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Abstract
This article describes families of finite multigraphs with labeled or unlabeled edges and vertices.

It shows how size and complexity vary for different types of equivalence classes of graphs defined
by ignoring only edge labels or ignoring both edge and vertexlabels. Complexity is quantified by
the distribution of edge multiplicities, and different complexity measures are discussed. Basic oc-
cupancy models for multigraphs are used to illustrate different graph distributions on isomorphism
and complexity. The loss of information caused by ignoring edge and vertex labels is quantified
by entropy and joint information that provide tools for studying properties of and relations between
different graph families.
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1. Introduction

Typical applications of graphs consider sequences of edges associated with vertex pairs. For
instance, records of telephone calls, internet connections, money transactions or business
contacts during a period of time and their distributions on pairs of individuals,addresses,
bank accounts or companies are four such applications. Multigraphs appear natural in many
such contexts. A random multigraph is a family of multigraphs with a probability distribu-
tion, and appropriately chosen it can be a model for the application. Information theoretic
tools can be used to describe, evaluate and compare different models, and they are particu-
larly useful to analyze variability and dependence structures in multivariatedata of network
type. A survey of such information theoretic tools based on entropy measures is given by
Frank(2011a) . Statistical analysis of network data is treated in a book by Kolaczyk (2009)
and in survey articles by Frank (2005, 2011b). Many other issues concerning network anal-
ysis are also found in the encyclopedia edited by Carrington, Scott and Wasserman (2005),
Meyers (2009), and Scott and Carrington (2011).

This article focuses on basic occupancy models adapted to fit multigraphs. The com-
plexity of a multigraph is defined as its multiplicity distribution, that is the frequenciesof
vertex pairs with different numbers of multiple edges. The relationships between labeled
and unlabeled graphs, isomorphism and complexity are specified in the nextsection. The
numbers of graphs of various types are given and illustrated in Sections 3and 4. Section 5
describes different complexity measures. Uniform graph models are analyzed and illus-
trated in Sections 6 to 8. Some other models are presented in Section 9 together with some
comments on extensions and references.

2. Basic Concepts and Notation

A finite graphg with n labeled vertices andm labeled edges associates with each edge an
ordered or unordered vertex pair. LetV = {1, . . . , n} andE = {1, . . . ,m} be the sets
of vertices and edges labeled by integers, and denote byR the set of available sites for the

∗Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden
†Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden

Section on Statistical Graphics – JSM 2012

2908



edges. For directed graphsR = V 2 or R = {(i, j) ∈ V 2 : i 6= j} depending on whether
or not loops are allowed. For undirected graphs we use the site spaceR = {(i, j) ∈ V 2 :
i ≤ j} or R = {(i, j) ∈ V 2 : i < j} and consider(i, j) with i ≤ j as a canonical
representation for the unordered vertex pair. Letr be the number of sites so thatr = n2,
n(n− 1),

(

n+1
2

)

or
(

n
2

)

for the cases mentioned. The graphg : E → R is an injective map
that is represented by an ordered sequence

g = (g1, . . . , gm) ∈ Rm

of m sites for the edges, or, equivalently, by an ordered partition

M = (Mij : (i, j) ∈ R)

of r disjoint subsets of edges for the sites. Here

Mij = {k ∈ E : gk = (i, j)} for (i, j) ∈ R .

Edges at the same site are called multiple edges, and the number of multiple edges at site
(i, j) is the multiplicity denoted bymij for (i, j) ∈ R. We use the notation

g ↔ M

for the bijection between the two representations of the graphg.
If edges are not distinguished, their labels can be ignored, and order ing is irrelevant.

A representation for the graph with labeled vertices but unlabeled edges isdenoted byg∗

and defined by listing the sites ing in some canonical order such as

(1, 1) < (1, 2) < . . . < (1, n) < (2, 1) < (2, 2) < . . . .

A convenient shorthand notation is

g∗ = ((i, j)mij : (i, j) ∈ R) .

There is a bijection between the unordered site sequence for the edges and the multiplicity
sequence for the edges:

g∗ ↔ m = (mij : (i, j) ∈ R) .

If both vertex labels and edge labels are ignored, the isomorphic unlabeledgraph is
represented byG. The unordered version ofM is an unordered partitionM∗ of the
edge set intor subsets. The unordered version of the multiplicity sequencem is an un-
ordered partitionm∗ of m into r non-negative integers. There is a bijection between this
partition and the sequence of frequencies of sites with multiplicities0, 1, . . . ,m given by
r = (r0, . . . , rm) where

rk =
∑

(i,j)∈R

I(mij = k) for k = 0, 1, . . . ,m .

Thus,
m∗ ↔ r ,

and the sequencer is called the complexity of the graphg. Figure 1 shows a schematic view
of bijections and other functional relationships between the various concepts introduced
here. The functional relationships comprise canonizing ordering (denoted by∗), specifying
multiplicitiesm = m(g), specifying isomorphismG = G(m) which is a function ofm,
and specifying complexityr = r(G) which is a function ofG. With an abuse of notation
we also writeG = G(m) = G(g) andr = r(G) = r(m) = r(g).
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Figure 1: Relationships between graphs, multiplicity and complexity.

3. A Numerical Example

The different concepts introduced are illustrated and visualized by considering a simple
example before we turn to general formulae for numbers of graphs and equivalence classes
of different kinds.

Consider undirected graphs withn = 4 labeled vertices andm = 3 labeled edges with
loops not allowed so thatr = 6. Herem < r and all partitions of 3 into positive integers
can be used to find the possible multiplicity sequences. Thus the multiplicity sequences
divide into three equivalence classes corresponding to permutations of(3, 0, 0, 0, 0, 0), of
(2, 1, 0, 0, 0, 0), and of(1, 1, 1, 0, 0, 0). Shorthand notation is∼ 305, ∼ 2104, and∼ 1303.
The classes have complexity sequences(5, 0, 0, 1), (4, 1, 1, 0), and(3, 3, 0, 0). The classes
consist of 1,2, and 3 non-isomorphic graphs, and the isomorphisms are shown in Figure 2.

Figure 2: Unlabeled graphs according to complexity.

Vertex labels can be assigned to the non-isomorphic graphs in 6, 24, 6, 4,12, and 4 ways,
and edge labels can be assigned to each vertex labeled graph with the same complexity in 1,
3, and 6 ways in the order shown in Figure 2. Table 1 lists the number of unlabeled graphs
#(G|r), the number of vertex labeled graphs#(m|r), and the number of fully labeled
graphs#(g|r) for each complexity sequencer. Table 2 gives the numbers#(m|G) and
#(g|G) of vertex labeled and fully labeled graphs for each isomorphism class.

Table 1: Distributions on complexity for graphs with 4 vertices, 3 edges and no loops.

Complexity (5,0,0,1) (4,1,1,0) (3,3,0,0) Total
Unlabeled graphs 1 2 3 6

Vertex labeled graphs 6 30 20 56
Fully labeled graphs 6 90 120 216
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Table 2: Distributions on isomorphism for graphs with 4 vertices, 3 edges and no loops.

Isomorphism Total
Vertex labeled graphs 6 24 6 4 12 4 56
Fully labeled graphs 6 72 18 24 72 24 216

4. Numbers of Graphs

The number of multigraphs withn labeled vertices,m labeled edges andr available sites
of vertex pairs for the edges is given by the number of sequencesg, which is denoted
#(g) = rm. When edge labels are ignored, the number of graphs is given by the number
of multiplicity sequencesm, which is the number of ordered partitions ofm into r non-
negative integers:

#(m) =

(

m+ r − 1

m

)

.

Each graph with only vertex labels can be edge labeled in the number of waysthatg∗ can
be permuted, which is equal to

#(g|m) =

(

m

m

)

=
m!

∏

(i,j)∈R mij !
.

The totalrm =
∑

m

(

m
m

)

is a sum over
(

m+r−1
m

)

terms.
Different fully labeled graphs are isomorphic if they are equal when vertex labels as

well as edge labels are ignored. The number of isomorphic fully labeled graphs is given
by

(

m
m

)

multiplied by the number of isomorphic vertex labeled graphs with no edge labels.
Formally,

#(g|G) =

(

m

m

)

#(m|G)

since
(

m
m

)

is invariant for graphs isomorphic toG.
Multiplicity sequences have the same complexity if they are permutations of the same

m∗. There are
(

r
r

)

such permutations wherer ↔ m∗. Thus,

#(m|r) =

(

r

r

)

=
r!

∏m
k=0 rk!

is the number of graphs with vertex labels but no edge labels having complexityr. The
number of fully labeled graphs with complexityr is obtained by multiplying#(m|r) with
#(g|m):

#(g|r) =

(

m

m

)(

r

r

)

=
m! r!

∏m
k=0 k!

rk rk!
.

The number of different complexity sequencesr is the same as the number of unordered
partitions ofm into r non-negative integers. This number is the sum of the numbers of
unordered partitions ofm into k positive integers fork = 1, 2, . . . ,min(r,m). If amk

denotes the number of partitions ofm into k positive integers andam = am1 + . . .+ amm

is the number of partitions ofm, it is possible to show thatamk = am−k for k ≥ m/2.
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Tables ofam andamk for k < m/2 andm = 1, 2, . . . can be used to find

#(r) =



















∑r
k=1 amk for r ≤ m

2

∑

k<m/2(ak + amk) for m
2 < r < m

am for r ≥ m.

Such tables are available, for instance, in Comtet (1974).

5. Complexity of Graphs

The complexity sequencer contains the distribution of multiplicities among the sites. Sum-
mary measures of this distribution might be of interest as measures of complexityfocusing
on special properties of the graph. For instance, the proportion of multiplesites

(r − r0 − r1)

r

or the average multiplicity among multiple sites

(m− r1)

r − r0 − r1

are simple measures of complexity focusing on any kind of deviation from graphs without
multiple edges. If loops are forbidden, this amounts to deviation from graph simplicity.

A measure that linearly combines the frequencies of different multiplicities is given by

m
∑

k=2

(

k

2

)

rk ,

which counts the number of pairs of edges associated with the same site. If loops are
forbidden, this measure is positive if and only if the graph is not simple. Another linear
measure with this property is

m
∑

k=0

rk log k! ,

which is the logarithm of the common number of permutations that leave the edge sequence
g invariant for graphs of complexityr.

A special class of complexity measures focuses on how many graphs of different kinds
that have the same complexityr. Since these numbers might be very large, it is convenient
to consider logarithmic measures. For vertex labeled and fully labeled graphs with the same
complexity, the measures are

log#(m|r) = log r!− log r! = log r!−
m
∑

k=0

log rk!

and

log#(g|r) = logm! + log r!−

m
∑

k=0

(rk log k! + log rk!) .

These measures are similar to measures based on entropy, which characterize flatness of
the relative frequency distributionsm/m andr/r. One might think of the entropy as a
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measure of the range or dimension of a latent flat distribution (see Section 7). The entropy
of the relative edge frequencies at different sites is given by

h(m/m) =
∑

(i,j)∈R

ϕ(mij/m)

where

ϕ(p) =

{

−p log p for p > 0
0 for p = 0.

The entropy of the relative site frequencies for different multiplicities is given by

h(r/r) =
m
∑

k=0

ϕ(rk/r) .

It follows that the entropy ofm/m is equal to

h(m/m) = logm−
1

m

m
∑

k=2

rkk log k .

This entropy is non-negative, zero only for all edges at the same site, and it attains a maxi-
mum value oflog r only if m is a multiple ofr and the multiplicity distribution is uniform
with the same multiplicitym/r at all sites. Form < r, the maximum islogm and is
attained for all edges at different sites. For other cases withm > r the maximal value is
somewhat belowlog r and attained for an almost uniform distribution.

It also follows that the entropy ofr/r is equal to

h(r/r) = log r −
1

r

m
∑

k=0

rk log rk .

This entropy is non-negative, zero only for all multiplicities equal, and it attains a maximum
value oflog(m + 1) only in the degenerate casem = 1, r = 2. The maximal values for
other cases are lower but not easily found.

For large values ofm, Stirling’s formula can be used to show that

h(m/m) =
1

m
log

(

m

m

)

+O

(

logm

m

)

≈
1

m
log#(g|m)

so that the entropy ofm/m is approximately equal to the average number of bits (provided
logarithms to base 2 are used) per edge needed to generate allg corresponding tom.

6. Uniform Graph Models

The classical occupancy models with equal or unequal objects distributedamong equal or
unequal sites can be modified to fit graph data with its special combinatorial structure for
the sites. We focus here on uniform distributions for different families of graphs. Families
of graphs are conveniently specified as random graphs. The uniformdistributions might be
null models used to test or explore empirical graph families. The range of applications for
such null models is conveniently extended to families of subgraphs induced by vertices of
special kinds.

Assume thatξ is the edge sequence of a random graph that is uniform with probabilities

P (ξ = g) =
1

rm
for g ∈ Rm.
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In this case the probability distributions of the different functionsm(ξ), G(ξ), andr(ξ)
are simply given as the relative frequencies of outcomes ofξ that are consistent with the
outcomes of the functions. Thus

P (m(ξ) = m) =

(

m
m

)

rm
,

P (G(ξ) = G) =
#(g|G)

rm
,

P (r(ξ) = r) =
m! r!

rm
∏m

k=0 k!
rk rk!

.

The entropy of a random variable is the same as the entropy of its probability distribution,
so

H(ξ) =
∑

g

ϕ(P (ξ = g)) = m log r .

Using calculation rules for entropy (given for instance in Frank, 2011a)it follows that

H(m(ξ)) = H(ξ)− E

[

log

(

m

m(ξ)

)]

,

H(G(ξ)) = H(ξ)− E [#(g|G(ξ))] ,

H(r(ξ)) = H(ξ)− E

[

log

(

m

m(ξ)

)]

− E

[

log

(

r

r(ξ)

)]

.

Using thatmij(ξ) is binomially distributed with parametersm and1/r, the entropy of the
multiplicity sequence can be expressed as

H(m(ξ)) = m log r − logm! + r

m
∑

k=2

(

m

k

)(

1

r

)k (

1−
1

r

)m−k

log k! .

The entropies ofG(ξ) andr(ξ) can be numerically evaluated but seem to have no explicit
formulae.

Consider now an alternative model with edge sequenceη assuming thatm(η) is uni-
form and thatη conditional onm(η) is uniform. In this case

P (m(η) = m) =
1

(

m+r−1
m

) ,

P (r(η) = r) =

(

r
r

)

(

m+r−1
m

) ,

P (η = g) =
1

(

m
m(g)

)(

m+r−1
m

) ,

and

H(m(η)) = log

(

m+ r − 1

m

)

,

H(r(η)) =
1

(

m+r−1
m

)

∑

r

(

r

r

)

log

(

r

r

)

− log

(

m+ r − 1

m

)

,

H(η) =
1

(

m+r−1
m

)

∑

m

log

(

m

m

)

+ log

(

m+ r − 1

m

)

.
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The two uniform models considered are in physics referred to as the Maxwell-Boltzmann
model with uniform distribution of unequal particles in unequal cells, and theBose-Einstein
model with uniform distribution of equal particles in unequal cells.

For the fully labeled graphs the entropy ofξ is maximal, and the entropy ofη deviates
by

D1 = H(ξ)−H(η)

from it. For the vertex labeled graphs the entropy ofm(η) is maximal and the entropy of
m(ξ) deviates by

D2 = H(m(η))−H(m(ξ))

from it. Therefore the reductions in entropy caused by skipping edge labels is larger forξ
than forη,

H(ξ)−H(m(ξ)) ≥ H(η)−H(m(η)) ,

and the difference between the reductions is equal to the sumD1+D2 of the two deviations
from maximal entropy. This can also be expressed as the following ordering of the entropies

H(m(ξ)) ≤ H(m(η)) ≤ H(η) ≤ H(ξ) .

Some of the simplified complexity measures mentioned in Section 5 rely on the fre-
quencies of sites with no or single occupancy only. The distributions ofr0(ξ) andr1(ξ) are
obtained as marginal distributions ofr(ξ). For r0(ξ) the marginal probabilities are given
by

P (r0(ξ) = r0) =
r!

r0! rm

∑

Sm(r1, . . . , rm)

=
r! S(m, r − r0)

r0! rm
for r0 = 0, 1, . . . , r − 1 .

Here the sum extends over(r1, . . . , rm) satisfying
∑m

k=1 rk = r−r0 and
∑m

k=1 k rk = m.
The term

Sm(r1, . . . , rm) =
m!

∏m
k=1 k!

rk rk!

counts the number of partitions of the edge set intor1 singletons,r2 parts of size 2, etc.
The sum is equal toS(m, r − r0), which is a Stirling number of the second kind for the
number of partitions of anm-set intor − r0 non-empty disjoint subsets.

For the bivariate distribution of(r0(ξ), r1(ξ)) the probabilities forr0 < r andr1 ≤
min(m, r − r0) are obtained as

P (r0(ξ) = r0, r1(ξ) = r1) =
r!

r0! r1! rm

∑

Sm(0, r2 . . . , rm)

where the sum extends over(r2, . . . , rm) satisfying
∑m

k=2 rk = r−r0−r1 and
∑m

k=2 k rk =
m − r1. Thus, to evaluate the sum we need to specify the partitions ofm − r1 into
r′ = r − r0 − r1 integers larger than 2 and find the terms separately. The number of
terms is the same as the number of partitions ofm′ = m − r1 − r′ = m − r + r0 into r′

positive integers, that is the numberam′r′ given at the end of Section 4.
Upper and lower bounds to the bivariate probability can be found much easier, and they

are based on that

Sm(0, r2 . . . , rm) =
m! Sm′(r2 . . . , rm)

m′!
∏m

k=2 k
rk

where

m′ =
m−1
∑

k=1

k rk+1 =
m
∑

k=2

(k − 1)rk = m− r + r0 .
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Moreover, the geometric mean of the multiplicities is bounded between 2 and the arithmetic
mean, which implies that there are boundsα andβ so that

α = 2r
′

≤
m
∏

k=2

krk ≤
[

(m′ + r′)/r′
]r′

= β

for r′ > 0 andm′ > 0. Therefore,

m! Sm′(r2, . . . , rm)

m′! β
≤ Sm(0, r2, . . . , rm) ≤

m! Sm′(r2, . . . , rm)

m′! α

and, consequently,

r! m! S(m′, r′)

r0! r1! m′! rm β
≤ P (r0(ξ) = r0, r1(ξ) = r1) ≤

r! m! S(m′, r′)

r0! r1! m′! rm α
,

where the lower bound to the probability is often quite accurate.
The probability that there are no multiple edges is given by

P (r1(ξ) = m) = P (r0(ξ) = r −m, r1(ξ) = m) =
m!

(

r
m

)

rm
for r ≥ m .

The distributions ofr0(η) andr1(η) for the model with uniform vertex labeled graphs
are given by

P (r0(η) = r0) =

(

r
r0

)(

m−1
r−r0−1

)

(

m+r−1
m

) for r0 = 0, 1, . . . , r − 1

and

P (r0(η) = r0, r1(η) = r1) =

(

r
r0

)(

r−r0
r1

)(

m−r+r0−1
r−r0−r1−1

)

(

m+r−1
m

)

for r0 < r andr1 ≤ min(m, r − r0). The first case is proved by noticing that when the
r0 empty sites have been chosen, the remainingr′ = r − r0 sites should have at least one
edge per site, and the remainingm′ = m− r′ edges can be distributed in any of

(

m′+r′−1
m′

)

ways. Similarly, in the second case, when ther0 empty sites and ther1 single occupancy
sites have been chosen, the remainingr′ = r− r0 − r1 sites should have at least two edges
per site, and the remainingm′ = m− r1−2r′ edges can be distributed in any of

(

m′+r′−1
m′

)

ways.
In this model the probability that there are no multiple edges is given by

P (r1(η) = m) = P (r0(η) = r −m, r1(η) = m) =

(

r
m

)

(

m+r−1
m

) for r ≥ m .

Now
(

m+r−1
m

)

= r(r + 1) · · · (r +m− 1)/m! ≥ rm/m!, so obviously the graph property
of having no multiple edges has a smaller probability under theη-model than under the
ξ-model.

The entropy of(r0(η), r1(η)) is smaller than the entropy of the complete complexity
sequencer(η). The difference reveals how much information is lost by using the simpler
complexity measure. A simple illustration showing that simple complexity summaries can
be quite satisfactory is given in Table 3. We see that the outcomes of(r0, r1) matchr
quite well, so that there is not much uncertainty aboutr when(r0, r1) is known. In fact,
for the ξ-model the entropies areH(r(ξ)) = 2.82 andH(r0(ξ), r1(ξ)) = 2.78 so only
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about one percent of the information about complexity is lost by using the simpler com-
plexity measure. The univariate entropiesH(r0(ξ)) = 1.95 andH(r1(ξ)) = 2.50 are
also retaining almost the same information as the bivariate entropy. For theη-model we
find H(r(η)) = 3.63, H(r0(η), r1(η)) = 3.38, H(r0(η)) = 2.11, andH(r1(η)) = 2.50
which implies that about 7% of the information about complexity is lost by the simpler
measure.

Table 3: Number of outcomes of complexityr = (r0, r1, . . . , rm) for given numbersr0,
r1 of empty and single occupancy sites in graphs with 5 vertices, 8 edges and no loops.

r1
r0 0 1 2 3 4 5 6 7 8
2 1
3 1
4 1 1
5 1 1 1
6 1 1 2 1
7 2 2 1
8 3 1
9 1

7. Entropy and Joint Information

Entropies are convenient measures of variation for general random variables but are also
useful to determine dependence and other relationships between several random variables.
This possibility can be intuitively understood by considering entropy as a measure of in-
formation, and interpreting it as the number of informative binary dimensions ina bijec-
tive representation of the outcomes. The technical interpretation of entropy as information
refers to a property of latent codes. It is known that repeated independent outcomes of a
random variable withN different possible outcomes and entropyH can be assigned bi-
nary sequences of different lengths according to a prefix code that requires in the long run
no more thanH binary digits (bits) per outcome. This corresponds to2H latent code se-
quences with uniform probabilities instead ofN outcomes with arbitrary probabilities. The
length of the latent codes, the entropyH, is called the information in the outcomes, and the
extra length that a binary code would require for the outcomes,logN −H, is called the re-
dundancy in the outcomes. When two random variablesξ andη have common bits in their
latent codes, they are related, and this relationship is measured by the joint information or
joint entropy

J(ξ, η) = H(ξ) +H(η)−H(ξ, η) .

Joint information is zero if and only if the variables are independent and donot reveal any
information about each other. Joint information is maximal when one of the variables is
completely determined by the other. Joint information is an alternative to correlation and
other measures that require numerical variables and specify linear or special non-linear
regression relationships. Arbitrary functional relationships as well as various conditional
dependence structures can be specified by different combinations of entropy measures. See
Frank (2011a) for further details about such possibilities.

The total information in(ξ, η) minus the information inη is the expected remaining
information inξ whenη is provided,

H(ξ, η)−H(η) = E[H(ξ|η)] ,
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and the joint information is equal to the original information minus the remaining informa-
tion in any of the variables according to

J(ξ, η) = H(ξ)− E[H(ξ|η)] = H(η)− E[H(η|ξ)] .

If η is determined byξ, the differenceH(ξ)−H(η) is equal to the remaining informa-
tion in ξ whenη is provided, or, in other words, the information inξ that is lost if nothing
more thanη is released.

Consider the edge sequenceξ of a random multigraph. The entropy ofG(ξ) mea-
sures variation from uniformity or flatness in the probability distribution over theunlabeled
graphs. The joint information of the multiplicity sequencem(ξ) and the complexity se-
quencer(ξ) is trivially equal to the entropy ofr(ξ) because complexity is determined by
multiplicity. Less transparent relationships between network properties mightbe between
number of loops and number of multiple sites or any other network characteristics of spe-
cial interest for the applications. Joint entropies reveal such relationships. Sometimes it
is possible to give explicit expressions for the measures. A few examples are given in
Section 9.

8. Some Further Illustrations

Numerical algorithms have been developed to handle distributions of edges among vertex
pairs for arbitrary values ofm andn. Here these algorithms are used for the case with
n = 6 andm = 4 in order to visualize how families of multigraphs are composed of
isomorphisms of varying complexity. We also illustrate the distributions on isomorphism
and complexity of fully labeled and vertex labeled graphs. We evaluate the possibilities to
gain information about them by using partial information.

Table 4 shows complexity distributions for uniform distributions over the fully labeled
graphs, over the vertex labeled graphs, and over the unlabeled graphs. Random variables
generating these graph families are the earlier defined edge sequencesξ andη together with
an edge sequenceζ with uniform distribution ofG(ζ) over the isomorphisms and withζ
uniform conditional onG(ζ).

Table 4: Distributions on complexity for graphs with 6 vertices, 4 edges and no loops.

Complexity (14,0,0,0,1) (13,1,0,1,0) (13,0,2,0,0) (12,2,1,0,0) (11,4,0,0,0) Total
Unlabeled graphs 1 2 2 7 9 21

Vertex labeled graphs 15 210 105 1365 1365 3060
Fully labeled graphs 15 840 630 16380 32760 50625

The complexity distributions have entropiesH(r(ξ)) = 1.11, H(r(η)) = 1.51 and
H(r(ζ)) = 1.91. Maximum entropy is here equal tolog 5 = 2.32. Thus, the complexity
distributions have redundancies of 52%, 35%, and 18%, and all distributions exhibit a clear
concentration towards simplicity with no or few multiple edges.

From the distributions on isomorphisms in Figure 3 it follows thatH(G(ξ)) = 3.87,
H(G(η)) = 3.95, andH(G(ζ)) = 4.39. The unlabeled graphs have maximal entropy
log 21 = 4.39 obtained for theζ-model. The vertex labeled graphs have maximal entropy
for theη-model, and 34% of that entropy is retained byG(η). The fully labeled graphs
have maximal entropy for theξ-model, and 25% of that entropy is retained byG(ξ). A
more complete and systematic view of how the information content in different kinds of
data varies for the three models is given in Table 5. The models are constructed to have
no redundancy for one of the data levels. All other redundancies are between 4% and
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12%, except for the complexity level which has higher redundancies. Ifmaximal entropy
is rounded upwards, a rough common feature of the models is apparent. Ofthe 16 binary
dimensions required for fully labeled graphs, about 3 are informative about complexity,
another 2 are informative about how the sites need to be ordered to achieve graph structure,
another 7 are informative about vertex labeling, and another 4 about edge labeling.

Figure 3: Number of labeled and fully labeled graphs for different isomophisms andcom-
plexities with 6 vertices, 4 edges and no loops.

Table 5: Entropy and maximal entropy of graph data under three uniform randommodels
for graphs with 6 vertices, 4 edges and no loops.

Entropy of data according to
Data ξ-model η-model ζ-model Maximal entropy

Fully labeled graph 15.63 15.45 14.67 15.63
Vertex labeled graph 11.44 11.58 11.07 11.58

Unlabeled graph 3.87 3.95 4.39 4.39
Graph Complexity 1.11 1.51 1.91 2.32

9. Other graph models

A natural generalization of the uniform model for the sequenceξ = (ξ1, . . . , ξm) of sites
for the edges is to assume that edges are independently assigned to sites according to a
common arbitrary probability distribution

p = (pij : (i, j) ∈ R)

over the possible sites of vertex pairs. Thus,

P (ξ = g) = pm(g) =
∏

(i,j)∈R

p
mij(g)
ij for g ∈ Rm .
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The multiplicity sequencem(ξ) is multinomially distributed with parametersm andp
so that

P (m(ξ) = m) =

(

m

m

)

pm

for the
(

m+r−1
m

)

different ordered partitionsm of m into r non-negative integers. The
complexity sequencer(ξ) has probabilities given by

P (r(ξ) = r) =
∑

m|r

(

m

m

)

pm =
m!

∏m
k=0 k!

rk

∑

m|r

pm

so, unlessp is uniform, the sum needs a specification of all multiplicity sequences that have
complexityr. It is straightforward to find the entropies

H(ξ) = −E
[

logpm(ξ)
]

= −mp logp = m
∑

(i,j)∈R

ϕ(pij) = m h(p)

and

H(m(ξ)) = −E

[

log

(

m

m(ξ)

)

pm(ξ)

]

= m h(p)− E

[

log

(

m

m(ξ)

)]

= m h(p)− logm! +
∑

(i,j)∈R

E [logmij(ξ)!]

= m h(p)− logm! +
∑

(i,j)∈R

m
∑

k=0

(

m

k

)

pkij(1− pij)
m−k log k! .

For m > r there has to be some multiplicity larger than 1, but form ≤ r it might be of
interest to find the probability of no multiple edges. If loops are forbidden, this is the same
as the probability of graph simplicity. If loops are allowed, the number of loops

m1 =
n
∑

i=1

mii

and the number of sitesr0 andr1 with no and single occupancy are statistics that suffice
to specify graph simplicity. For theξ-model with common component distributionp, the
number of loopsm1(ξ) is binomially distributed with parametersm andp1 =

∑n
i=1 pii.

The numberrk(ξ) of sites with occupancyk has expected value

E [rk(ξ)] =
∑

(i,j)∈R

(

m

k

)

pkij(1− pij)
m−k for k = 0, 1, . . . ,m .

This implies the following expected values for the simple complexity measures given by
the number of multiple occupancy sites and the number of multiple edges:

E [r − r0(ξ)− r1(ξ)] = r −
∑

(i,j)∈R

(1− pij)
m −m

∑

(i,j)∈R

pij(1− pij)
m−1

E [m− r1(ξ)] = m



1−
∑

(i,j)∈R

pij(1− pij)
m−1



 .

The probability that there are no multiple edges is given by the sum of all ordered different
products ofm of ther probabilities inp, that is by

P (r1(ξ) = m) = m!
∑ ∏

(i,j)∈R

p
mij

ij
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where the sum extends over all permutations ofm∗ = (0r−m1m).
For many applications, an important generalization of independent assignments of edges

to vertex pairs is obtained by introducing stochastic processes that generate edge sequences.
A simple setup is to definer independent Poisson point processes that generate edges at
the different sites with intensitiesλij for (i, j) ∈ R. The sequenceξ = (ξ1, . . . , ξm) has
componentsξk that record the sites in the order the edges occur during a fixed period of
time. Such an approach is to be discussed elsewhere.

An investigation of entropy measures for occupancy models similar to those considered
here is described in an article by Frank and Nowicki (1989). They introduce a graph on
objects corresponding to our edges with their edges specifying whether or not the objects
occupy the same site. Thus, this graph has complete connected components and is closely
related to the concepts discussed here. They also develop asymptotic results for various
entropies. Of special interest is the asymptotic entropy for the multinomial distribution,
which implies that the multiplicities of the fully labeled graphs have an entropyH(m(ξ))
that for largem andr with r2/m tending to zero is given by

H(m(ξ)) =
1

2
log



(2πem)r−1
∏

(i,j)∈R

pij



+O

(

r2

m

)

.

Complexity is a general property considered in many different contexts and used with
or without a specific definition. Complexity in graphs has been given different definitions
in the literature focusing on other graph properties than edge multiplicity. For instance,
Karreman (1955) and Mowshowitz (1968) are references that deal with completely differ-
ent complexity properties of graphs used as models for molecules with chemical bonds
between atoms. A common feature of many complexity concepts is that they seem tobe
well described and analyzed by information measures based on entropy.
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