latent factors, EM algorithms will
need to do 2 + d

2 times more calculations than the Quasi-Newton algorithm. Thus as the
number of latent factor, d, increases, this advantage for Quasi-Newton algorithm becomes
more obvious.

Technical detail provided in the appendix suggest that both algorithms involve similar
calculations for each iteration which can be divided into two steps. The first step calculates
the gradient and(or) hessian, which is accomplished by a nested loop that involve N ×
G summations in total. The key components for each summation are the calculations of
exponential function and(or) the CDF of standard normal distribution. The total number of
summations ranges from thousands to millions. Table 1 lists the computation time used to
calculate different number of exponential functions and CDFs

Then in the second step, parameters are updated with the Newton type equation as
follows

θt+1 = θt −
f ′(θt)

f ′′(θt)
, (10)

which is equivalent to solving a system of linear equations. With current computational
techniques and resources, solving a system of linear equations is easy and fast. In Table
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Number of summations
2000 20000 400000

Exp 0.01 0.09 1.7
CDF 0.01 0.12 2.3

Table 1: Computation time for the calculation of different number of exponential functions
and standard normal CDFs. Computations are conducted in SAS IML

Number of Parameters
2 10 100 500 1000 2000

Computation Time 9e-05 1e-4 6e-4 0.04 0.29 2.2

Table 2: Computation time used for solving system of linear equations with different num-
ber of parameters. Computations are conducted in SAS IML

2 we list the computation time used for solving system of linear equations with different
number of parameters.

Note that these calculations are conducted using SAS IML. While the absolute com-
putational time might be different if different programming tools are used, we assume the
relative computational time between the calculation of exponential function, CDF and solv-
ing system of linear equations are the same. Comparing Table 1 and 2, we can observe that
computations for the first step often dominate the computation time for each iteration un-
less the number of parameters is very large, for example above 1000. Thus the advantage
for EM algorithm has a less significant impact on the total computation time for each it-
eration, and as a result, we can expect that the Quasi-Newton will be as fast as, if not
faster than, the EM for each iteration. Since EM algorithm’s convergence rate is linear at
most and Quasi-Newton is supper linear, the Quasi-Newton algorithm is expected to use
less iterations to reach the same convergence criteria. Furthermore, as the development of
IRT models, especially multidimensional cases, confirmatory analysis becomes increasing
useful and desire. When parameter restrictions are applied across different items, the Q
function in (6) can not be decomposed into the summation of independent functions and
consequently the above advantage for EM algorithm will be impaired.

5. Discussion

In this paper, we try to demonstrate that, under most cases, Quasi-Newton algorithms
for IRT model are computationally as efficient as, if not more than, EM algorithms and
meanwhile can avoid the problems associated the EM algorithms. We do not claim that
Newton type algorithms are always better than EM algorithms. EM algorithms, especially
Monte Carlo EM, are usually easier to implement. That makes EM very popular among
methodology researchers who need to implement estimation algorithms for newly devel-
oped modeling techniques. However, these disadvantages make EM type algorithms not
a good candidate for commercial softwares for whom estimation accuracy and reliability
are invaluable. A hybrid algorithm that starts with EM and then switches to Newton type
algorithms has also been proposed. It could be a better option than EM and Newton under
certain conditions, but more explorations are needed to identify these situations for IRT.
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A. Technical details for EM

The conditional distribution f(η|ui, θ(t)) is

f(η|ui, θ(t)) =
f(ui|η, θ(t))ϕ(η)∫
f(ui|η, θ(t))ϕ(η)dη

=
f(ui|η, θ(t))ϕ(η)

f(ui)
(11)

Then these conditional expectations involved in the Q function can be expressed as
follows

E[logPij |ui, θ(t)] =
∫

logPijf(η|ui, θ(t))dη (12)

E[log(1− Pij)|ui, θ(t)] =
∫

log(1− Pij)f(η|ui, θ(t))dη (13)

E[logϕ(η)|ui, θ(t)] =
∫

logϕ(η)f(η|ui, θ(t))dη (14)

then we have

Q1j =
∫ N∑

i=1

[
uijlogPijf(η|ui, θ(t)) + (1− uij)log(1− Pij)f(η|ui, θ(t))

]
dη

=
∫ [

logPij

[
N∑
i=1

uijf(η|ui, θ(t))
]
+ log(1− Pij)

[∑N
i=1(1− uij)f(η|ui, θ(t))

]]
dη

=
∫ [

logPijrj(θ
(t)) + log(1− Pij)[n(θ

(t))− rj(θ
(t))]

]
ϕ(η|θ(t)))dη

(15)
where rj(θ

(t)) =
∑N

i=1 uij
f(ui|η,θ(t))

f(ui)
, and n(θ(t)) =

∑N
i=1

f(ui|η,θ(t))
f(ui)

.
Integrations in above equations can be approximated as follows using G-H quadrature.

Note that these quadrature points, xg, and weights, wg, are corresponding to ϕ(η|θ(t))
which is the density function of N(0,Φ(t)).

Q̃1j =
G∑

g=1

[
logPij(xg)rj(xg, θ

(t)) + log(1− Pij(xg))(n(xg, θ
(t))− rj(xg, θ

(t)))
]
wg

(16)
We take the derivatives of Q1j with respect to model parameters

∂Q̃1j

∂αj
=

G∑
g=1

[
rj(xg, θ

(t))

Pij(xg)
− n(xg, θ

(t))− rj(xg, θ
(t))

1− Pij(xg)

]
∂Pij(xg)

∂αj
wg (17)

∂Q̃1j

∂λj
=

G∑
g=1

[
rj(xg, θ

(t))

Pij(xg)
− n(xg, θ

(t))− rj(xg, θ
(t))

1− Pij(xg)

]
∂Pij(xg)

∂λj
wg (18)

∂2Q̃1j

∂α2
j

=
G∑

g=1

[−rj
P 2
ij

− n− rj
(1− Pij)2

] [
∂Pij(xg)

∂αj

]2
+

[
rj
Pij

− n− rj
1− Pij

]
∂2Pij(xg)

∂α2
j

wg

(19)

∂2Q̃1j

∂λ2
j

=
G∑

g=1

[−rj
P 2
ij

− n− rj
(1− Pij)2

] [
∂Pij(xg)

∂λj

]2
+

[
rj
Pij

− n− rj
1− Pij

]
∂2Pij(xg)

∂λ2
j

wg

(20)
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∂2Q̃1j

∂αj∂λj
=

Gd∑
g=1

[[
−rj
P 2
ij

− n− rj
(1− Pij)2

] [
∂Pij(xg)

∂αj

∂Pij(xg)

∂λj

]
+

[
rj
Pij

− n− rj
1− Pij

]
∂2Pij(xg)

∂αj∂λj

]
wg

(21)
In the above equations, we have

∂Pij(xg)

∂αj
= −ϕ(αj − λjxg) = −∂Qij(xg)

∂αj
(22)

∂Pij(xg)

∂λj
= ϕ(αj − λjxg)xg = −∂Qij(xg)

∂λj
(23)

∂2Pij(xg)

∂α2
j

= −∂ϕ(αj − λjxg)

∂αj
= ϕ(αj − λjxg)(αj − λjxg) = −∂2Qij(xg)

∂α2
j

(24)

∂2Pij(xg)

∂αj∂λj
= −∂ϕ(αj − λjxg)

∂λj
= −ϕ(αj − λjxg)(αj − λjxg)xg = −∂2Qij(xg)

∂αj∂λj
(25)

∂2Pij(xg)

∂λ2
j

=
∂ϕ(αj − λjxg)xg

∂λj
= ϕ(αj − λjxg)(αj − λjxg)x

2
g = −∂2Qij(xg)

∂λ2
j

(26)

B. Technical details for Quasi-Newton

For our objective function, LogL̃(θ), the first derivatives with respect to θj , parameter for
the jth item, is

∂logL̃(θ|U)

∂θj
=

N∑
i=1

[
(L̃i)

−1∂L̃i

∂θj

]
=

N∑
i=1

(L̃i)
−1

G∑
g=1

[
∂fi(xg)

∂θj
wg

] , (27)

where

L̃i =
G∑

g=1

 J∏
j=1

(Pij(xg))
uij (Qij(xg))

1−uij

wg =
G∑

g=1

fi(xg)wg, (28)

∂fi(xg)

∂θj
=

∂[Pij(xg)
uijQij(xg)

1−uij ]

∂θj

fi(xg)

Pij(xg)uijQij(xg)1−uij
. (29)

where for the probit link

∂Pij(xg)

∂αj
= −ϕ(αj − λjxg) = −∂Qij(xg)

∂αj
(30)

∂Pij(xg)

∂λj
= ϕ(αj − λjxg)xg = −∂Qij(xg)

∂λj
(31)
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