
A Mixture Truncated Pareto Distribution

Mei Ling Huanga∗, Vincenzo Coiaa and Percy Brillb†

aDepartment of Mathematics, Brock University,
St. Catharines, Ontario, Canada

bDepartment of Mathematics & Statistics, University of Winsdor
Windsor Ontario, Canada

August 23, 2012

Abstract

Heavy tailed distributions have many applications in the real world. The Pareto
distribution is very popular. The tail of the distribution is important but the threshold
of the distribution is difficult to determine. We propose a mixture truncated Pareto dis-
tribution (MTPD). This study leads us to construct a cluster Pareto distribution (CPD)
estimation method. The paper studies a real world example which utilizes the MTPD.
The results of goodness of fit tests show that the MTPD and the cluster estimation
method produce very good fitting distributions with real world data.

Keywords: Cluster, heavy tailed distributions; goodness of fit tests; order statistics;
truncated Pareto distribution.

1. Introduction

There are many real world problems modelled as heavy tailed distributions, especially
the Pareto distribution. However, there are some difficulties in estimation of Pareto
distributions. First, the Pareto distribution has infinite moments in some heavy tailed
cases. Therefore the moment estimation method for the shape parameter can not be
used in these situations. Several authors suggest using a truncated Pareto distribution
(TPD) which always has finite moments (e.g., Beg, 1981; Aban, et al, 2006).
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In some situations, data behaves differently within different thresholds. For example,
losses from hurricane damages can be classified into small, medium and large hurricane
groups. The data in these classes may have different distributions, or grouped data may
have the same kind of distribution but with different parameters. A cluster method is
needed when dealing with real data sets. In this paper we study an example of 49 most
damaging Atlantic hurricanes occurring between years 1900 and 2005 (U.S. National
Hurricane Center, 2008). The costs are standardized to 2005 USD; see figure below.

The 49 Costliest Atlantic hurricanes between the years 1900-2005.

Huang and Zhao (2011) used Pareto and truncated Pareto models to fit the data
set. The maximum likelihood estimator (MLE) and the moment estimator for the shape
parameter were used. The results are shown in a log-log plot in Figure 1. Huang and
Zhao (2011) also used Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von-Mises
goodness of fit tests. We note that the two estimated (by MLE and moment method)
truncated Pareto curves fit the data set quite well; they fit much better in the tail than
the original Pareto distribution (which is in a straight line). But the truncated Pareto
curves do not fit the data perfectly, especially for the middle value data. We observed
that the pattern of data can be classified into three groups. The data in these three
groups may still be Pareto distributed but with different shape parameters.

In the literature, researchers study similar data sets by using a cluster method. In
this paper, we propose a mixture truncated Pareto distribution (MTPD) in Section 2.
We propose a cluster Parato distribution (CPD) to estimate the MTPD in Section 3. In
Section 4, we perform Kolmogorov-Smirnov, Anderson Darling, and Cramer-von Mises
goodness of fit tests to analyze the hurricane data by using the CPD and three other
existing estimation methods (see Figures 2). The results show that the proposed cluster
method is superior to other existing estimation methods.
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Figure 1: Log-log plot of hurricane example with estimated distribution curves. The
red circles are the data; the black straight line is the original Pareto distribution; the
green dot line is the MLE estimated truncated Pareto distribution; the brown dash line
is the moment estimated truncatted Pareto distribution.

2. Mixture Truncated Pareto Distribution

Definition 2.1. The probability density function (p.d.f.) and the cumulative distribution
function (c.d.f.) of a random variable Y having the Pareto distribution are given by

fp(y; γ, α) =
αγα

y(α+1)
, 0 < γ ≤ y <∞, α > 0, (2.1 )

Fp(y; γ, α) = 1−
µ
γ

y

¶α

, 0 < γ ≤ y <∞, α > 0, (2.2 )

where α is the shape parameter.
When 0 < α ≤ 1, which is a heavy tailed case, the mean and variance of Y are

infinite, and the distribution is heavier in the right tail as α decreases.
The truncated Pareto distribution was originally used to describe the distribution

of oil fields by size. It has a lower limit γ, an upper limit ν and a shape parameter α.
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In fact, it has been shown that the truncated Pareto distribution fits better than the
non-truncated Pareto distribution for positively skewed populations (Beg, 1981).

Definition 2.2. The p.d.f. and c.d.f. of a random variable X having the truncated
Pareto distribution are given by

f(x; γ, ν, α) =
αγαx−α−1

1− (γν )α
, 0 < γ ≤ x ≤ ν <∞, α > 0, (2.3 )

F (x; γ, ν, α) = 1− γα(x−α − ν−α),

1− (γν )α
, 0 < γ ≤ x ≤ ν <∞, α > 0, (2.4 )

where γ and ν are the left and right truncation points.
The quantile function of the truncated Pareto distribution is

F−1(u) =

µ
1− u

γα
+

u

να

¶− 1
α

, 0 ≤ u ≤ 1, 0 < γ ≤ x ≤ ν <∞, α > 0. (2.5 )

The mean, second moment and variance of X are

μ =
αγα(γ1−α − ν1−α)

(α− 1)(1− (γν )α)
, 0 < γ < ν <∞, α > 1; (2.6 )

μ(2) =
αγα(ν2−α − γ2−α)

(2− α)(1− (γν )α)2
, 0 < γ < ν <∞, α > 2; (2.7 )

σ2 =
αγα(ν2−α − γ2−α)

(2− α)(1− (γν )α)2
− α2γ2α(ν1−α − γ1−α)2

(1− α)2(1− (γν )α)2
, 0 < γ < ν <∞, α > 2. (2.8 )

We consider thresholds as a vector T = (t0, t1, ..., tk)T , where 0 < γ = tk < tk−1... <
t0 = ν < ∞. Also consider vector Λ = (α1, α2, ..., αk)T , αi > 0, i = 1, ..., k. We define
a mixture truncated Pareto distribution as

Definition 2.3. The c.d.f. of a random variable X having a mixture truncated Pareto
distribution (MTPD) is given by

Fc(x;T,Λ;W) =
kX
i=1

wiFi(x; γi, νi, αi), 0 < γ ≤ x ≤ ν <∞, γ =
k
min
i=1

γi, ν =
k
max
i=1

νi,

(2.9 )
where Fi(x; γi, νi, αi) is the c.d.f. of the truncated Pareto distribution in (2.3), and the
truncation points γi, νi, are related to thresholds T = (t0, t1, ..., tk)

T ,

W = (w1, w2, ..., wk)
T , 0 ≤ wi ≤ 1,

kX
i=1

wi = 1.
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The p.d.f. of a mixture truncated Pareto distribution is given by

fc(x;T,Λ;W) =
kX
i=1

wifi(x; γi, νi, αi), 0 < γ ≤ x ≤ ν <∞, γ =
k
min
i=1

γi, ν =
k
max
i=1

νi,

(2.10 )
where fi(x; γi, νi, αi) is the c.d.f. of the truncated Pareto distribution in (2.4).

3. A Cluster Distribution Estimator

Consider a random sampleX1,X2,...,Xn from the MTPD in (2.9), and letX1,n ≥ X2,n ≥
... ≥ Xn,n denote its order statistics. We divide data into k clusters by the domains
(ti+1, ti), i = 0, 1, ..., k − 1. T = (t0, t1, ..., tk)

T , where 0 < γ = tk < tk−1... < t0 = ν <
∞. We define a cluster Pareto distribution as
Definition 3.1. The c.d.f. of a random variable X having the cluster Pareto distribu-
tion is given by

FC(x;T,Λ;W) =
kX
i=1

³ni
n

´
Fi(x; ti, ti−1, αi), 0 < γ ≤ x ≤ ν <∞, (3.1 )

where FC(x;T,Λ;W) is a c.d.f. of the MTPD in (2.9), and ni is the sample size in
the ith cluster in the ith domain (ti+1, ti).

W =
³n1
n
,
n2
n
, ...,

nk
n

´T
, wi =

ni
n
, i = 1, 2, ..., k,

where ni’s depend on the vector C = (c0, c1, ..., ck)
T , where 0 = c0 < c1... < ck = n,

ci is the number of data greater than or equal to the threshold ti. ci is a function of ti
and the random sample (X1,X2, ...Xn), thus

ci(ti;X1,X2, ...Xn) =
nX

j=1

IXj≥ti(Xj), i = 1, 2, ..., k − 1,

ni = ci − ci−1, i = 1, 2, ..., k.

where IA is an indicator function of set A.

In this paper, we propose a two-points slope method in the log-log plot to determine
thresholds T = (t0, t1, ..., tk)

T .

Definition 3.2. A two-points slope is defined as

Si(X1,X2, ...Xn) =

⎧⎪⎨⎪⎩
log(1− i+1

n
)−log(1− i

n
)

log(Xi+1,n)−log(Xi,n)
, log(Xi+1,n)− log(Xi,n) 6= 0, i = 1, ...n− 1;

0, log(Xi+1,n)− log(Xi,n) = 0, i = 1, ...n− 1.
(3.2 )
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Then we make order statistics S1,n ≤ S2,n ≤ ... ≤ Sn−1,n of the absolute slope
|Si(X1,X2, ...Xn)| , i = 1, 2, ...n − 1. The cluster threshold points can be estimated bybt1(X1,X2, ...Xn), ...,btk−1(X1,X2, ...Xn) which are determined by the top (k− 1) slopes

Sn−k.n ≤ Sn−k+1,n ≤ ... ≤ Sn−1,n. (3.3 )

We propose six steps to construct a cluster Pareto distribution:

Step 1: Compute (n− 1) two-point slopes Si(X1,X2, ...Xn) in (3.2), i=1,...,n-1.

Step 2: Find the (k − 1) estimated threshold points bt1, ...,btk−1 by using the (k − 1)
largest absolute slopes of the order statistics of |Si(X1,X2, ...Xn)| in (3.3), i=1,...n-1,
corresponding to the (k−1) values

©
X∗
1 ,X

∗
2 , ...,X

∗
k−1
ª
of the original sample which now

have been ordered as new order statistics

X∗
1,n ≥ X∗

2,n ≥ ... ≥ X∗
k−1,n;

then we let

bti(X1,X2, ...Xn) = X∗
i,n, i = 1, ...k − 1, and bt0 = X1,n = ν, btk = Xn,n = γ.

Step 3: DetermineC= (c0, c1, ..., ck)T , where 0 = c0 < c1... < ck = n, ci(ti;X1,X2, ...Xn) =Pn
j=1 IXj≥ti(Xj). Thus

ni = ci − ci−1, i = 1, 2, ..., k;bti = Xci,n, i = 1, ...k − 1, and bt0 = X1,n = ν, btk = Xn,n = γ.

Then we have k clusters:

{γ = btk = Xck,n, ...,Xck−1,n}, {Xck−1,n, ...,Xck−2,n}, ..., {Xc1,n, ...,bt0 = X1,n = ν}.

Table 3.1 Construction of Cluster Pareto Distribution

ck = n ck−1 c2 c1 c0 = 0
|______ nk____|______......__|____ n2__|_____n1____|btk btk−1 bt2 bt1 bt0
= Xck,n = Xck−1,n = Xc1,n = X1,n

= Xn,n = ν
= γ

Step 4: Construct gFC(x; bT,Λ;cW) =
kP
i=1

¡
ni
n

¢ eFi(x;bti,bti−1, αi), in (3.1).

Step 5: Estimate bαi,Moment. (We suggest using the moment estimator in (3.4) since it
has robust properties, but there are other estimators available in (3.4), (3.5), (3.6))
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Step 6: Construct an estimatordFC(x; bT,bΛ;cW) =
kP
i=1

¡
ni
n

¢ bFi(x; ti, ti−1, bαi), for (3.1).
Remark. There are three estimation methods for the shape parameters αi given by

1. Hill Estimator (original Pareto distribution):
The Hill (1975) MLE for α is defined as

bαHill =

"
r−1

rX
i=1

{lnXi,n − lnXr+1,n}
#−1

, (3.4 )

where Xi,n is the ith largest order statistic, and r is the cut off point, i.e., Xr+1,n ≤ ν.

2. Moment Estimator (truncated Pareto distribution):
A moment estimator bαM for α can be obtained by solving the following equation:

1

n

nX
i=1

Xi =
bαMγαM (γ1−αM − ν1−αM )

(bαM − 1)(1− (γν )αM ), (3.5 )

where 0 < γ ≤ Xi ≤ ν <∞, bαM > 0.

3. MLE method (truncated Pareto distribution)
The Aban MLE for α (Aban et al, 2006) is obtained by solving the following equa-

tion:
nbαAban + n(γν )bαAban ln(γν )

1− (γν )αAban
−

nX
i=1

[lnXi,n − ln γ] = 0, (3.6 )

where Xi,n is the ith largest order statistic, γ ≤ Xi,n ≤ ν, i = 1, 2, ..n.

4. Applications

Now we apply the cluster Pareto distribution to the hurricane example.

4.1. Cluster Method

By using 48 two-point slopes in (3.2) and the six steps in Section 4, we construct k = 3
clusters,

{γ = bt3 = Xc3,n, ...,Xc2,n}, {Xc2,n, ...,Xc1,n}, {Xc1,n, ...,bt0 = X1,n = ν},

bt0 = X1,n = 157 = ν, bt1 = Xc1,n = 26.8, bt2 = Xc2,n = 13.7, bt3 = Xc3,n = 3.7 = γ;

c0 = 0, c1 = 9, c2 = 22, c3 = 49;

n1 = 9, n2 = 13, n3 = 27; n1 + n2 + n3 = n = 49;
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Table 4.1 Construction of Cluster Pareto Distribution

c3 = n = 49 c2 = 22 c1 = 9 c0 = 0
|______ n3 = 27____|____ n2 = 13__|_____n1 = 9____|bt3 = 3.7 bt2 = 13.7 bt1 = 26.8 bt0 = 157
= Xc3,n = Xc2,n = Xc1,n = X1,n

= Xn,n = ν
= γ

Table 4.2 Four Estimation Methods for Hurricane Example

Method bα bμ Median 5% VaR 5% VaR

Pareto(Hill) 0.8126 ∞ 8.68 billion 147.68 billion 1070.30 billion
MLE(Aban) 0.6206 21.10 billion 9.73 billion 85.15 billion 136.17 billion
Moment 0.6476 20.48 billion 9.47 billion 82.55 billion 134.90 billionbα1=0.6476
Cluster bα2=5.6498 25.06 billion 11.19 billion 77.24 billion 132.41 billionbα3=0.8416

Table 4.2 gave bα, bμ,Median, 5% Value-at-Risk (VaR) and 1% Value-at-Risk (VaR)
of each of four estimation methods. We note that the Cluster method gives the largest
mean and median and the smallest VaRs

Figure 2 exhibits data and four estimated distribution curves. We note that the
original Pareto distribution does not fit data well in the right tail. The moment and
Aban estimated truncated Pareto fit data well in the right tail, but not so well in the
smaller or middle values data. The cluster truncated Pareto distribution overcomes this
problem, and has the best fitting to the data over the whole range. Figure 2 suggests a
single distribution may not totally represent how natural data is distributed. We may
consider grouping data by using the cluster method.

The result in Figure 2 is a visual observation. It is necessary to run goodness of fit
tests to confirm which estimated distribution best fits the hurricane data.

4.2. Goodness of Fit Test

In this section we will conduct three goodness of fit tests, Kolmogorov-Smirnov, Ander-
son Darling, and Cramer-von Mises. All three tests are based on the distance between
the empirical distribution function and the proposed distribution function: original
Pareto distribution in (2.1) or truncated Pareto distribution in (2.3), or mixture trun-
cated Pareto distribution in (2.9).
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Figure 2: Log-log plot of hurricane example with estimated distribution curves. The red
circles are the data; the black straight line is the original Pareto distribution; the green
dot line is the MLE estimated truncated Pareto distribution; the brown dash line is
the moment estimated truncatted Pareto distribution; the thick blue line is the cluster
Pareto distribution.

Each test considers the same null and alternative hypothesis:

H0 : F (x) = F ∗(x) vs H1 : F (x) 6= F ∗(x),

where F (x) is the unknown true distribution of the sample data and F ∗(x) is one of
our proposed four estimated distributions:

1) Pareto distribution in (2.1) with Hill estimator bαHill;
2) Truncated Pareto distribution in (2.3) with Aban MLE estimator bαAban;
3) Truncated Pareto distribution in (2.3) with Moment estimator bαMoment;

4) Cluster Pareto distribution in (3.1) with estimator bαMoment(i);

We will run a test for each estimated distribution as F ∗(x).

(1) The Kolmogorov-Smirnov (K-S) test (Kolmogorov, 1933), the test statistic is given
by,

T = sup
x
|F ∗(x)− Sn(x)| , −∞ < x <∞, (4.1 )
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where Sn(x) is the empirical distribution function.
(2) Anderson and Darling (1952) introduced a measure of "distance" between the em-
pirical distribution Sn(x) and the proposed c.d.f. F ∗(x) by using a metric function
space,

W 2
n = n

∞Z
−∞

[Sn(x)− F ∗(x)]2 ψ (F ∗(x)) dF, where ψ(u) =
1

u(1− u)
. (4.2 )

(3) Cramer-von Mises (Anderson and Darling, 1952) proposed using ψ(u) = 1 in (4.2),
thus under H0 the test statistic and p-value are given by

nω2 =
1

12n
+

nX
j=1

µ
uj −

2j − 1
2n

¶2
. (4.3 )

Table 4.3 Goodness of Fit Tests n = 49 for Hurricane Example

Goodness-of-Fit Tests
Method K-S Test A-D Test C-v-M Test

Test Statistic p-value Test Statistic p-value Test Statistic p-value

Pareto(Hill) 0.1130 0.4608 2.7141 0.0383 0.2057 0.2568
MLE(Aban) 0.0839 0.7251 2.3126 0.0622 0.0964 0.6030
Moment 0.0828 0.7341 2.3672 0.0582 0.1095 0.5402
Cluster 0.0700 0.8328 2.1258 0.0784 0.0429 0.9177

Table 4.3 gives the values of the test statistics and p-value of each of three goodness-
of fit tests. We note that the cluster truncated Pareto distribution has the smallest
test statistics (means smallest errors) and the largest p-values in each of all three tests
respectively (we highlighted the values as bold in the table). This means the cluster
truncated Pareto distribution has the best fitting to the hurricane data.

Table 4.4 Errors of Goodness of Fit Tests n = 49 for Hurricane Example

Goodness-of-Fit Tests
Method Absolute Error (AE) Integrated Error (IE)

r = 49 r = 18 r = 10 r = 49 r = 18 r = 10

Pareto(Hill) 0.1130 0.0584 0.0584 0.4844 0.3818 0.3723
MLE(Aban) 0.0839 0.0839 0.0832 0.3114 0.2565 0.2161
Moment 0.0828 0.0738 0.0738 0.2985 0.2171 0.1825
Cluster 0.0700 0.0399 0.0228 0.1650 0.1325 0.1218
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In Table 4.4, we took the r largest data in the sample. The absolute error and integrated
error are defined by

AE = sup
x
|F ∗(x)− Sn(x)| , −∞ < x <∞, (4.4 )

IE =

"Z Xn,n

Xn−r+1,n

(Sn(x)− F ∗(x))2dx

#1/2
. (4.5 )

Table 4.4 gives absolute errors and integrated errors of four estimation methods in
r = 49, 18, 10 cases. We note that the cluster truncated Pareto distribution has the
smallest errors in all 6 cases (we highlighted the values as bold in the table). This
means the cluster method is superior in fitting the hurricane data compared with the
other existing methods.
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