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Abstract 
In vitro drug combination studies typically involve a large number of wells with various 

concentrations of two drugs added together. To gain the most information from an 

experiment, what should the drug concentrations be? Here, we consider the case where 

the single drug response curves are known beforehand, but no previous data is available 

from the combination. We consider several designs, including C and D-optimal designs, 

and a factorial design. We evaluate these designs based on the expected variance of the 

synergy score for a large set of in vitro experiments performed at Millennium. Based on 

the results, we were able to identify which design was the most efficient and robust.  
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1. Background 

 
Drug combinations have become an important part of cancer care and antiviral therapy. 

To identify synergistic drug combinations, and to understand the combined behaviour, 

scientists often perform in vitro drug combination studies. In the oncology setting, in 

vitro studies usually involve a cell viability assay applied to a cancer cell line. The assay 

usually involves a microtiter plate, where cells and various amounts of drugs are added to 

each well. The plate is then incubated, after which the cell viability is measured.  

 

In the case where two drugs are considered, various methods have been used to analyze 

the data [1-4]. Some methods involve fitting a response surface model to describe the 

viability as a nonlinear function of the two drug concentrations [5, 6]. The fitted response 

surface can then be summarized by a single number to describe the synergy.  

 

The choice of drug concentrations used in the experiment can affect the quality of the 

results. If the drug concentrations don’t cover a reasonable range, then the response 

surface will be poorly estimated, so the synergy measure will be highly uncertain. In this 

paper, we will propose and evaluate several different designs for drug combination 

studies.  

 

Experimental design for response surface estimation has a rich history in the literature. In 

particular, design methods for nonlinear response surface surfaces have been explored, 

both in a general context [7, 8], and in the context of drug combination studies [9, 10]. In 

the nonlinear setting, the optimal design for finding the response surface parameters 

actually depends on the parameters. If a small scale experiment has been done previously, 

then the parameter estimates from this experiment can be used to design a larger 
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experiment. However, combination studies are often performed without previous 

combination data. In this paper, we consider the case where previous combination data is 

unavailable, but where previous single agent data has been collected.  

 

2. Analyzing Cell Viability Data 
 

Millennium scientists performed a number of combination studies using 384 well 

microtiter plates (Figure 1). To analyze this data, we normalized the viability by scaling 

so that the median of the negative controls was 0 and the median of the positive controls 

was 100. More formally,  
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where Vi is the normalized viability of the i
th
 well, and Ui is the corresponding raw 

viability measurement. After normalization, the controls were discarded.  

 

 
 

Figure 1: A heatmap showing the viability measurements for a drug combination study 

performed at Millennium. Here, yellow corresponds to high viability and blue 

corresponds to low viability.  

 

2.1 Single Drug Experiments 
Some of the experiments only involved single agents. For these cases, we assumed that 

the dose response curve had the form of the Hill equation [11]. Since the data was 

normalized, we assumed that the highest viability (the upper plateau) was 100. Thus, the 

viability was modeled as 
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where V is the normalized viability measurement. Here, Emax is the maximum drug effect, 

I is the inflection point, S is the slope, and C is the drug concentration. We assumed that 

the error values were independent and identically distributed normal random variables. 

We used the nlm() function in the R software package [12] to minimize the sum of the 

squared residuals and estimate the lower plateau, the slope, and the inflection point.  

 

2.2 Combination Experiments 
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To describe the relationship between the normalized viability and the drug 

concentrations, we used a response surface model similar to that of [5], which is an 

extension of the Hill equation. For a given plate, let  
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where E1, E2, E3, E4, I1, I2, I3, S1, S2, S3, and S4 are parameters, CA and CB are the 

respective concentrations of drugs A and B, and V is the normalized viability 

measurement. This model has the property that along any line of constant dose ratio, the 

model has the form of a Hill equation. We assumed that the error values were 

independent and identically distributed normal random variables. We also included two 

constraints, thus yielding a model with 9 degrees of freedom.  

 

We fit the data to our model by minimizing the residual sum of squares using the used the 

nlm() function in R. Next, we developed a measure of synergy that was a function of the 

9 response surface parameters. We refer to this measure as the synergy score.  

 

3. Designing Combination Experiments 
 

For a given number of wells, we wish to choose doses that will minimize the variance of 

the synergy measure. Unfortunately, the best choice depends on the shape of the response 

surface, which we don’t have until we do the experiment. However, if we have past 

single drug data, and we assume that there is no interaction, then we have a guess for the 

parameters. For a model with no interaction, we assume that I3 = 0. We also assume that 

for x = 0.5, the resulting slope and Emax are found by averaging the slope and Emax, 

respectively, for the individual drugs. With these constraints, one can uniquely identify 

parameters for the model.  

 

3.1 A C-Optimal Design 
Figure 2 shows a strategy for finding an optimal study design. Given single agent data, 

one can produce a guess for the response surface parameters. In addition, given the dose 

choices for a proposed design, one can compute the likelihood function and the Fisher 

Information matrix, evaluated at the initial parameter guess. Using the Cramer-Rao lower 

bound [13, 14], the Fisher Information matrix can be used to estimate the variance matrix 

of the parameter estimates with the proposed design. Since the synergy score is simply a 

function of the response surface parameters, the one can use the Delta method [13] to 

estimate the expected variance of the synergy score under the proposed design. Then, one 

can adjust the proposed design to minimize the estimated variance.  

 

The Delta method uses a first order (i.e. linear) approximation to relate the synergy score 

to the response surface parameters. Therefore, this approach minimizes the variance of a 

linear combination of the parameters. In the literature, this is called a C-optimal design 

[7].  
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Figure 2: The process for choosing a design.  

 

3.2 Computational Approach 
The experimental design specifies the concentration for each of the two drugs in each 

microtiter well. Thus, minimizing the estimated variance of the synergy score would 

require a search over a space with dimension equal to twice the number of wells. Finding 

the global optimum in this space would require far too much computational power. 

Therefore, we developed a heuristic approach to this optimization problem.  

 

Start with 6x6 log-spread grid points, search over the 50x50 candidate grid points and 

choose the point which minimizes the variance of the synergy measure estimate. Repeat 

the above search step until we obtain the number of design points needed. Remove the 36 

starting grid points and search another 36 design points over the 50x50 candidate grid 

points. 

 

3.3 Evaluating Designs 
To evaluate our C-optimal design procedure, we obtained data from a set of 100 drug 

combination studies performed at Millennium using a variety of drugs and cancer cell 

lines. The studies were done with 384 well microtiter plates. The doses were arranged in 

a factorial design, with dose ranges manually chosen by the scientists. In addition, we 

obtained single agent data for each drug from previous experiments.  

 

Figure 3 shows our method for evaluating the design. For each of the 100 experiments, 

we found the C-optimal design based on the past single agent data. Next, we took the 

corresponding combination data, estimated the response surface parameters, and used 

these estimates to predict the variance of the synergy measure. We believe this is a 

realistic assessment of the design procedure because it uses real single agent data to 

create the designs and real combination data to evaluate the designs.  
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Figure 3: The process for evaluating the C-optimal design.  

 

3.4 Other Designs 
In addition to the C-optimal design, we considered two other designs, which we call the 

D-optimal design and the Automated Factorial design. The D-optimal design [7] is 

similar to the C-optimal design, except it minimizes the determinate of the estimated 

parameter covariance matrix.  

 

The Automated Factorial design is a factorial design with dose ranges chosen based on 

the past single agent data. From the past single agent data, we estimate the slope and 

inflection point, and we used the following formula to select a dose range.  
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where I is the inflection point, and a, b, and c are constants. The dose levels are evenly 

distributed on the log scale along the selected dose range. Note that the dose range is 

centered around the inflection point, and the width of the range decreases with increasing 

slope. This ensures that the dose range covers the region when the response is changing.  

 

4. Results and Discussion 

 
The results are shown in Table 1. We found that the C-optimal design actually 

underperformed the designs manually created by the scientists. The D-optimal design is 

only slightly better than the manual designs. We believe these optimal designs 

underperform because there is a difference between the parameters used to generate the 

designs and the parameters used to evaluate the designs. The parameters used to generate 

the designs are found using the prior single agent data. This data is from a different batch 

than the combination data, so the parameter values may have shifted. Also, the initial 

parameter guesses assume that there is no drug synergy. Therefore, the initial parameter 

guesses may differ substantially from the parameters estimated from the combination 

data. We believe the C and D-optimal designs are not robust to these differences. 

Furthermore, previous studies have found that C and D-optimal designs can perform 

poorly if there is a high level of uncertainty in the initial parameter guesses [8].  

 

Table 1: Predicted variance of the estimate for the synergy score for the various designs. 

The variance is expressed as a fraction of the variance expected under the manual 

factorial designs.  
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Experiment  C-optimal  D-optimal Automated factorial  

1 0.63 1.00 0.43 

2 1.02 0.38 0.66 

3 1.26 0.25 0.56 

4 1.31 0.52 0.72 

5 2.04 0.06 0.26 

6 2.18 0.60 0.45 

7 0.29 0.55 0.62 

8 0.19 0.94 0.17 

9 2.64 0.73 0.33 

⁞  ⁞ ⁞ ⁞ 

100 0.98 0.45 0.45 

Mean  4.60 0.83 0.49 

 

To confirm our view, we evaluated the C and D-optimal designs using the same 

parameters that were used to generate these designs. The results are shown in Table 2. As 

expected, the C and D-optimal designs perform well in this scenario.  

 

Table 2: Predicted variance of the estimate for the synergy score for the C and D-optimal 

designs. In this case, the designs were evaluated using the same parameters that were 

used to generate the designs. The variance is expressed as a fraction of the variance under 

the manual factorial designs.  

 

Experiment  C-optimal  D-optimal 

1 0.10 0.22 

2 0.12 0.24 

3 0.08 0.20 

4 0.11 0.34 

5 0.04 0.10 

6 0.05 0.15 

7 0.15 0.39 

8 0.02 0.004  

9 0.02 0.07 

⁞  ⁞ ⁞ 

100 0.21 0.45 

Mean  0.112  0.216  

 

 

In Table 1, the Automated Factorial design outperforms the manual factorial designs. The 

variance of the synergy measure is reduced by a factor of 2, which means the number of 

wells could be cut in half if the Automated Factorial design is used.  

 

5. Conclusion 
 

We presented a method to evaluate different designs for drug combination studies. We 

found that the C-optimal and D-optimal designs were not robust to misspecification of 

the response surface parameters. The automated factorial design showed a 2 fold 

reduction in the variance of the synergy measure.  
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