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Abstract
The proportional hazards (PH) model and the accelerated failure time (AFT) model are the most

popular models to fit the censoring data. Sometimes, the PH assumption cannot be satisfied, and
therefore, the AFT model becomes a useful alternative to the PH model. Comparing with the least
square method and the rank estimation method, the profile likelihood method needs less computa-
tion time in estimating the parameters and associated variances in the semi-parametric AFT model.
The main aim of this paper is to investigate the impact of the different bandwidths on the estima-
tions in the profile likelihood method. Additionally, we also evaluate its performances according
to the different sample sizes and censoring rates. Finally, we make recommendation of its usage in
practice. For illustration, we apply the semi-parametric AFT model to the real dataset: methadone
maintenance treatment, using the profile likelihood method.

Key Words: Accelerated failure time model, Proportional hazards model, Profile likelihood, Cen-
sored data, Semi-parametric, Survival analysis

1. Introduction

The proportional hazards (PH) model and accelerated failure time (AFT) model are the
most popular models in survival analysis. The PH model assumes the regression structure
on the logarithm of hazard function, while the AFT model assumes the regression structure
on the time scale. When the PH assumption is not satisfied, the AFT model becomes an
alternative tool.

Let Ti = min(T ∗
i , Ci) denote the observed time with i = 1, 2, ..., n, where T ∗

i denotes
the failure time and Ci denotes censoring time for subject i separately. Generally, the cen-
soring is assumed to be independent and non-informative. Let δi be the censoring indicator
with 1 if T ∗

i ≤ Ci and 0 if T ∗
i > Ci. Thus, the AFT model can be written as

log(Ti) = β′x∗
i + ϵi (1)

where β is a p-dimensional unknown parameters, x∗
i = (xi1, xi2, ..., xip)

′ denotes the p×1
possible covariates for subject i, and ϵi is a random error independent of x∗

i . Without the
distribution assumption of ϵi, model (1) is called as the semi-parametric AFT model.

There are many discussions in literature about the estimation methods for the semi-
parametric AFT model. The least square method was first proposed by Buckley and James
(1979). Stute and Wang (1993) further investigated the least square method by using the
KM weights. Based on the least square method, Huang, Ma and Xie (2006) utilized two
regularization approaches: the least absolute shrinkage and selection operator method, and
the threshold-gradient-directed regularization method to estimate the parameters in the AFT
model. A bootstrap approach was used to estimate its variance. Jin, Lin and Ying (2006)
improved the least square method for the AFT model by utilizing the Gehan rank estimator
as its initial values. The resampling technique is employed to estimate the variance. Tsiatis
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(1990) proposed the rank estimation method in the AFT model. The equivalence of the
rank estimation method and the least square method was given by Ritov (1990). Jin, Lin,
Wei and Ying (2003) simplified the estimation procedure of the rank estimation method
based on the Gehan-type estimator, and extended it to other weight functions. Additionally,
they introduced the resampling technique to estimate the variance of estimators. Brown
and Wang (2007) proposed the induced smoothing to the Gehan-Wilcoxon weighted rank
regression, which could obtain the variance directly.

Zeng and Lin (2007) proposed a profile likelihood method by approximating the pro-
file likelihood function with a kernel function. The advantages of Zeng and Lin (2007)’s
method are that both the variance and the smoothed estimator of the survival function can
be easily obtained. Additionally, they proved the asymptotically normality of the estimated
parameters. Their simulation results showed that the profile likelihood method was much
faster than those using the rank estimation method (Jin, Lin, Wei and Ying (2003)) or the
least square method (Jin, Lin and Ying (2006)). However, Zeng and Lin (2007) did not
investigate the impact of different bandwidths on the survival function. Therefore, the pur-
pose of this article is to investigate the performance of the profile likelihood method with
regard to the estimators of both parameters and survival functions.

The organization of this article is as follows: Section 2 provides details of the profile
likelihood method proposed by Zeng and Lin (2007). Section 3 presents a comprehensive
simulation study and evaluates the performances of profile likelihood method under dif-
ferent situations. The profile likelihood method is applied to the real dataset in Section 4.
Conclusions are summarized in Section 5.

2. Profile Likelihood Method

Let h(·) denote a baseline hazard function of eε and H(·) denote its corresponding cumula-
tive hazard function, that is H(t) =

∫ t
0 h(s)ds. The hazard function of T in the AFT model

can be written as

hT (t) = h(te−β′x∗
)e−β′x∗

(2)

Accordingly, we can obtain its cumulative hazard function and survival function, which can
be written as HT (t) = H(te−β′x∗

) and ST (t) = exp(−HT (t)) separately.
Given the observed dataset (ti, δi, x∗i ), the observed likelihood function is

L(β) =
n∏

i=1

hT (ti)
δiST (ti) =

n∏
i=1

[h(tie
−β′x∗

i )e−β′x∗
i ]δi(e−H(tie

−β′x∗
i )) (3)

Let ri(β) = log(Ti)− β′x∗
i , we can express the log-likelihood function as

1

n

n∑
i=1

[−δiβx
∗
i + δi log h(e

ri(β))−H(eri(β))] (4)

If the distribution of eεi is known, the maximum likelihood estimate (MLE) of β can
be obtained by maximizing the equation (4) through the Newton Raphson method. The
common assumptions of eεi are the Weibull, log-normal, and log-logistic distribution. As
mentioned by Zeng and Lin (2007), without specifying the distribution of eεi , the maximum
of the equation (4) with respect to β and H(·) would lead to the nonparametric maximum
likelihood estimators. However, due to the non-smoothness of H(·), the non-parametric
maximum likelihood estimator may fail in practice.
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In the remaining of this section, we will introduce the profile likelihood method pro-
posed by Zeng and Lin (2007). First, intervals containing all eri(β) are partitioned into Jn
equally spaced intervals, 0 ≡ t0 < t1 < ... < tJn ≡ M , where M denotes an upper bound
for eri(β) over all possible β′s in a bounded set. A piecewise assumption of the hazard
function, denoted by h(t), can be written as

h(t) =
Jn∑
k=1

CkI(t ∈ [tk−1, tk))

where I(·) is an indicator function. The corresponding cumulative hazard function, denoted
by H(t), can be written as

H(t) =
Jn∑
k=1

Ck(t− tk)I(tk−1 ≤ t < tk) +
M

Jn

Jn∑
k=1

CkI(t ≥ tk)

Replacing the logarithm of the likelihood function (4) by the piecewise assumption of
H(·), the log-likelihood function becomes

1

n

n∑
i=1

(−δiβ
′x∗

i ) +
1

n

Jn∑
k=1

logCk

{ n∑
i=1

δiI(e
ri(β) ∈ [tk−1, tk))

}

− 1

n

Jn∑
k=1

Ck

{ n∑
i=1

(eri(β) − tk)I(tk−1 ≤ eri(β) < tk) +
M

Jn

n∑
i=1

I(eri(β) ≥ tk)
}

(5)

After the calculation ( Zeng and Lin (2007) ), the kernel-smoothed approximation of
the log-likelihood function is

ln(β) =
1

n

n∑
i=1

δi{−βx∗
i − ri(β) + log[

1

nan

n∑
j=1

δjK(
rj(β)− ri(β)

an
)]

− log[
1

n

n∑
j=1

∫ rj(β)−ri(β)

an

−∞
K(s)ds]} (6)

where an is the bandwidth, and K(·) is the kernel-smoothed function.
Zeng and Lin (2007) used four bandwidths, which were σn−1/5, σn−1/7, σn−1/9

and optimal bandwidth, where σ was estimated from the standard deviation of log(T ).
The optimal bandwidth includes two parts: (8

√
2/3)1/5σ1n

−1/5 and 41/3σ2n
−1/3 (Jones

(1990), Jones and Sheather (1991)), where σ1 was estimated from the standard deviation of
log(T )− β′x∗ among uncensored subjects and σ2 was estimated from the standard devia-
tion of log(T ) − β′x∗ among all subjects. The bandwidth (8

√
2/3)1/5σ1n

−1/5 is used in
the kernel density, and the bandwidth 41/3σ2n

−1/3 is used in the cumulative kernel density.
The normal density is used for the kernel-smoothed function.

The estimation of β can be obtained by maximizing (6) through the Newton Raphson
algorithm. The variance of β̂ can be estimated by the inverse of negative second derivative
of ln(β), which is

V ar(β̂) ≈ (−∂2ln(β)

∂β2
)−1|β=β̂ (7)

Based on β̂, the hazard function hT (t) can be estimated by

ĥT (t) =
1

nant

∑n
i=1 δiK( ri(β̂)−log(t)

an
)

1
n

∑n
i=1

∫ ri(β̂)−log(t)

an
−∞ K(u)du

(8)
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The cumulative hazard function HT (t) can be estimated by

ĤT (t) =

∫ logt

−∞

1
nan

∑n
i=1 δiK( ri(β̂)−s

an
)

1
n

∑n
i=1

∫ ri(β̂)−s

an
−∞ K(u)du

ds (9)

and the corresponding survival function is

ŜT (t) = e−ĤT (t) (10)

3. Simulation Study

This simulation is designed to investigate the impact of sample sizes, bandwidths, and
censoring rates on the estimation of regression parameters and the survival function.

In our study, we will use the same model employed by Zeng and Lin (2007):

log T = 2 +X1 +X2 + ϵ (11)

where X1 is a binary variable taking 0 or 1 with the equal probability, and X2 is drawn
from a standard normal distribution with the mean 0 and the standard deviation 1. X1 and
X2 are independent.

The error term can be generated from a standard normal distribution or a standard
extreme value distribution. Censoring time can be generated from the uniform distribution
U(0, η), and η is used to control the censoring rates. For example, we choose η as 200 to
generate 15% censoring rate under the standard normal distribution. In order to investigate
the performances under different sample sizes and censoring rates, we set the sample sizes
as 200, 400, and 800, and the censoring rates as 15%, 30%, and 45%. 1000 dataset are
generated under each situation and all the simulations are conducted in R 2.11.1.

The results of the bias, the estimated standard error (SE), the estimated standard de-
viation (SD) and the coverage probability (CP) of both β̂1 and β̂2, and the results of the
absolute value of bias ( Abs(bias) ) between the estimated survival probability and the the-
oretical survival probability are shown in Tables 1-2.

3.1 Influence of Sample Sizes

From Tables 1-2, we can see that the biases of β̂1 always regularly change when the sample
size changes from 200 to 800. That is, the bias of β̂1 always decreases along with the
increase of the sample size, no matter the censoring rates are lower or higher, as well as the
error distributions are standard normal error distributions or standard extreme-value error
distributions. For example, in Table 1, when the censoring rate is 30%, the bandwidth is σ
n− 1

5 , and the sample sizes are (200, 400, 800), the corresponding biases of β̂1 are (.0235,
.0145, .0091). In Table 2, when the censoring rate is 15%, the bandwidth is σ n− 1

7 , and the
sample sizes are (200, 400, 800), the corresponding biases of β̂1 are (.0367, .0264, .0254).

The similar trends of the biases of β̂2 can be found from Tables 1-2. That is, when the
sample size increases from 200 to 800, the bias of β̂2 always decreases, no matter what the
error distribution and the bandwidth are. For example, in Table 1, when the censoring rate
is 15%, the bandwidths are σ n− 1

5 , σ n− 1
7 , σ n− 1

9 and optimal, the corresponding biases
of β̂2 are (.0124, .0081, .0079), (.0166, .0110, .0105), (.0197, .0137, .0133), and (.0143,
.0079, .0068) for sample size (200, 400, 800).

Under the standard normal error distribution, when the bandwidths are σ n− 1
7 and σ

n− 1
9 , the bias of the survival probability always decreases while the sample size increases
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Table 1: Bias, SE, SD, and coverage probability of β̂ from the 1000 dataset with standard
normal error distribution

β̂1 β̂2 ŜT (t)
Censoring rate (%) n Bandwidth (an) Bias SE SD CP(%) Bias SE SD CP(%) Abs(bias)

15 200 σ n− 1
5 .0210 .1547 .1589 93.5 .0124 .0797 .0827 93.0 .0060

σ n− 1
7 .0233 .1599 .1545 94.7 .0166 .0826 .0795 95.4 .0082

σ n− 1
9 .0254 .1641 .1545 95.1 .0197 .0848 .0792 96.0 .0118

optimal .0216 .1539 .1545 94.0 .0143 .0793 .0795 94.3 .0075
400 σ n− 1

5 .0080 .1080 .1125 93.4 .0081 .0556 .0577 93.8 .0059
σ n− 1

7 .0123 .1113 .1094 95.0 .0110 .0574 .0561 95.7 .0067
σ n− 1

9 .0154 .1142 .1098 95.6 .0137 .0588 .0564 96.2 .0096
optimal .0087 .1072 .1085 94.5 .0079 .0554 .0555 95.0 .0090

800 σ n− 1
5 .0047 .0756 .0769 94.0 .0079 .0389 .0418 92.9 .0083

σ n− 1
7 .0073 .0776 .0751 94.5 .0105 .0398 .0407 94.1 .0063

σ n− 1
9 .0100 .0795 .0751 95.0 .0133 .0408 .0407 93.6 .0077

optimal .0039 .0749 .0754 93.8 .0068 .0386 .0407 93.6 .0113
30 200 σ n− 1

5 .0235 .1652 .1770 92.3 .0224 .0880 .0943 91.8 .0067
σ n− 1

7 .0326 .1713 .1727 94.5 .0295 .0912 .0925 94.6 .0098
σ n− 1

9 .0401 .1764 .1735 94.8 .0364 .0939 .0932 94.8 .0147
optimal .0234 .1638 .1719 93.7 .0212 .0872 .0915 93.5 .0084

400 σ n− 1
5 .0145 .1143 .1197 94.3 .0187 .0607 .0635 91.4 .0065

σ n− 1
7 .0214 .1183 .1175 94.8 .0256 .0626 .0628 93.2 .0080

σ n− 1
9 .0277 .1219 .1187 95.3 .0321 .0644 .0636 93.2 .0124

optimal .0122 .1130 .1164 94.6 .0164 .0599 .0622 92.6 .0099
800 σ n− 1

5 .0091 .0803 .0821 94.0 .0122 .0425 .0411 93.8 .0070
σ n− 1

7 .0168 .0827 .0803 94.9 .0199 .0437 .0405 93.9 .0063
σ n− 1

9 .0236 .0851 .0808 95.1 .0268 .0449 .0411 92.6 .0099
optimal .0065 .0793 .0807 94.3 .0096 .0420 .0403 94.9 .0112

45 200 σ n− 1
5 .0402 .1823 .1883 94.2 .0359 .0993 .1056 91.3 .0088

σ n− 1
7 .0530 .1907 .1849 95.7 .0500 .1038 .1056 91.9 .0158

σ n− 1
9 .0651 .1976 .1875 95.6 .0629 .1078 .1076 92.1 .0240

optimal .0362 .1801 .1810 95.1 .0332 .0978 .1021 92.4 .0084
400 σ n− 1

5 .0278 .1262 .1264 94.5 .0241 .0689 .0715 93.4 .0065
σ n− 1

7 .0426 .1311 .1250 94.9 .0386 .0717 .0706 92.8 .0117
σ n− 1

9 .0560 .1359 .1267 95.5 .0519 .0743 .0719 91.4 .0191
optimal .0231 .1242 .1226 94.7 .0191 .0679 .0687 94.4 .0106

800 σ n− 1
5 .0211 .0876 .0894 93.9 .0190 .0477 .0505 91.6 .0060

σ n− 1
7 .0347 .0908 .0892 93.8 .0327 .0494 .0504 89.5 .0088

σ n− 1
9 .0476 .0941 .0908 93.4 .0456 .0512 .0515 86.3 .0156

optimal .0149 .0862 .0883 94.0 .0131 .0470 .0496 92.8 .0104
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from 200 to 800. For example, in Table 1, when the censoring rate is 30%, the bandwidths
are σ n− 1

7 and σ n− 1
9 , the corresponding biases of ŜT (t) are (.0098, .0080, .0063) and

(.0147, .0124, .0099). However, when the bandwidths are σ n− 1
5 and optimal, the increase

of sample sizes does not always lead to the decrease of bias of ŜT (t), which may be better
if the sample size is larger than 800. Under the standard extreme-value error distribution,
when the censoring rates are 15% and 30%, the bias of the survival probability always
decreases while the sample size increases from 200 to 800. Similar trend can be found in
the censoring rate of 45%, except for the bandwidth optimal. The possible reason is that
the optimal bandwidth may be effected easily when the censoring rate is large, such as
45%.

3.2 Influence of Bandwidths

It can be easily seen that the bias of β̂1 has the same trend: bias of β̂1 increases with the
bandwidth changes among σ n− 1

5 , σ n− 1
7 , σ n− 1

9 , and then decreases with the bandwidth
changes from σ n− 1

9 to optimal. For instance, in Table 1, when the censoring rate is
45%, the sample size is 400, and the bandwidths are σ n− 1

5 , σ n− 1
7 , σ n− 1

9 and optimal,
the corresponding biases of β̂1 are (.0278, .0426, .0560, .0231). Similar findings for the
influence of the bandwidths on the biases of β̂2 can be seen from Tables 1-2. For example,
in Table 2, when the censoring rate is 45%, the sample size is 200, and the bandwidths
are σ n− 1

5 , σ n− 1
7 , σ n− 1

9 and optimal, the corresponding biases of β̂2 are (.0747, .0995,
.1178, .0718).

Under the standard normal error distribution, when the sample sizes are 200 and 400,
the bias of ŜT (t) firstly increases among the three bandwidths: σ n− 1

5 , σ n− 1
7 , σ n− 1

9

and then decreases between the two bandwidths: σ n− 1
9 and optimal. However, when the

sample size is 800, the bias of ŜT (t) does not always increase among the previous three
bandwidths, which again shows that when the sample size is larger than 800, the bias of
ŜT (t) may have the similar trends like those of sample size 200 and 400. Under the standard
extreme-value error distribution, similarly, the bias of ŜT (t) firstly increases among the
previous there bandwidths and then decreases between the last two bandwidths, no matter
what sample sizes are. For instance, when the censoring rate is 30%, and the sample sizes
are 200, 400 and 800, the corresponding biases of ŜT (t) are (.0312, .0428, .0531, .0241),
(.0268, .0374, .0471, .0208) and (.0045, .0081, .0136, .0047), for the bandwidths σ n− 1

5 , σ
n− 1

7 , σ n− 1
9 and optimal.

3.3 Influence of Censoring Rate

It is obvious that along with the censoring rate increasing from 15% to 45%, the biases
of β̂1 and β̂2 increase. For example, in Table 1, we can see that when the sample size is
200 and the bandwidth is σ n− 1

9 , the corresponding biases of β̂1 for 15%, 30% and 45%
are (.0254, .0401, .0651), and the corresponding biases of β̂2 for 15%, 30% and 45% are
(.0197, .0364, .0629).

Under the standard normal error distribution, when the bandwidths are σ n− 1
7 , σ n− 1

9 ,
the bias of ŜT (t) increases along with the censoring rate increases from 15% to 45%. For
the other two bandwidths, the change pattern of the bias of ŜT (t) is not obvious. Under the
standard extreme-value error distribution, the bias of ŜT (t) does not always increase along
with the censoring rate increases from 15% to 45%. These results show that the uniform
distribution where the censoring time is generated may have some influence on the change
pattern of the bias of ŜT (t). Thus, censoring time generated from other type of distributions
may cause the obvious change pattern of the bias of ŜT (t).
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Table 2: Bias, SE, SD, and coverage probability of β̂ from the 1000 dataset with standard
extreme-value error distribution

β̂1 β̂2 ŜT (t)
Censoring rate (%) n Bandwidth (an) Bias SE SD CP(%) Bias SE SD CP(%) Abs(bias)

15 200 σ n− 1
5 .0297 .1821 .1870 93.3 .0250 .0944 .0993 92.6 .0263

σ n− 1
7 .0367 .1955 .1877 95.2 .0332 .1018 .1013 93.6 .0349

σ n− 1
9 .0414 .2053 .1911 95.7 .0388 .1068 .1041 94.3 .0422

optimal .0349 .1791 .1824 93.9 .0294 .0927 .0951 93.2 .0218
400 σ n− 1

5 .0170 .1250 .1231 94.4 .0189 .0652 .0663 92.7 .0232
σ n− 1

7 .0264 .1351 .1263 96.0 .0280 .0702 .0682 93.8 .0307
σ n− 1

9 .0324 .1424 .1302 96.1 .0339 .0738 .0701 94.2 .0377
optimal .0204 .1219 .1194 94.7 .0211 .0635 .0644 93.1 .0194

800 σ n− 1
5 .0167 .0863 .0858 94.5 .0133 .0452 .0462 93.9 .0048

σ n− 1
7 .0254 .0931 .0886 94.8 .0222 .0484 .0471 93.1 .0068

σ n− 1
9 .0309 .0982 .0916 95.4 .0282 .0509 .0488 92.4 .0104

optimal .0200 .0848 .0833 94.5 .0158 .0443 .0441 93.9 .0052
30 200 σ n− 1

5 .0665 .2032 .2204 91.3 .0457 .1080 .1180 90.6 .0312
σ n− 1

7 .0829 .2187 .2196 93.7 .0635 .1166 .1177 92.7 .0428
σ n− 1

9 .0942 .2298 .2243 93.9 .0759 .1225 .1204 92.0 .0531
optimal .0672 .1983 .2082 92.4 .0484 .1055 .1107 92.0 .0241

400 σ n− 1
5 .0402 .1396 .1437 93.1 .0366 .0750 .0800 91.1 .0268

σ n− 1
7 .0574 .1505 .1439 94.0 .0542 .0807 .0804 90.6 .0374

σ n− 1
9 .0693 .1586 .1480 93.6 .0666 .0847 .0829 89.1 .0471

optimal .0381 .1354 .1369 92.8 .0351 .0728 .0748 91.8 .0208
800 σ n− 1

5 .0328 .0962 .1020 92.2 .0293 .0522 .0549 91.2 .0045
σ n− 1

7 .0520 .1037 .1034 92.5 .0481 .0558 .0563 86.6 .0081
σ n− 1

9 .0657 .1096 .1067 92.1 .0616 .0586 .0585 82.8 .0136
optimal .0323 .0941 .0967 93.3 .0301 .0509 .0521 91.8 .0047

45 200 σ n− 1
5 .0843 .2298 .2652 87.5 .0747 .1250 .1433 87.5 .0101

σ n− 1
7 .1107 .2510 .2622 90.3 .0995 .1366 .1439 89.4 .0204

σ n− 1
9 .1305 .2646 .2661 91.9 .1178 .1436 .1480 88.7 .0306

optimal .0796 .2265 .2495 89.3 .0718 .1233 .1345 90.4 .0023
400 σ n− 1

5 .0637 .1594 .1750 91.0 .0659 .0874 .0980 86.5 .0068
σ n− 1

7 .0937 .1721 .1758 90.8 .0927 .0943 .0971 85.0 .0152
σ n− 1

9 .1154 .1813 .1809 90.4 .1131 .0993 .0998 81.5 .0246
optimal .0556 .1541 .1641 92.0 .0584 .0848 .0920 88.5 .0028

800 σ n− 1
5 .0420 .1098 .1142 91.8 .0454 .0604 .0612 89.2 .0047

σ n− 1
7 .0704 .1181 .1169 91.4 .0739 .0647 .0622 81.7 .0111

σ n− 1
9 .0920 .1247 .1216 89.5 .0956 .0681 .0646 73.6 .0192

optimal .0368 .1065 .1073 93.3 .0407 .0588 .0577 90.6 .0041
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4. Real Data Analysis

For illustration, we apply the profile likelihood method to the Methadone Maintenance
Treatment study. The methadone maintenance treatment is one type of therapies used to
help people recover from heroin dependence, and help them to live a productive life. This
dataset (Caplehorn and Bell (1991)) has 238 heroin addicts, who took part in the mainte-
nance programme from February 1986 to August 1987. The main interest of this study
is to investigate whether the clinic dosage policies have the significant effect on retaining
addicts in methadone maintenance treatment.

Addicts entering into this study were assigned into clinic 1 (clinic = 1) or clinic 2
(clinic = 2) based on the dosage policies. Two other covariates (prison and dose) were
also investigated by Caplehorn and Bell (1991). The variable prison was coded as “0”
when prison records were not present, and “1” when prison records were present. dose was
a continuous variable indicating the maximum methadone dose used by addicts per day.
The median survival time for this dataset is 512 days with 95% confidence interval (399,
563).

Table 3: Estimates, standard errors (SE), 95% confidence intervals and p-values of param-
eters from different bandwidths for the methadone maintenance treatment data

bandwidths clinic prison dose
Estimate .8347 -.2350 .0300

SE .1676 .1367 .0047
σ n− 1

5 CI upper 1.163 .0329 .0392
CI lower .5062 -.5029 .0208
p-value < .0001 .0868 < .0001

Estimate .7804 -.2249 .0329
SE .1936 .1526 .0054

σ n− 1
7 CI upper 1.160 .0742 .0435

CI lower .4009 -.5240 .0223
p-value .0001 .1419 < .0001

Estimate .7582 -.2417 .0348
SE .2133 .1667 .0059

σ n− 1
9 CI upper 1.176 .0850 .0464

CI lower .3401 -.5684 .0232
p-value .0005 .1483 < .0001

Estimate .7974 -.1961 .0300
SE .1623 .1328 .0046

optimal CI upper 1.116 .0642 .0390
CI lower .4793 -.4564 .0210
p-value < .0001 .1410 < .0001

In order to quantify the differences between these two groups by the PH model, we
need to check the PH assumption. We conduct the Schoenfeld residual test to check the
PH assumption by using “cox.zph” in R, which gives us the p-value .0325. In other words,
the PH assumption is not satisfied for this dataset. Therefore, methadone maintenance
treatment data are fitted by the following AFT model:

log(T ) = β1 × clinic+ β2 × prison+ β3 × dose+ ϵ

Table 3 shows the estimate, standard error (SE), 95% confidence interval and p-value
of parameters from different bandwidths for the methadone maintenance treatment data. It
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Figure 1: Survival curves from profile likelihood method and Kaplan Meier method for
two clinic groups

can be seen that along with the changes of the bandwidths, the estimates change a little.
But the changes of bandwidths do not have effects on the significance of clinic, prison
and dose. For example, when the bandwidths change among σ n− 1

5 , σ n− 1
7 , σ n− 1

9 and
optimal, the corresponding estimates of clinic are (.8347, .7804, .7582, .7974), and the
corresponding p-values for clinic are (< .0001, .0001, .0005, < .0001), which show the
significant effect of clinic. This trend can also be seen from the 95% confidence intervals:
σ n− 1

5 : (.5062, 1.163), σ n− 1
7 : (.4009, 1.160), σ n− 1

9 : (.3401, 1.176), optimal: (.4793,
1.116). It is obvious that 0 is not included in any of the four confidence intervals, which
indicates that clinic has the significant effect on the survival time.

When the bandwidth is σ n− 1
5 , the AFT model can be fitted as:

log(T ) = .8347× clinic− .2350× prison+ .0300× dose

Let other covariates be fixed, and the survival time for the clinic 2 is 2.304 times larger than
the clinic 1. Given the average values of prison (.46) and dose (59.16) of clinic 1, as well
as the average values of prison (.49) and dose (63.43) of clinic 2, the survival curves can
be estimated by using the profile likelihood method. Figure 1 displays the fitted survival
curves from both the profile likelihood method and the KM method for two clinic groups,
which indicates that the estimated survival curves from the profile likelihood method fit the
nonparametric estimator well. From these figures, we can see addicts in clinic 2 have a
better survival probability than those in clinic 1.

5. Conclusions and Discussions

We applied semi-parametric AFT model based on the profile likelihood method proposed
by Zeng and Lin (2007) and investigated the performance of the profile likelihood method
by the comprehensive simulation study. The accuracy of estimates were varied by the band-
widths. We recommend the profile likelihood method with σ n− 1

5 bandwidth, since this
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bandwidth has smaller biases of both estimated parameters and estimated survival proba-
bilities.
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