Section on Statistical Graphics—JSM 2012

Complexity of Families of Multigraphs

Ove Frank Termeh Shafie

Abstract

This article describes families of finite multigraphs wittbkled or unlabeled edges and vertices.
It shows how size and complexity vary for different types qéiwalence classes of graphs defined
by ignoring only edge labels or ignoring both edge and veldbels. Complexity is quantified by
the distribution of edge multiplicities, and different cplexity measures are discussed. Basic oc-
cupancy models for multigraphs are used to illustrate wifiegraph distributions on isomorphism
and complexity. The loss of information caused by ignoridgesand vertex labels is quantified
by entropy and joint information that provide tools for sgird) properties of and relations between
different graph families.

Key Words: labeled graph, edge multiplicity, complexity measureyay, joint information,
isomorphism

1. Introduction

Typical applications of graphs consider sequences of edges assowith vertex pairs. For
instance, records of telephone calls, internet connections, monegdtiams or business
contacts during a period of time and their distributions on pairs of individaaldresses,
bank accounts or companies are four such applications. Multigrapkaapgatural in many
such contexts. A random multigraph is a family of multigraphs with a probabilityiblistr
tion, and appropriately chosen it can be a model for the application.n@fiion theoretic
tools can be used to describe, evaluate and compare different modkthesrare particu-
larly useful to analyze variability and dependence structures in multivateseof network
type. A survey of such information theoretic tools based on entropy mesa®igiven by
Frank(2011a) . Statistical analysis of network data is treated in a booklag Kk (2009)
and in survey articles by Frank (2005, 2011b). Many other issue=ecoimg network anal-
ysis are also found in the encyclopedia edited by Carrington, Scott assiefvaan (2005),
Meyers (2009), and Scott and Carrington (2011).

This article focuses on basic occupancy models adapted to fit multigrapbscon
plexity of a multigraph is defined as its multiplicity distribution, that is the frequenufies
vertex pairs with different numbers of multiple edges. The relationshipsdegtuyabeled
and unlabeled graphs, isomorphism and complexity are specified in theawixin. The
numbers of graphs of various types are given and illustrated in Sectamd 3. Section 5
describes different complexity measures. Uniform graph models atgzadaand illus-
trated in Sections 6 to 8. Some other models are presented in Section 9 togétterme
comments on extensions and references.

2. Basic Conceptsand Notation

A finite graphg with n labeled vertices anth labeled edges associates with each edge an
ordered or unordered vertex pair. Lét= {1,...,n} andE = {1,...,m} be the sets
of vertices and edges labeled by integers, and denofe thye set of available sites for the
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edges. For directed graptis= V2 or R = {(i,7) € V? : i # j} depending on whether
or not loops are allowed. For undirected graphs we use the site gpacé(i,j) € V2 :

i < jlorR = {(i,j) € V?:i < j} and conside(3, ;) with i < j as a canonical
representation for the unordered vertex pair. +&e the number of sites so that= n?,
n(n — 1), (") or (}) for the cases mentioned. The graphE — R is an injective map
that is represented by an ordered sequence

g=1(91,---,9m) €R™

of m sites for the edges, or, equivalently, by an ordered partition
M = (Mj; : (i,) € R)
of r disjoint subsets of edges for the sites. Here
My ={keE:g=(ij)} for (i,j)eR.

Edges at the same site are called multiple edges, and the number of multiple esitges a
(i, 7) is the multiplicity denoted byn;; for (i, j) € R. We use the notation

g+ M

for the bijection between the two representations of the ggaph

If edges are not distinguished, their labels can be ignored, and ordédsiinrelevant.
A representation for the graph with labeled vertices but unlabeled eddesdated byg*
and defined by listing the sites gin some canonical order such as

(L)< (L,2)<...<(,n)<(2,1)<(2,2) <....
A convenient shorthand notation is
g* = ((%J)mu : (27.7) € R) .

There is a bijection between the unordered site sequence for the edbthe anultiplicity
sequence for the edges:
g m=(my:(i,j) €R).

If both vertex labels and edge labels are ignored, the isomorphic unlatpept is
represented byG. The unordered version d¥1 is an unordered partitiodM* of the
edge set into" subsets. The unordered version of the multiplicity sequanads an un-
ordered partitiorm™ of m into » non-negative integers. There is a bijection between this
partition and the sequence of frequencies of sites with multiplicitj@s. . ., m given by
r = (ro,...,rn) Where

TR = Z I(mjj=Fk) for kE=0,1,...,m.
(i,9)€ER

Thus,

m* < r,

and the sequenass called the complexity of the gragh Figure 1 shows a schematic view
of bijections and other functional relationships between the various ptsa#roduced
here. The functional relationships comprise canonizing ordering {eétxyx), specifying
multiplicities m = m(g), specifying isomorphisnt = G(m) which is a function ofm,
and specifying complexity = r(G) which is a function ofG. With an abuse of notation
we also writeG = G(m) = G(g) andr = r(G) = r(m) = r(g).
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Figure 1. Relationships between graphs, multiplicity and complexity.

3. A Numerical Example

The different concepts introduced are illustrated and visualized byidemirsy a simple
example before we turn to general formulae for numbers of graphscariebéence classes
of different kinds.

Consider undirected graphs with= 4 labeled vertices anch = 3 labeled edges with
loops not allowed so that = 6. Herem < r and all partitions of 3 into positive integers
can be used to find the possible multiplicity sequences. Thus the multiplicity sezgien
divide into three equivalence classes corresponding to permutatiggsiof, 0, 0, 0), of
(2,1,0,0,0,0), and of(1,1,1,0,0,0). Shorthand notation is 30°, ~ 210, and~ 1303,
The classes have complexity sequenges$, 0, 1), (4,1, 1,0), and(3,3,0,0). The classes
consist of 1,2, and 3 non-isomorphic graphs, and the isomorphismsave g Figure 2.

e NI

Figure 2: Unlabeled graphs according to complexity.

Vertex labels can be assigned to the non-isomorphic graphs in 6, 2415, dnd 4 ways,
and edge labels can be assigned to each vertex labeled graph with theosaphexay in 1,
3, and 6 ways in the order shown in Figure 2. Table 1 lists the number ofelathraphs
#(G|r), the number of vertex labeled grap#§m|r), and the number of fully labeled
graphs#(g|r) for each complexity sequenee Table 2 gives the numbers(m|G) and
#(g|G) of vertex labeled and fully labeled graphs for each isomorphism class.

Table 1. Distributions on complexity for graphs with 4 vertices, 3 edges and no loops

Complexity (5,0,0,1) (4,1,1,00 (3,3,0,0) Total
Unlabeled graphs 1 2 3 6
Vertex labeled graphs 6 30 20 56
Fully labeled graphs 6 90 120 216
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Table 2: Distributions on isomorphism for graphs with 4 vertices, 3 edges and ps.loo

Isomorphism :e: IO. 2 N I_I o Total
4 12

[
Vertex labeled graphs 6 24 6 4 56
Fully labeled graphs 6 72 18 24 72 24 216

4. Numbersof Graphs

The number of multigraphs with labeled verticesin labeled edges andavailable sites

of vertex pairs for the edges is given by the number of sequegcagich is denoted
#(g) = r™. When edge labels are ignored, the number of graphs is given by theenumb
of multiplicity sequencesn, which is the number of ordered partitionsafinto » non-
negative integers:

fem) = (

Each graph with only vertex labels can be edge labeled in the number ofthaatgs can
be permuted, which is equal to

O

H(i,j)eR mi;!

m+r—1
m .

The totalr™ = 3. () is a sum ove("*"~1) terms.

Different fully labeled graphs are isomorphic if they are equal whetexdabels as
well as edge labels are ignored. The number of isomorphic fully labelguhgria given
by (r’”fl) multiplied by the number of isomorphic vertex labeled graphs with no edge labels.
Formally,

#(elG) = () #(mic)

since(!") is invariant for graphs isomorphic @.
Multiplicity sequences have the same complexity if they are permutations of the same
m*. There arg) such permutations where-> m*. Thus,

is the number of graphs with vertex labels but no edge labels having compiexitiie
number of fully labeled graphs with complexityis obtained by multiplying#(m|r) with

#(g[m): N o
#60 = () () - e

The number of different complexity sequenees the same as the number of unordered
partitions ofm into r non-negative integers. This number is the sum of the numbers of
unordered partitions ofn into k positive integers fokk = 1,2,...,min(r,m). If a
denotes the number of partitionssafinto £ positive integers and,,, = a1 + ... + amm
is the number of partitions af:, it is possible to show that,,;, = a,,—; for k& > m/2.
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Tables ofa,, anda,,,;, for k < m/2 andm = 1,2,... can be used to find

D pe1 Gmk forr < %
#(r) = Y kemy2(ar + amp) for B <r <m
m forr > m.

Such tables are available, for instance, in Comtet (1974).

5. Complexity of Graphs

The complexity sequenaecontains the distribution of multiplicities among the sites. Sum-
mary measures of this distribution might be of interest as measures of comitexising
on special properties of the graph. For instance, the proportion of muitpte

(r—ro—rm1)
r

or the average multiplicity among multiple sites

(m—ry)
r—Trog—7"T1

are simple measures of complexity focusing on any kind of deviation frophgravithout
multiple edges. If loops are forbidden, this amounts to deviation from griagfiisity.
A measure that linearly combines the frequencies of different multiplicitieyendiy

> (o)
9 k>
k=2
which counts the number of pairs of edges associated with the same site.pdf doe

forbidden, this measure is positive if and only if the graph is not simple. Asndihear
measure with this property is

m
Z ri log k!,
k=0
which is the logarithm of the common number of permutations that leave the agigenee
g invariant for graphs of complexity.

A special class of complexity measures focuses on how many graphs$esédifkinds
that have the same complexity Since these numbers might be very large, it is convenient
to consider logarithmic measures. For vertex labeled and fully labeledgvéfihthe same
complexity, the measures are

log #(m|r) = logr! — logr! = logr! — Zlogrk!
k=0

and

m

log #(g|r) = logm! + logr! — Z(rk log k! + log ry!) .
k=0

These measures are similar to measures based on entropy, which cimrdlamess of
the relative frequency distributions/m andr/r. One might think of the entropy as a
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measure of the range or dimension of a latent flat distribution (see Secti®h& entropy
of the relative edge frequencies at different sites is given by

h(m/m) =" @(mi;/m)
(4,5)ER
where
0 forp = 0.
The entropy of the relative site frequencies for different multiplicities igigilry

—plo forp >0
@(p):{ proeb P

m

h(x/r) = Z(p TE/T)

k=0

It follows that the entropy ofn/m is equal to

1 m
h(m/m) = logm — p- Zrkklogk .
k=2

This entropy is hon-negative, zero only for all edges at the same sitd, atains a maxi-
mum value oflog r only if m is a multiple ofr and the multiplicity distribution is uniform
with the same multiplicityn/r at all sites. Form < r, the maximum idogm and is
attained for all edges at different sites. For other caseswith r the maximal value is
somewhat beloviog » and attained for an almost uniform distribution.

It also follows that the entropy aof/r is equal to

m

1
h(r/r) =logr — — rilogry .
(x/r) . kzo
This entropy is non-negative, zero only for all multiplicities equal, and it agtaimaximum
value oflog(m + 1) only in the degenerate case = 1, = 2. The maximal values for
other cases are lower but not easily found.
For large values ofn, Stirling’s formula can be used to show that

|
h(m/m) = %log (ffl) +0 < fj”) ~ %log#@\m)

so that the entropy ah/m is approximately equal to the average number of bits (provided
logarithms to base 2 are used) per edge needed to genergtecatesponding tan.

6. Uniform Graph Models

The classical occupancy models with equal or unequal objects distribatedg equal or
unequal sites can be modified to fit graph data with its special combinatorietiste for

the sites. We focus here on uniform distributions for different familiesraphs. Families
of graphs are conveniently specified as random graphs. The unifistributions might be
null models used to test or explore empirical graph families. The rangepti€ations for

such null models is conveniently extended to families of subgraphs indyceertices of

special kinds.

Assume thag is the edge sequence of a random graph that is uniform with probabilities

1
P(¢=g) =~ for geR"
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In this case the probability distributions of the different functien&), G(¢), andr(€)
are simply given as the relative frequencies of outcome&tbht are consistent with the
outcomes of the functions. Thus

Plan(e) = m) = ()

P(Gle) = @) = B,
P(r(g) = 1) = —— "

- rm HZL:O k!Tk T‘k! ’

The entropy of a random variable is the same as the entropy of its probaistitipdtion,
SO

H(&) =) ¢(P(E=g)) =mlogr.
g

Using calculation rules for entropy (given for instance in Frank, 20t Ta)ows that

() =€) - £ |log (11 )|
H(G(&) = H(E) - B#EICE)] |

-0 e )] )]

Using thatm,;(£) is binomially distributed with parameters and1/r, the entropy of the
multiplicity sequence can be expressed as

H(m(€)) = mlogr — logm! + ri <’Z> (i)k <1 _ i>m_klog K

k=2

The entropies 06 (&) andr(&) can be numerically evaluated but seem to have no explicit
formulae.

Consider now an alternative model with edge sequenassuming thatn(n) is uni-
form and thatp conditional onm(n) is uniform. In this case

P(m(n) = m) = (mﬁ_l) ,
P(r(n) = 1) = (m&)_l) ,

and
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The two uniform models considered are in physics referred to as the Makaitzmann
model with uniform distribution of unequal particles in unequal cells, an8tse-Einstein
model with uniform distribution of equal particles in unequal cells.

For the fully labeled graphs the entropy&fs maximal, and the entropy @f deviates
by

Dy =H(§) — H(n)
from it. For the vertex labeled graphs the entropyofn) is maximal and the entropy of
m(&) deviates by
Dy = H(m(n)) — H(m(§))

from it. Therefore the reductions in entropy caused by skipping edgdslablarger forg
than forn,
H(&) — H(m(€)) > H(n) — H(m(n)),

and the difference between the reductions is equal to thel3wmD- of the two deviations
from maximal entropy. This can also be expressed as the following ogdafrthe entropies

H(m(§)) < H(m(n)) < H(n) < H(E) -

Some of the simplified complexity measures mentioned in Section 5 rely on the fre-
quencies of sites with no or single occupancy only. The distributiong(g andr, (¢) are
obtained as marginal distributions of¢). Forry(€) the marginal probabilities are given
by

Plro(€) = ro) = —" 3 Slriy ey )

rol rm

_ S =ro) e 0

rol rm
Here the sum extends over, . .., r,,) satisfyingd ", 7, = r—roand> -, kry = m.
The term |
m:
Sl o) = T

counts the number of partitions of the edge set intsingletons,;r, parts of size 2, etc.
The sum is equal t&(m,r — rp), which is a Stirling number of the second kind for the
number of partitions of am-set intor — ro non-empty disjoint subsets.

For the bivariate distribution ofry(&),r1(€)) the probabilities fory < r andr; <
min(m,r — ro) are obtained as

!
P(ro(§) =ro,m1(§) =m1) = mzsm(oﬁzm,rm)

where the sum extends oves, . . ., ry,) satisfyingd ;" , r, = r—ro—riand ;' , kry =
m — r1. Thus, to evaluate the sum we need to specify the partitions of r; into
r" = r — rg — ry integers larger than 2 and find the terms separately. The number of
terms is the same as the number of partitions6f= m — ry — 1’ = m — r + r¢ into 7’
positive integers, that is the numhey,,~ given at the end of Section 4.

Upper and lower bounds to the bivariate probability can be found mudééreasd they
are based on that

m! Sy (ra....Tm)
Sm(O,TQ...,Tm) = /! HZL2 e
where
m—1 m
m' = krk+1:Z(k—1)rk:m—r+ro.
k=1 k=2
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Moreover, the geometric mean of the multiplicities is bounded between 2 andttiraetic
mean, which implies that there are bourdandg so that

m
a=2" < [[** <[ +) /"] =8
k=2
for ' > 0 andm’ > 0. Therefore,

m! Sy (re, ... Tm) m! Sy (ro, ..., Tm)

m'l 3

< Sm(077a27" . ,Tm) <

m'l «
and, consequently,

rlm! S(m’,r") < P(ro(€) = ro,11(€) = 1) < rlm! S(m’,r")

rol ri!m/lrm g —

rol r! m/lrma’

where the lower bound to the probability is often quite accurate.
The probability that there are no multiple edges is given by

()

forr >m.
,,am

P(r1(§) =m) = P(ro(§) =7 —m,r1(§) =m) =

The distributions of-y(n) andr(n) for the model with uniform vertex labeled graphs
are given by

() (5 20)

P(TO(TI):TO):W fOI’?”o:O,l,...,T—l
e (1) (=) (rrnt)
P(ro(n) =ro,m1(n) =r1) = — Emﬂ,_l; !

for ro < randr; < min(m,r — rg). The first case is proved by noticing that when the
ro empty sites have been chosen, the remaining r — r sites should have at least one
edge per site, and the remaining = m — r’ edges can be distributed in any(df'j;,lfl)
ways. Similarly, in the second case, when thempty sites and the, single occupancy
sites have been chosen, the remainihg » — ry — r; sites should have at least two edges
per site, and the remaining’ = m —r; — 2’ edges can be distributed in any(ﬁi‘/ﬂf‘l)
ways.

In this model the probability that there are no multiple edges is given by

P(ri(n) =m) = P(ro(n) =r —m,r(n) =m) = (m&”;)_l) forr >m.

m

Now (™*"~1) = r(r +1)--- (r +m — 1)/m! > r™/ml, so obviously the graph property
of having no multiple edges has a smaller probability undertimodel than under the
&-model.

The entropy of(ro(n), 71(n)) is smaller than the entropy of the complete complexity
sequence(n). The difference reveals how much information is lost by using the simpler
complexity measure. A simple illustration showing that simple complexity summaries can
be quite satisfactory is given in Table 3. We see that the outcomés of;) matchr
quite well, so that there is not much uncertainty abouthen (ry, 1) is known. In fact,

for the ¢&-model the entropies arH (r(£)) = 2.82 and H(ro(£€),r1(£)) = 2.78 so only
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about one percent of the information about complexity is lost by using thelesiropm-
plexity measure. The univariate entropiEgro(£)) = 1.95 and H(r1(£)) = 2.50 are
also retaining almost the same information as the bivariate entropy. Ferthedel we

find H(r(n)) = 3.63, H(ro(n),m1(n)) = 3.38, H(ro(n)) = 2.11, andH (r1(n)) = 2.50
which implies that about 7% of the information about complexity is lost by the simpler
measure.

Table 3: Number of outcomes of complexity = (rg,r1, ..., r,) for given numbers,
r1 of empty and single occupancy sites in graphs with 5 vertices, 8 edge®dnops.

1
0 1.2 3 4 5 6 7 8
1

<
(=)

1
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= =
= =

R WN PP

7. Entropy and Joint I nformation

Entropies are convenient measures of variation for general randoables but are also
useful to determine dependence and other relationships between samdoam variables.
This possibility can be intuitively understood by considering entropy as aune®f in-
formation, and interpreting it as the number of informative binary dimensioasbifec-
tive representation of the outcomes. The technical interpretation of grasojmformation
refers to a property of latent codes. It is known that repeated indepémutcomes of a
random variable withV different possible outcomes and entroffycan be assigned bi-
nary sequences of different lengths according to a prefix codedbaires in the long run
no more thand binary digits (bits) per outcome. This correspondgfolatent code se-
guences with uniform probabilities instead®foutcomes with arbitrary probabilities. The
length of the latent codes, the entrafdy is called the information in the outcomes, and the
extra length that a binary code would require for the outcoegsy — H, is called the re-
dundancy in the outcomes. When two random variaplasdrn have common bits in their
latent codes, they are related, and this relationship is measured by the fointation or
joint entropy

J(€n) = H(€) + H(n) — H(E1).

Joint information is zero if and only if the variables are independent ambtpeveal any
information about each other. Joint information is maximal when one of thiablas is
completely determined by the other. Joint information is an alternative to ctioreknd
other measures that require numerical variables and specify lineareolabpon-linear
regression relationships. Arbitrary functional relationships as welbaisws conditional
dependence structures can be specified by different combinationgopg measures. See
Frank (2011a) for further details about such possibilities.

The total information in(¢, n) minus the information im is the expected remaining
information in¢ whenn is provided,

H(&m) — H(n) = E[H(En)],
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and the joint information is equal to the original information minus the remainingrirde
tion in any of the variables according to

J(&,m) = H(§) — E[H(&|n)] = H(n) — E[H(n|§)] -

If n is determined by, the difference (¢) — H(n) is equal to the remaining informa-
tion in & whenn is provided, or, in other words, the informationgrihat is lost if nothing
more than is released.

Consider the edge sequengef a random multigraph. The entropy &(£) mea-
sures variation from uniformity or flatness in the probability distribution oveutiiabeled
graphs. The joint information of the multiplicity sequeneg¢&) and the complexity se-
quencer(&) is trivially equal to the entropy of (&) because complexity is determined by
multiplicity. Less transparent relationships between network properties tméghétween
number of loops and number of multiple sites or any other network charaicten$ spe-
cial interest for the applications. Joint entropies reveal such relafgnsBometimes it
is possible to give explicit expressions for the measures. A few exampegiven in
Section 9.

8. Some Further Illustrations

Numerical algorithms have been developed to handle distributions of edgerasertex
pairs for arbitrary values of. andn. Here these algorithms are used for the case with
n = 6 andm = 4 in order to visualize how families of multigraphs are composed of
isomorphisms of varying complexity. We also illustrate the distributions on isorsmph
and complexity of fully labeled and vertex labeled graphs. We evaluate gwhildies to
gain information about them by using partial information.

Table 4 shows complexity distributions for uniform distributions over the fulhelad
graphs, over the vertex labeled graphs, and over the unlabeledsgr@phdom variables
generating these graph families are the earlier defined edge seqgemzbgtogether with
an edge sequendgewith uniform distribution ofG(¢) over the isomorphisms and with
uniform conditional onG(¢).

Table 4: Distributions on complexity for graphs with 6 vertices, 4 edges and no loops

Complexity (14,0,0,0,1) (13,1,0,1,0) (13,0,2,0,0) (122@ (11,4,0,0,0) Total

Unlabeled graphs 1 2 2 7 9 21
Vertex labeled graphs 15 210 105 1365 1365 3060
Fully labeled graphs 15 840 630 16380 32760 50625

The complexity distributions have entropiégr(¢)) = 1.11, H(r(n)) = 1.51 and
H(r(¢)) = 1.91. Maximum entropy is here equal tog 5 = 2.32. Thus, the complexity
distributions have redundancies of 52%, 35%, and 18%, and all distnilsLegixhibit a clear
concentration towards simplicity with no or few multiple edges.

From the distributions on isomorphisms in Figure 3 it follows thHdiG (£)) = 3.87,
H(G(n)) = 3.95, and H(G(¢)) = 4.39. The unlabeled graphs have maximal entropy
log 21 = 4.39 obtained for th€-model. The vertex labeled graphs have maximal entropy
for the n-model, and 34% of that entropy is retained @yn). The fully labeled graphs
have maximal entropy for thé-model, and 25% of that entropy is retained Gy¢). A
more complete and systematic view of how the information content in differedslon
data varies for the three models is given in Table 5. The models are cdesttochave
no redundancy for one of the data levels. All other redundancieseiveebn 4% and
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12%, except for the complexity level which has higher redundanciesaXimal entropy
is rounded upwards, a rough common feature of the models is apparetfie ©8 binary
dimensions required for fully labeled graphs, about 3 are informatieeitatomplexity,

another 2 are informative about how the sites need to be ordered to@agnaph structure,
another 7 are informative about vertex labeling, and another 4 abgatlableling.

SN I I [APOR [ S N e

(15, 15) (120, 480) (90, 360) (60, 360) (45, 270)

(210, 840) (105, 630)

DNos Vss dhs das ds 6 o4

(180, 2160) (60, 720) (180, 2160) (360, 4320) (360, 4320) (180 2160) (45, 540)

(1365, 16380)

s Vsods e % b hlodesdebiedisd

(30, 720) (180, 4320) (360, 8640) (60, 1440) (45, 1080 ) (60, 1440) (360, 8640) (90, 2160) (180, 4320)

(1365, 32760)

Figure 3: Number of labeled and fully labeled graphs for different isomophismsand
plexities with 6 vertices, 4 edges and no loops.

Table 5: Entropy and maximal entropy of graph data under three uniform randodels
for graphs with 6 vertices, 4 edges and no loops.

Entropy of data according to

Data &-model m-model ¢-model Maximal entropy
Fully labeled graph 15.63 15.45 14.67 15.63
Vertex labeled graph 11.44 11.58 11.07 11.58
Unlabeled graph 3.87 3.95 4.39 4.39
Graph Complexity 1.11 1.51 1.91 2.32

9. Other graph models

A natural generalization of the uniform model for the sequehee (&1, ..., &, ) of sites
for the edges is to assume that edges are independently assigned toiteingcto a
common arbitrary probability distribution

p = (pij : (i,j) € R)
over the possible sites of vertex pairs. Thus,

(J)ER
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The multiplicity sequencen(¢) is multinomially distributed with parameters andp
so that

for the (mfj;‘l) different ordered partitionsgn of m into » non-negative integers. The
complexity sequence(£) has probabilities given by

PO =0 =3 (1 )o" = e "

m|r mir

S0, unlesp is uniform, the sum needs a specification of all multiplicity sequences that have
complexityr. It is straightforward to find the entropies

H(¢)=—E [logpm(g)} =—mplogp=m »_ ¢(p;) =m h(p)
(,7)ER

H(m(€)) = £ g (1t o™ ©)| = m o) — 2 o ()
=mh(p) —logm!+ > E[logm;;(£)!]

(L,j)ER
m h(p) — logm! + Z Z( )pl] —pij)™ Flogk! .
(4,7)€ER k=0

Form > r there has to be some multiplicity larger than 1, but#or< r it might be of
interest to find the probability of no multiple edges. If loops are forbiddés jsithe same
as the probability of graph simplicity. If loops are allowed, the number of loops

n

my = g My

=1
and the number of siteg andr; with no and single occupancy are statistics that suffice
to specify graph simplicity. For the-model with common component distributign the
number of loopsn; (£) is binomially distributed with parameters andp; = ;" | psi.
The number (&) of sites with occupancy has expected value

Elre(§)] = Z <7Z>p§j(1_pij)m_k for k=0,1,...,m

(i,J)ER

This implies the following expected values for the simple complexity measures give
the number of multiple occupancy sites and the number of multiple edges:

Elr—ro(§) —ri(§)] =7 - Z (1—pij)"™ —m Z pij(1 = pi)™ ™!

(i,7)ER (,7)ER

E[m—ri(§)]=m (1 - Y pisQ pij)ml) :

(,J)ER
The probability that there are no multiple edges is given by the sum of altextaifferent
products ofmn of ther probabilities inp, that is by

P& =m)=mY" [] #i

(3,7)ER

2920



Section on Statistical Graphics—JSM 2012

where the sum extends over all permutationsf= (0"~"1™).

For many applications, an important generalization of independent assiggoiedges
to vertex pairs is obtained by introducing stochastic processes thaatgrdge sequences.
A simple setup is to define independent Poisson point processes that generate edges at
the different sites with intensitiek;; for (i, j) € R. The sequencé = (&;,...,&y,) has
componentg;, that record the sites in the order the edges occur during a fixed period of
time. Such an approach is to be discussed elsewhere.

An investigation of entropy measures for occupancy models similar to thosalered
here is described in an article by Frank and Nowicki (1989). They inted graph on
objects corresponding to our edges with their edges specifying whathet the objects
occupy the same site. Thus, this graph has complete connected comparkistslasely
related to the concepts discussed here. They also develop asymptoliis f@suarious
entropies. Of special interest is the asymptotic entropy for the multinomial distnity
which implies that the multiplicities of the fully labeled graphs have an entibpym(£))
that for largem andr with r2 /m tending to zero is given by

H(m(ﬁ)):%log @2rem) ' [ »i +O( )

(i,5)ER

Complexity is a general property considered in many different contextsised with
or without a specific definition. Complexity in graphs has been given diifedefinitions
in the literature focusing on other graph properties than edge multiplicity. Btarine,
Karreman (1955) and Mowshowitz (1968) are references that ddabampletely differ-
ent complexity properties of graphs used as models for molecules with chdrords
between atoms. A common feature of many complexity concepts is that they séem to
well described and analyzed by information measures based on entropy.
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