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Abstract
Longitudinal or clustered response data arise in many applications such as biostatistics, epidemi-

ology, and environmental studies. The repeated responses cannot, in general, be assumed to be in-
dependent. Generalized estimating equations (GEE) is a widely used method to estimate marginal
regression parameters for correlated responses. The advantage of the GEE is that the estimates of
the regression parameters are asymptotically unbiased even if the correlation structure is misspec-
ified, although their small sample properties are not known. In this paper, two bias adjusted GEE
estimators of the regression parameters in longitudinal data are investigated when the number of
subjects is small. One is based on bias correction, and the other is based on a bias reduction. Simu-
lations show that both methods do well in reducing bias and have, in general, higher efficiency than
the GEE estimates. Analysis of data involving a small number of subjects also show improvement
in bias, MSE, and standard errors of the estimates by the two bias adjusted methods over the GEE
estimates. However, the bias corrected estimate is preferable over the bias reduced estimate as the
former is computationally simpler.

Key Words: Bias correction, Bias reduction, Generalized estimating equations, Longitudinal data,
Marginal model

1. Introduction

Longitudinal data arise in many epidemiological and bio-statistical practices in which a
number of repeated count/binary responses are observed on a number of individuals (sub-
jects). Longitudinal studies are characterized by repeated measures over a period of time
from each individual. Usually the subjects are assumed to be independent while the repeat-
ed measurements taken on each subject are correlated. The complication of longitudinal
data analysis is partly due to the lack of a rich class of models such as the multivariate gaus-
sian for the joint distribution of the correlated responses (Liang and Zeger, 1986 and Zeger
and Liang, 1986). Liang and Zeger (1986) introduced the generalized estimating equations
(GEE) approach for analyzing longitudinal data in which a working correlation matrix for
the responses of each individual is used. The GEE approach requires specification of only
the first two moments of a subject’s responses rather than the full specification of the joint
distribution. The advantage of the GEE is that the estimates of the regression parameters
are asymptotically unbiased even if the correlation structure is misspecified. However, the
small sample properties of the GEE estimates are not known (Sharples and Breslow, 1992).

The purpose of this paper is to obtain estimates of the regression parameters which
will have better bias and efficiency properties in comparison to the GEE estimates when
the number of subjects is small. The maximum likelihood (ML) estimators are, in general,
consistent. However, they are not in general unbiased. Cox and Snell (1968) provided
general results for the first-order correction of bias of the ML estimators of parameters
under any distribution. Cordeiro and Klein (1994) further simplified the results of Cox
and Snell (1968). Firth (1993) showed that the order 1/n bias of the ML estimator can be
removed by introducing an appropriate bias term into the likelihood score function. The
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bias correction method of Cox and Snell (1968) is corrective in the sense that it adds (or
substracts) a correction to the ordinary ML estimators and that of Firth (1993) is preventive
in the sense that it solves a modified likelihood score equation. In this paper, we obtain bias
corrected estimates (Cox and Snell, 1968) and bias reduced estimates (Firth, 1993) of the
regression parameters for longitudinal data by treating the generalized estimating functions
as if they were likelihood score functions.

The bias corrected and the bias-reduced estimates are derived in Section 2. Applications
to longitudinal binary and Poisson data are shown in Section 3. A simulation study is
conducted in Section 4. Three examples are given in Section 5 and a discussion follows in
Section 6.

2. Estimates of the Regression Parameters Based on Bias-correction and
Bias-reduction for Longitudinal Data

Let yn = (yn1, . . . , ynd)
T be the vector of responses with a d × p design matrix Xn =

(xn1, . . . ,xnd)
T for the nth subject, n = 1, . . . , N . Assume that the N subjects are

independent while the repeated measurements ynj taken on each subject are correlated,
j = 1, . . . , d. Define µn = E(yn|Xn) = (µn1, . . . , µnd)

T to be the expectation of yn

conditional on Xn and suppose µn = F (Xnβ), where β is a p × 1 vector of regression
parameters of interest and F−1 is the link function. Assume that the variance of ynj is
given by ϕv(µnj), where v is the variance function and ϕ is the overdispersion parameter.
Note that, for binary data, F is the standard normal cumulative distribution for probit link
and a standard logistic cumulative distribution for logit link. For Poisson data with log link,
F is the exponential function.

As is well known, the GEE method of Liang and Zeger (1986) for repeated measures
uses a common working correlation matrix for the longitudinal responses of each subject.
Using standard notations, let R(α) be a working correlation matrix completely specified
by the parameter vector α. Then, ϕW n = ϕA

1/2
n R(α)A

1/2
n is the corresponding working

covariance matrix, where An(β) = diag{v(µnj)}, j = 1, . . . , d, n = 1, . . . , N . For given
consistent estimates of ϕ and α, the GEE estimate of β, denoted by β̂, is obtained by
solving the generalized estimating equations

N∑
n=1

(yn − µn)
TW−1

n Dn = 0, (1)

where Dn = ∂µn
∂β = ∆nXn, ∆n = diag(f(xT

n1β), . . . , f(x
T
ndβ)) with f = F

′
, n =

1, · · · , N .
The left hand side of equation (1), which can be written as

U(β;α, ϕ) =
N∑

n=1

(yn − µn)
TW−1

n

∂µn

∂β
, (2)

is the generalized estimating function for β given α and ϕ. Let U(β;α, ϕ) = (U1, U2, . . . , Up).
For obtaining bias-corrected (Cox and Snell, 1968) and bias-reduced (Firth, 1993) GEE es-
timates, we treat Ui as if it were a likelihood score function for βi, i = 1, . . . , p.

Now, define κij = E(∂Ui/∂βj) for i, j = 1, . . . , p. Further, define κijl = E(∂2Ui/∂βj∂βl)

and κ
(l)
ij = ∂κij/∂βl for i, j, l = 1, . . . , p. Derivation of the quantities κij , κ

(l)
ij , and κijl

are given in the Appendix A. Then, the Fisher information matrix analogue of order p for
β is I = {−κij}. Now, let I−1 = {κij} be the inverse of I. Then, following Cordeiro and
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Klein (1994) the bias of β̂s can be expressed as

bs(β) =

p∑
i=1

κsi
p∑

j,l=1

[
κ
(l)
ij − 1

2
κijl

]
κjl, s = 1, . . . , p (3)

and the bias corrected estimate β̃s of βs is given by β̃s = β̂s− b(β̂s). The estimates β̃s will
also be referred to as GEEBc estimates.

Following the “preventive” method of Firth (1993), by introducing a bias term into the
score function U(β;α, ϕ), the modified score function is

U∗(β;α, ϕ) = U(β;α, ϕ)− Ib(β),

where b(β) = (b1(β), . . . , bp(β))T.
The bias reduced GEE estimate, denoted by β∗, of β using the method of Firth (1993)

is obtained by solving the modified score equation

U∗(β;α, ϕ) = 0. (4)

An iterative method of solving the above equation is described in Appendix B. The esti-
mates β∗ will also be referred to as BcGEE estimates.

3. Calculation of Bias in Equation (3) for Binary and Count data

In this section, we discuss the application of the formula given in equation (3) for the
calculation of bias of the estimates of the regression parameters for binary and count data.

3.1 Binary data

For the vector of binary responses yi, the variance function is given by v(µ) = µ(1− µ).
We consider the probit and logit link functions. For the probit link, F = Φ is the cumulative
distribution function of the standard normal distribution. Thus, f = F

′
= ϕ is the density

function of the standard normal distribution. For the logit link, F (x) = exp(x)
1+exp(x) is the

standard logistic cumulative distribution function and f(x) = F
′
(x) = exp(x)

(1+exp(x))2
.

Let Id and Ip be a d-dimensional and p-dimensional identity matrix, respectively, and
let Kdp be a dp× dp commutation matrix. Then, the quantities required for the calculation
of the bias bs(β) are given by

I = {−κij} =

N∑
n=1

(∆nXn)
TW−1

n ∆nXn, (5)

(
{κ(1)ij }, {κ(2)ij }, · · · , {κ(p)ij }

)T
= −

N∑
n=1

(XT
n ⊗XT

n )
[
(∆nW

−1
n )⊗ Id

+ Id ⊗ (∆nW
−1
n )

] ∂∆n

∂µn

(6)

and

({κij1}, {κij2}, · · · , {κijp})T

=−
N∑

n=1

{
(XT

n ⊗XT
n )
[
(∆nW

−1
n )⊗ Id + Id ⊗ (∆nW

−1
n )

]∂∆n

∂µn

+

[
(
∂∆n

∂µn

∆nXn)
T ⊗ Ip

]
(Id ⊗Kdp)(vec(XT

n )⊗ Id) ·W−1
n

}
∆nXn,

(7)
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where ∆n = diag{ϕ(xT
n1β), . . . , ϕ(x

T
ndβ)} and ∂∆n

∂µn
is a d2×d dimensional sparse matrix

with non-zero quantities ϕ
′
(Φ−1(µnj))(Φ

−1)
′
(µnj) in the [(j − 1)d + j, j] term for the

probit link, and ∆n = diag{ exp(xT
n1β)

(1+exp(xT
n1β))

2 , . . . ,
exp(xT

ndβ)

(1+exp(xT
ndβ))

2 } and ∂∆n
∂µn

is a d2 × d

dimensional sparse matrix with non-zero quantities (1− 2µnj) in the [(j− 1)d+ j, j] term
for the logit link, j = 1, . . . , d, n = 1, . . . , N .

3.2 Count data

For the vector of Poisson responses yn, n = 1, . . . , N , the variance function is given by
v(µ) = µ. Then, the expressions of the quantities required for the bias bs(β) in equation
(3) for count data are the same as (5), (6), and (7) with the exceptions of ∆n and ∂∆n

∂µn
which

are different. If we use a log link function, we have f(x) = F
′
(x) = F (x) = exp(x),

∆n = diag{exp(xT
n1β), . . . , exp(x

T
ndβ)}, and ∂∆n

∂µn
is a d2 × d dimensional sparse matrix

with 1 in the [(j − 1)d+ j, j] term, j = 1, . . . , d, n = 1, . . . , N .

4. Simulations

4.1 Binary data

We first study properties of the regression parameters in a marginal model for correlated
binary data with p = 3, xi1j and xi2j , j = 1, . . . , d, generated as uniform random variables.
That is, the design matrix for subject i is of the form

Xi =

 1 · · · 1
xi11 · · · xi1d
xi21 · · · xi2d

T

.

A factor that could affect the magnitude of the bias of the GEE estimator is whether the co-
variate is a between or a within cluster(subject) variable. To see this, we generated a within
cluster(subject) covariate xi1 with xi1j uniform random variables in the interval [−2, 2]
and a cluster(subject) level covariate xi2 with xi2j identical uniform random variables in
the interval [−2, 2], j = 1, . . . , d, i = 1, . . . , N .

We consider β = (β0, β1, β2) with β0 = 0.0, β1 = 0.5, β2 = 1.0, and a logit link
function. Given a correlation matrix Ω(γ), where γ is the correlation parameter, the cor-
related binary responses yi = (yi1, . . . , yid)

T are generated using the method by Qaqish
(2003) such that yi has the marginal means µij = P (yij = 1|Xi) = exp(β0 + β1xi1j +
β2xi2j)/ (1 + exp(β0 + β1xi1j + β2xi2j)) and correlation matrix Ω(γ), j = 1, . . . , d.

Simulations were conducted with an exchangeable correlation structure Ω(γ) with val-
ues of γ = 0(0.1), . . ., 0.8 and with the AR(1) correlation structure Ω(γ) with values of
γ = −0.8(0.1), . . . , 0.8. The largest correlation strength 0.8 or −0.8 is chosen to avoid
data generation difficulties. The numbers of subjects taken are N = 15, 20, 30, and 50,
each subject having d = 4 observations. For each N , we simulated 5000 samples.

We calculated bias of the GEE, GEEBc, and BcGEE estimates β̂, β̃, and β∗ and ef-
ficiency of the estimates β̃ and β∗. Bias, for example, of β̂1 was calculated as bias(β̂1)
=
∑5000

i=1 (β̂1i − β1)/5000 and efficiency, for example, of β̃1 was calculated as RE(β̃1) =

MSE(β̂1)/MSE(β̃1), where, for example, MSE(β̂1) =
∑5000

i=1 (β̂1i − β1)
2/5000.

We first discuss the bias results. Bias properties of the estimates of β1 and β2 are
very similar for all three methods and for both the correlation structures. So, we present
bias results for the estimates of β1 and β2 for the exchangeable correlation structure only.
The results for bias of the estimates of β1 are summarized in Figure 1, and those for β2
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Figure 1: Biases of GEE, GEEBc, and BcGEE estimates of β1 with true exchangeable
correlations.

are summarized in Figure 2. By comparing the two figures, we see that the bias of the
GEE estimates of the between cluster regression parameter β2 is much larger than that of
the GEE estimates of the within cluster regression parameter β1, whereas the estimates
by the two bias corrected methods seem to remain little affected. Furthermore, from the
figures we see that GEE estimates have the largest biases for all values of the correlation
considered. However, the biases of the estimates of GEEBc and BcGEE seem to be similar.
The difference between the biases of the GEE estimates of β1 and β2 and those of GEEBc
and BcGEE estimates diminish as the number of subjects increases.

We now compare efficiency of the GEEBc and BcGEE estimates β̃ and β∗ in relation
to the GEE estimate β̂. From the simulations, again, the MSE of the GEE estimates of the
between cluster regression parameter is much larger than that of the within cluster regres-
sion parameter. The comparative efficiency results of the GEEBc and BcGEE estimates are
similar for both the parameters β1 and β2, so we present results for the estimates of β1 only.
These are summarized in Figure 3 for the exchangeable correlation structure.

From the figure, we see that the efficiencies of β̃1 and β∗
1 are very similar. In general,

both estimates are more efficient than the GEE estimates β̂1 for a small number of subjects
(N = 15, N = 20). As the number of subjects increases (N = 50), relative efficiencies of

Biometrics Section – JSM 2012

243



0.0 0.2 0.4 0.6 0.8

−
0.

1
0.

0
0.

1
0.

2 GEE
GEEBc
BcGEE

N=15

True EXC correlations

bi
as

0.0 0.2 0.4 0.6 0.8
−

0.
1

0.
0

0.
1

0.
2 GEE

GEEBc
BcGEE

N=20

True EXC correlations

bi
as

0.0 0.2 0.4 0.6 0.8

−
0.

1
0.

0
0.

1
0.

2 GEE
GEEBc
BcGEE

N=30

True EXC correlations

bi
as

0.0 0.2 0.4 0.6 0.8

−
0.

1
0.

0
0.

1
0.

2 GEE
GEEBc
BcGEE

N=50

True EXC correlations

bi
as

Figure 2: Biases of GEE, GEEBc, and BcGEE estimates of β2 with true exchangeable
correlations.
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Figure 3: Relative efficiency of GEEBc and BcGEE estimates of β1 with true exchangeable
correlations
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Figure 4: Biases of estimates of β1 (top panel) and β2 (bottom panel) by GEE, GEEBc,
and BcGEE estimation

β̃1 and β∗
1 become closer to 1. This indicates the benefit of the bias correction procedure

for small clusters situations. Results for the AR(1) correlation structure, which are not
presented in the paper, are similar to those for the exchangeable correlation structure, except
in some cases in which β̃ is slightly more efficient.

Another concern is if the covariate type affects the bias of the estimates of the regres-
sion parameters. To see this, we extended the simulation study. We generated continuous
covariate xi1 with xi1j uniform random variables in the interval [−2, 2] and discrete covari-
ate xi2 with xi2j binary random variables with success probabilities varying between 0.1
and 0.9, j = 1, . . . , d, i = 1, . . . , N . Bias results of the simulation are shown in Figure 4.
The top panel shows bias of β̂1, β̃1, and β∗

1 and the bottom panel shows bias of β̂2, β̃2, and
β∗
2 . It can be seen that the bias of the GEE estimates of the regression parameter for the

binary covariates is a little larger than that of the regression parameter for the continuous
covariates. Whereas, these estimates by the two bias corrected methods seem to be little
affected.

Note that all the bias and efficiency results presented here are based on the logit link
function to be consistent with the logit link used in the analysis of the data in Section 5.
However, simulations using the probit link function were also conducted. The results are
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not given here as the comparative performance of the estimates by all three methods were
similar.

4.2 Poisson data

We now study the performance of GEE, GEEBc, and BcGEE estimates β̂1, β̃1, and β∗
1 for

longitudinal Poisson data. For the generation of longitudinal Poisson data, we consider
N subjects, each with d = 4 repeated responses such that µij = exp(β0 + β1xij) and
var(yij) = µij , where β0 = 0, β1 = 0.5, xij is generated from a uniform distribution
on [j − 1, j], j = 1, . . . , 4, i = 1, . . . , N . Exchangeable and AR(1) Poisson data yij are
generated using the method of Yahav and Shmueli (2012).

For large N , bias and efficiency properties of GEE, GEEBc, and BcGEE estimates
β̂1, β̃1 and β∗

1 are very similar. Also, for the data generated from the AR(1) correlation
structure, these properties of the three estimates do not differ much, even for a small N . As
N increases, in general, biases of all three estimates become closer to 0. Also, efficiencies
of β̃1 and β∗

1 in relation to β̂1 become closer to 1. That is, all three estimates become
equally efficient. These results are not presented here. For a small N and when data are
generated from the exchangeable correlation structure, the GEE estimates β̂1 show some
bias, whereas the bias of the other two becomes closer to 0 (see Figure 5). In this case,
the efficiencies of β̃1 and β∗

1 in relation to β̂1 are almost identical and increase as the
true exchangeable correlation increases. It then shows that both these estimates are more
efficient than the GEE estimates.

5. Examples

Example 1: We consider data of a clinical trial on cerebrovascular deficiency with a crossover
design. The data set is from Diggle, Liang, and Zeger (1994). The purpose of this crossover
trial was to compare an active drug (A) and a placebo (B). A total of 67 patients were en-
rolled into the clinical trial of which 34 patients received the active drug (A) followed by
the placebo (B), and another 33 patients were treated in the reverse order. The response
variable is defined as 0 for an abnormal and 1 for a normal electrocardiogram reading.
Conceptually, the 2× 2 crossover trial can be viewed as a longitudinal study with 2 obser-
vations for each patient. The two major covariates, period (xi1) and treatment (xi2), are
both time-dependent. They are coded as

xi1 =

{
1, period 2
0, period 1,

and

xi2 =

{
1, active drug (A)
0, placebo (B),

respectively. The data is summarized in Table 1. An analysis of a full regression model by

Table 1: Data from a crossover trial on cerebrovascular deficiency (Diggle, Liang, and Zeger,1994).
Responses Period

Group (1,1) (0,1) (1,0) (0,0) Total 1 2
AB 22 0 6 6 34 28 22
BA 18 4 2 9 33 20 22

Diggle, Liang, and Zeger (1994) shows little support for a treatment-by-period interaction.
Therefore, we consider the logit regression model

logit Pr(Yij = 1) = β0 + β1xi1 + β2xi2. (8)
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Figure 5: Biases and relative efficiencies of GEE, GEEBc, and BcGEE estimate of β1 for
exchangeable Poisson data
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The GEE, GEEBc, and BcGEE estimates of the regression parameters β0, β1, and β2 with
their standard errors in parenthesis are given in Table 2.

The bias-correction of the robust covariance estimator was discussed by Kauermann
and Carroll (2001), and Mancl and DeRouen (2001). When the number of subjects is not
too small (≥ 10), the bias-correction method by Mancl and DeRouen generally performs
better (Preisser et al., 2007). So, the standard errors of the estimates are obtained by using
the bias-corrected method by Mancl and DeRouen (2001).

Table 2: GEE, GEEBc, and BcGEE estimates of the regression parameters of Model (8).
β0 β1 β2

GEE 0.6659(0.2939) −0.2950(0.2382) 0.5689(0.2398)
GEEBc 0.6527(0.2924) −0.2883(0.2367) 0.5557(0.2380)
BcGEE 0.6527(0.2924) −0.2876(0.2367) 0.5556(0.2380)

As in the simulation study, the GEEBc and BcGEE estimates are almost identical.
There seems to be some difference between the GEE estimates and the two bias corrected
GEE estimates, although the difference is minimal. This is not surprising as the sample
size of 67 is quite large.

Example 2: To check what happens in small sample size situations, we investigated
many simple random samples of the data in Example 1 of size 15 (7: 8) of which one
sample is given in Table 3. For this sample, the GEE, GEEBc, and BcGEE estimates of the
regression parameters β0, β1, and β2 with their standard errors in parenthesis are given in
Table 4.

Table 3: A subset of the 2× 2 crossover trial data from Diggle, Liang, and Zeger (1994).
Responses Period

Group (1,1) (0,1) (1,0) (0,0) Total 1 2
AB 2 0 3 2 7 5 2
BA 2 2 1 3 8 3 4

Table 4: GEE, GEEBc, and BcGEE estimates of the regression parameters of Model (8) for the
subset in Table 3.

β0 β1 β2
GEE −0.4006(0.6866) −0.6655(0.7311) 1.1718(0.7316)

GEEBc −0.3623(0.6776) −0.5956(0.7158) 1.0554(0.7161)
BcGEE −0.3656(0.6784) −0.6022(0.7171) 1.0660(0.7173)

As can be seen, again, there is not much difference between the GEEBc and BcGEE
estimates. However, significant difference between the GEE estimates and those by the
other two methods is observed. A similar conclusion was observed for most of the other
samples investigated.

Example 3: We then wanted to see the average performance of the estimates of the
regression parameters by the three methods in small samples for data similar to the clinical
trials data in Example 1. For this, we conducted a small simulation study. In the simulation,
we used the same logistic model as in Example 1 and generated data using the estimates
of the regression parameters obtained from the full data of size 67 as the true parameter
values. That is, the true values of the regression parameters taken were β0 = 0.6659,
β1 = −0.2950, and β2 = 0.5689.
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Further, for generating correlated binary responses, we used the method of Qaqish
(2003) with 0.3 as the true correlation parameter. This value of the correlation parame-
ter is close to the GEE estimates of 0.327 of the correlation parameter from the full data.
Moreover, the number of patients in each group is restricted to between 6 and 9 to balance
the two treatment groups. We generated 5000 simple random samples of size 15, and for
each sample the parameters were estimated by the three methods. The bias, MSE, and s-
tandard errors of the estimates of the parameters β1 and β2 by the three methods are given
in Table 5.

Table 5: Bias and efficiency of the GEE, GEEBc, and BcGEE estimates of β0, β1, and β2; Data
generated using model (8); based on 5,000 replications.

Bias MSE Average Standard Error
β0 β1 β2 β0 β1 β2 β0 β1 β2

GEE 0.0525 -0.0313 0.0682 0.4960 0.6159 0.6052 0.7466 0.8046 0.8114
GEEBc -0.0404 0.0147 -0.0242 0.3570 0.4432 0.4255 0.6984 0.7428 0.7432
BcGEE -0.0278 0.0100 -0.0126 0.3751 0.4623 0.4466 0.7042 0.7509 0.7521

From this simulation study also we see that there is not much difference between the
GEEBc and BcGEE estimates. However, in terms of all three measures bias, MSE, and
standard errors of the estimates both the GEEBc and the BcGEE estimates substantially
outperform the GEE estimates.

6. Discussion

In this paper, we obtain two bias corrected GEE estimates of the regression parameters in
longitudinal data. One of these, the GEEBc estimate β̃, is based on correcting the bias of the
GEE estimates following Cox and Snell (1968). The other, the BcGEE estimate β∗, is based
on correcting the GEE following a method by Firth (1993). The bias correction method of
Cox and Snell (1968) is corrective in the sense that it adjusts the ordinary ML estimators,
and that of Firth (1993) is preventive in the sense that it solves a modified likelihood score
equation. The performance in terms of bias and efficiency of both of these estimates are
very similar, and both show superior performance in terms of bias and efficiency compared
to the GEE estimates for small samples. These findings were confirmed by an example that
was analyzed, and by subsequent further investigations carried out for small samples.

The bias corrected estimates GEEBc are simpler to obtain than the bias reduced esti-
mates BcGEE estimates. This is Because the former needs the GEE estimates which can
be obtained using a standard software. Given these estimates, calculation of the biases of
the estimates using the formula (2.3) poses no difficulty as they are non-iterative. So, we
recommend the GEEBc estimates.
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A. Appendix

A.1 Derivation of κij , κ
(l)
ij , and κijl

As mentioned earlier, we treat the generalized estimating function (2) as if it were a likeli-
hood score function.

By the decoupling method of Crowder (2001) where the working covariance matrix is
regarded as a constant matrix with respect to the regression parameters β, the first derivative
by using the chain rule and the product rule in matrix calculus (Magnus and Neudecker,
1988) of U(β;α, ϕ) with respect to β is

∂U

∂β
=

N∑
n=1

[
(XT

n ⊗ yT
nW

−1
n )

∂∆n

∂µn

− (∆nXn)
TW−1

n − (XT
n ⊗ µT

nW
−1
n )

∂∆n

∂µn

]
∆nXn,

where ∂∆n
∂µn

is a d2×d dimensional sparse matrix with non-zero quantities f
′
(F−1(µnj))(F

−1)
′
(µnj)

in the [(j − 1)d+ j, j] term, j = 1, . . . , d, n = 1, . . . , N .
It is easy to see that

I = {−κij} = −E

(
∂U(β;α, ϕ)

∂β

)
=

N∑
n=1

(∆nXn)
TW−1

n ∆nXn (A.1)

and (
{κ(1)ij }, {κ(2)ij }, · · · , {κ(p)ij }

)T
=

∂
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(
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[
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] ∂∆n

∂µn

,

(A.2)

where Id is a d-dimensional identity matrix. Further, the second derivative of U by using
the chain rule, the product rule, and the Kronecker product rule in matrix calculus with
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respect to β is
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where Kdp is a dp×dp commutation matrix and ∂2∆n

∂µnµ
T
n

is a d3×d dimensional sparse ma-

trix with non-zero quantities f
′′
(F−1(µnj))

[
(F−1)

′
(µnj)

]2
+f

′
(F−1(µnj))(F

−1)
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in the [d(d+1)(j − 1)+ j, j] term, j = 1, . . . , d, n = 1, . . . , N . Then, after a few steps of
algebra, we obtain
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(A.3)

A.2 An iterative method for obtaining the estimates β∗

Following the GEE method, an iterative procedure for obtaining β∗ can be described as in
what follows.

Step 1: Choose an initial estimate β(0) of β. For example, β(0) is obtained by the GEE
method with an independence working correlation matrix.

Step 2: Given β∗ (at the first iteration β∗ = β(0)), the moment estimate of the overdis-
persion parameter is given by

ϕ∗ =
1

Nd

N∑
n=1

Z∗
n
TZ∗

n
T , where Z∗

n
T = A−1/2

n (β∗)(yn − µn(β
∗)).

Step 3: Given β∗ and ϕ∗ obtained in Steps 1 and 2, calculate the moment estimates
α∗ of α of the working correlation matrix R(α) (see Liang and Zeger, 1986 and Wang
and Carey, 2003). For example, if the working correlation matrix is exchangeable, then the
exchangeable correlation parameter α is estimated by

α∗ =

∑N
n=1

∑
j ̸=k y

∗
njy

∗
nk

ϕ∗(d− 1)
∑N

n=1
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2
, where y∗nj = (ynj − µnj(β

∗))/
√

v(µnj(β
∗))
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(see Wang and Carey, 2003). If the working correlation matrix is AR(1), then the AR(1)
correlation parameter α is estimated by

α∗ =

∑N
n=1

∑d
j=2 y

∗
njy

∗
n,j−1∑N

n=1{
∑d−1

j=2 y
∗
nj

2 + (y∗n1
2 + y∗nd

2)/2}
, where y∗nj = (ynj−µnj(β

∗))/
√

v(µnj(β
∗))

(see Wang and Carey, 2003).
Step 4: Given the working correlation matrix R(α∗) obtained in Step 3, the estimate of

β is updated according to the modified Fisher scoring formula

β(l+1) = β(l)+

{
N∑

n=1

DT
nW

−1
n Dn

}−1 ∣∣∣
β=β(l)

{
N∑

n=1

DT
nW

−1
n (yn − µn(β))− Ib(β)

}∣∣∣
β=β(l)

,

where Dn = ∂µn/∂β and Wn = An(β)R(α∗)An(β).
Step 5: Iterate between steps 2 to 4 until a desired convergence criteria (for example,

max|β(l+1) − β(l)| < 0.001) is satisfied. At convergence, the estimate of β is denoted by
β∗ and the final estimates of α and ϕ are given by α∗ and ϕ∗ used in the last step of the
iteration.
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