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Abstract 
Competing Risks Models have a various field of application in medical and public health 
studies. A challenging clue for applying cause-specific survival models yield on the prob-
lem of missing and misclassification in cause of death.  
The masked cause of death is related to incomplete or only partial identifiable informa-
tion of death certificates. Different Bayesian approaches e.g. the mixture cure model are 
proposed to account for that problem. Another question is related to adequate estimates 
for long-term survival in respect to the limitation of lifetime among all risks. As a new 
parametric distribution the long-term exponential distribution (LEG) introduced by Ro-
man et al. 2012 can be considered. The main purpose of this work is to compare the LEG 
with alternative parametric versions like Weibull distribution, or the simple Exponential 
distribution for long-term survival estimates. Data analysis will be realized with Cancer 
Register Data (SEER) and R Statistical Software. As on remarkable conclusion one 
would expect the best fitting of the LEG for the long-term survival regarding to Weibull 
and Exponential distribution. 
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1. Background 
 

Many different sophisticated statistical approaches have been applied for Competing Risk 
data most in last 20 years (i.e. Gasbarra and Karia, 2000, Salinas-Tores et al. 2002, Craiu 
and Duchesne, 2004 or Pintilie, 2006). Every single approach has preluded some metho-
dological advances and also maintains initial drawbacks in case of masking causes and 
which could not being exactly answered until right now. In terms of cause-specific  
survival each subject being exposed to many competing risks, but only one will be caused 
the failure. 
A masking cause situation turns out if the cause of the event for some of units  
or individuals not exactly identified or recorded (Flehinger et al. 2002 ,  
Craiu and Lee, 2005, Lu and Liang, 2008 Sen et al. 2010, Roman et al. 2012).   
For partial masking event the cause is narrowed down but not exactly  
identified (Basu et al. 2003). Also the reasons for misclassification are manifold.  
The information needed for attributing the cause of failure may be not collected, or the 
cause of diseases for  some patients may be difficult  to determine. 
Two common situations should exemplify the problems concerning the   
 misclassification problem.  
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First aetiological problems for specific diseases or not exactly clarified determination  
for disease-specific symptoms could result in misclassification. 
As an example, cardioembolic stroke (Leary and Caplan, 2008, Abro and Alio, 2010)     
occurs when the heart pumps unwanted materials into the brain circulation, resulting in  
the occlusion of a brain blood vessel and damage to the brain tissue. 
Cardioembolic strokes are diagnosed in 3-8% stroke patients, but in various current 
stroke registries, approximately 10-20% with CS have not maximal symptoms at the 
onset of their stroke (Leary and Caplan, 2008). In that situation stroke cases only  
fulfilling a few symptoms will be often excluded from the stroke classification system  
or will be often set to unknown causes. This not even rare process will be often justify  
or yield with arguments for simplifying diagnostic criteria, but it will not provide the  
exact numbers. 
Second misclassification will be also proven by stage migration in case of the  
improved  detection of illness leading to movement of people from the set of healthy  
people to the  set of unhealthy people known as Will-Rogers phenomena (Feinstein et  
al. 1985).   For different types of cancer specifically for breast cancer changes in the  
interpretation  of classification schemes can alter the apparent distribution of cancer  
stage or grade in  the absence of a true biologic change (Albertsen et al. 2005). 
To overcome that specific problems many different approach were applied to account  
for.  
 
Multiple imputations are widely used for the analysis of  incomplete data or uncertainty   
in reliability for partial information. As an option MI are also likely used for modelling  
competing risk with missing cause of failure.  (Lu and Tsaitis, 2001, Bakoyannis et al. 
2010, Lee at al. 2011). Excepting all the limitations of that procedures MI are  
appropriated if the assumed baseline functions are not proportional and the considered  
missing causes can be treated as missing at random. Otherwise for high-morbid cases or  
multiple-specific mortality risks e.g. in elderly population the assumption for missing at  
random should be beyond the reality. 
Second-stage analysis (Flehinger et al. 2002) uses the information from the second   
autopsy in case of missing information from the first one to provide the identification of   
the cause being responsible for the failure. Reliability will be hit by assuming  
independence between the probabilities of choosing the definite identification for the  
masked case at second stage and compared to the observed information of first stage. 
In order that the data requirements need compelling qualitative information for the   
cause of failure or cause of death  often only can be determine by an expert or good  
trained pathologist.  
These examples should illustrate the advances of modeling competing risks in case of  
masked causes.  Mixture long-term survival models are sophisticated to account for  
that specific problem, but also their methodological limitations are still on  
discussion. 
For simplification these models consider one specific clue. If the information of  
the responsible component failure is missing, only a minimum of lifetime among all  
risks can observed, because a part of the population is not susceptible to the event of  
interest.  
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2. Methods 
 
2.1 Mixture Long-term Survival Model and LEG-distribution 
 
Assuming units of individuals may be not susceptible to an certain event of interest, it’s 
possible to apply a two components mixture model (Maller and Zhou, 1996, Roman et al. 
2012), in the sense that one component will representing the survival time or failure of 
susceptible individuals (in risk individuals-IR), then the other component will represent-
ing  the not susceptible individuals to the event (out of risk individuals – OR), under the 
condition of infinite survival times for this group.  
The model formulation can be described as following.  
Let 𝑌 be a random variable representing the time until the event of interest is likely to 
occur. For the considered population there exists a probability of cure 𝑝 , the population 
survival can be formulated by following Maller and Zhou (1996),  
𝑆(𝑦) = 𝑝𝑆𝑂𝑅(𝑦) + (1 − 𝑝)𝑆𝐼𝑅(𝑦) where  𝑆𝑂𝑅(𝑦)  and 𝑆𝐼𝑅(𝑦) are survival function of the 
individuals OR and IR.  
The event of interest shall not occur in the group OR, the failure times are infinite, so  
 𝑆𝑂𝑅(𝑦) = 𝑃(𝑌 > 𝑦|𝑂𝑅) = 1, ∀𝑦 ≥ 0. Then 𝑆(𝑦) can be rewritten as,  
 
𝑆(𝑦) = 𝑝 + (1 − 𝑝)𝑆𝐼𝑅(𝑦)                                                                                             (1) 

 
All susceptible individuals IR shall present the event of interesting at the same time, that 
is lim𝑦→∞ 𝑆𝐼𝑅 = 0, then for the not susceptible individuals the event of interesting should 
not occur with  lim𝑦→∞ 𝑆𝑂𝑅 = 𝑝. The survival function is not conditional and correspond 
to the individual proportion OR. Consequently one should follow the latent competing 
risk scenario, because the event of interest is also caused by an unknown competing 
cause of failure (Louzada-Neto, 1999, Roman et al. 2012). 
For the unobserved number of causes of the event 𝑀 the probability mass function is 
𝑃(𝑀 = 𝑚)                                                                                                                        (2) 
 
where 𝑚 = 1,2, … ,𝑀, with 𝑀 on in infinite range and 𝑇𝑚,𝑚 = 1, … ,𝑀as the time for the 
𝑗𝑡ℎ cause to produce the event of interest. The 𝑇𝑗 are independent but conditional on 𝑀 
and identically distributed with the survival function 𝑆0(𝑡). 𝑌 is a random variable given 
by  𝑌 = min �𝑇1,𝑇2,…,𝑇𝑀�. 
The survival function of susceptible individuals IR is given by  
 
𝑆𝐼𝑅(𝑦) = ∑ 𝑆0(𝑦)𝑚 𝑃[𝑀 = 𝑚]∞

𝑚=1                                                                                   (3) 
 
In Adamidis and Loukas (1998), 𝑀 is geometrically distributed and 𝑇 exponentially dis-
tributed, then 𝑆𝐼𝑅(𝑦)  the survival function of an EG distributed random variable is de-
finded as 
 
𝑆𝐼𝑅(𝑦) = (1−𝜃)𝑒−𝜆𝑦

1−𝜃𝑒−𝜆𝑦                                                                                                             (4) 
 
Finally the survival function of an LEG distributed nonnegative random variable can be 
considered by the definition given in (1) and (4) 
 

𝑆(𝑦) = 𝑝+(1−𝜃−𝑝)𝑒−𝜆𝑦

1−𝜃𝑒−𝜆𝑦                                                                                                       (5) 
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where, 𝑦 > 0, 𝜆 > 0, 𝛼 > 0, 0 < 𝜃 < 1,  and 0 < 𝑝 < 1.   
 
Its pdf is considered as 𝑓(𝑦) =  −𝑑𝑆(𝑦)/𝑑𝑦  and is given by 
 

𝑓(𝑦) = 𝜆𝑒−𝜆𝑦(1−𝜃−𝑝+𝑝𝜃)

�1−𝜃𝑒−𝜆𝑦�2
,                                                                                                (6) 

 
where, 𝜆 is scale parameter, 𝜃 is shape parameter and 𝑝 is the long-term parameter 
 
2.2 Computation 
 
Fitting of the LEG for the Mixture long-term Survival model will be computed with R 
software package ‘optimx’ as a replacement and extension of the optim() function, which 
was approved by Nash and Varadhan, 2012. With an identifiable optimization wrapper 
function the general purpose is to estimate the best existing optim()function.  The optim() 
procedure allows Nelder-Mead, quasi-Newton and conjugate-gradient algorithm as well 
as box-constrained optimization via L-BFGS-B.  
Nash and Varadhan (2011, 2012) also note that optimx is only  working well for one-
dimensional minimization, so the argument optimize with constrOptim or spg should be 
also considered for computation. 
The program code for Nelder-Mead, BFGS and CG bases orginally on Pascal code Nash 
(1990), that is also available. 
The L-BFGS-B method based on Fortran code by Zhu, Byrd, Lu-Chen and Nocedal, as-
sociated to Netlib (file ‘opt/lbfgs\_bcm.shar’ another version is in ‘toms/778’). 
 
Usage 
optimx(par, fn, gr=NULL, hess=NULL, lower=-Inf, upper=Inf, 
method=c("Nelder-Mead","BFGS"), itnmax=NULL, hessian=FALSE, 
control=list(), 
...) 
 
For further detail information, see aslo Nash and Varadhan, 2012 
 
 
2.3 Simulation Data 
 
The mixture long-term survival approach will be applied for Breast Cancer Data provided 
by the SEER Cancer Statistic Data Base National Cancer Institute, DCCPS, Surveillance 
Research Program, and Cancer Statistics Branch was released in April 2012.  Information 
on the incidence by race, gender and age for different period of time are available.  
We use cause-specific mortality data including all cancer. In period of 1992-The SEER 
public use dataset on survival of breast cancer patients from 1992-2009 includes 
(n=69,990 in Situ). 
The general purpose is to study which distribution will be providing the best performance 
and fitness to the SEER Breast Cancer Data.  In that way the proposed LEG distribution 
will be compared with the long-term Exponential (LE) (the particular case of LEG) and 
also the long-term Weibull (LW).  The Weibull distribution is comparatively supposed to 
fit Breast Cancer Survival Data, and it also used for many biomedical applications.   
For the competing risk setting the objective consider Survival function of 𝑆𝐼𝑅(𝑦) consider 
all susceptible and identified breast cancer cases, and the survival function of 𝑆𝑂𝑅(𝑦) 
consider the not susceptible breast cancer including all masked cases. 

Biometrics Section – JSM 2012

235



3. Results 
 
Table 1: MLEs and the standard errors for  SEER Breast Cancer Data 
 
Distribution λ θ φ p 

LEG 
0.0032 
(0.00294) 

0.9868 
(0.00759) - 0.2348 (0.1329) 

LW 0.0149 (0.0225) - 0.6249(0.1231) 0.2761 (0.1569) 
LE 0.0142(0.0211) - - 0.3435 (0.0986) 
 
 
The results data simulation with parameter estimates are provided in Table 1. 
The information of AIC and BIC criterion show evidence for LEG, but in general 
the differences are quite low, so also the LE or LW can be used as well for the applica-
tion. These results are comparative to the findings of Roman et al. applied for the model 
for Myelomatosis and Leukaemia Data. 
 
Table 2:  
 
Model ℓ(.) AIC BIC 
LEG -44.09170 96.67375 102.0963 
LW -45.42845 96.37691 101.7556 
LE -45.89798 97.13586 100.8188 
 
 
 
4. Conclusion: 
 
In general the Survival Cure Rate Model is reliable for competing risk scenarios. 
With the data simulation it was shown that The LEG distribution as an extension of 
LE proposed by Adamidis and Loukas (1998) is sophisticated to latent competing risk 
setting, when only the information for a minimum of lifetime among all risks is available. 
On major problem need to account for further applications: The survival function of the 
not susceptible individuals will be treated as infinite; this assumption seems not realistic 
and practicable for the model application.  Also this model relies only for univariate sur-
vival data. 
In case of multi- or bivariate cause-specific survival data different dependence 
structures between variables can be suited with different copula functions (Lo and 
Wilke, 2009, Louzada et al. 2012). There are two main methodical aspects for the 
marginal distributions need to account for: first the maximum of flexibility and 
second the application in case of masked causes. A bivariate mixture long-term 
model based on the Farlie-Gumbel-Morgenstern (FGM) copula was applied by 
Louzada et al. (2012) this need further investigation. 
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