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Abstract

The Pearson and likelihood ratio statistics are commonly used to test goodness of fit for mod-

els applied to data from a multinomial distribution. When data are from a table formed by the

cross-classification of a large number of variables, the common statistics may have low power and

inaccurate Type I error level due to sparseness. Several statistics have been proposed that use com-

ponents of the Pearson statistic obtained from marginal distributions. These statistics have mostly

been applied to item response models or factor analysis of categorical variables and have very good

performance for Type I error rate and power when the data table is formed from a moderate num-

ber of variables. However, there are limitations when the number of variables becomes larger than

20. This paper compares the performance of statistics based on marginal distributions as well as

computational resources required when the number of variables is large. The comparison includes

test statistics from Christoffersson (1975), Reiser (1996, 2008), Bartholomew and Leung (2002),

Tollenaar and Mooijaart (2003), and Maydeu-Olivares and Joe (2005).

KeyWords: multivariate discrete distribution, overlapping cells, orthogonal components, compos-

ite null hypothesis

1. Introduction

The goodness-of-fit test based on Pearson’s chi-squared statistic is sometimes considered to

be an omnibus test that gives little guidance to the source of poor fit when the null hypothe-

sis is rejected. It has also been recognized that the omnibus test can often be outperformed

by focused or directional tests of lower order.

The Pearson and likelihood ratio statistics are commonly used to test goodness of fit

for models applied to data from a multinomial distribution. When data are from a table

formed by the cross-classification of a large number of variables, the common statistics

may have low power and inaccurate Type I error level due to sparseness. Several statistics

have been proposed that use components of the Pearson statistic obtained from marginal

distributions. These statistics have mostly been applied to item response models or fac-

tor analysis of categorical variables and have very good performance for Type I error rate

and power when the data table is formed from a moderate number of variables. However,

there are limitations when the number of variables becomes larger than 20. This paper

compares the performance of statistics based on marginal distributions as well as computa-

tional resources required when the number of variables is large. The comparison includes

test statistics from Christoffersson (1975), Reiser (1996, 2008), Bartholomew and Leung

(2002), Tollenaar and Mooijaart (2003), and Maydeu-Olivares and Joe (2005).

2. Marginal Proportions

This section includes a presentation of transformations from joint proportions or frequen-

cies to marginal proportions as a prelude to testing a model based on the fit to marginal
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frequencies.

2.1 First- and Second-Order Marginals

The relationship between joint proportions and first- and second-order marginals can be

shown by using zeros and 1’s to code the levels of dichotomous response variables. Then,

a q-dimensional vector of zeros and 1’s, sometimes called a response pattern, will indicate

a specific cell from the contingency table formed by the cross-classification of q response

variables. A T -dimensional set of response patterns can be generated by varying the levels

of the qth variable most rapidly, the qth − 1 variable next, etc. Define VVV as the T by q

matrix with response patterns as rows.

For q = 3,

VVV =




0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1




.

Let vis represent element i of response pattern s, and let YYY be a vector of dichotomous

variables. Also, define θθθ as a parameter vector for a model of interest and πs(θθθ) as the

expected proportion for cell s as a function of the parameter vector θθθ. Then, under the

model, the first-order marginal proportion for variable Yi can be defined as

Pi(θθθ) = Prob(Yi = 1|θθθ) =
�

s

visπs(θθθ),

and the true first-order marginal proportion is given by

Pi = Prob(Yi = 1) =
�

s

visπs .

The summation across the frequencies associated with the response patterns to obtain

the marginal proportions represents a linear transformation of the frequencies in the multi-

nomial vector πππ which can be implemented via multiplication by a certain matrix, denoted

here generically by the symbol H. The symbol H[t] denotes the transformation matrix

that would produce marginals of order t. The symbol H[t : u] , t ≤ u ≤ q, denotes the

transformation matrix that would produce marginals from order t up to and including order

u. Furthermore, H[t] ≡ H[t : t] , and H ≡ H[t : u] . There will be occasions to delete cer-

tain rows from the matrix H[t : u] due to collinearity, and the symbol H[t : u],−d denotes the

matrixH[t : u] with d rows deleted.

MatrixH[1] can be defined from matrix VVV such that

H[1] = VVV � .

Under the model, the second-order marginal proportion for variables Yi and Yj can be

defined as

Pij(θθθ) = Prob(Yi = 1, Yj = 1|θθθ) =
�

s

visvjsπs(θθθ),

and the true second-order marginal proportion is given by

Pij = Prob(Yi = 1, Yj = 1) =
�

s

visvjsπs .
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For second-order marginals, where j = 1, 2, . . . k; i = j + 1, . . . q; s = 1, 2, . . . T ; and
� = i− j +

�
0<r<j(q − r), element �s ofH[2] is given by

�
H[2]

�
�s

=

�
1 if vis = vjs = 1

0 otherwise.

Alternatively, matrix H[2] can be defined by forming Hadamard products among the

columns of the matrix VVV :

H[2] =




(vvv1 ◦ vvv2)
�

(vvv1 ◦ vvv3)
�

...

(vvv1 ◦ vvvq)
�

(vvv2 ◦ vvv3)
�

...

(vvv2 ◦ vvvq)
�

...

(vvvq−1 ◦ vvvq)
�




,

where vvvf represents column f of matrix VVV , and vvvf ◦ vvvg represents the Hadamard product

of columns f and g.

2.2 Higher-Order Marginals

The third-order marginal proportions for variables Yi, Yj , and Yk can be obtained by

employing the matrix H[3], which can also be defined as Hadamard products among the

columns of VVV ,

H[3] =




(vvv1 ◦ vvv2 ◦ vvv3)
�

(vvv1 ◦ vvv2 ◦ vvv4)
�

...

(vvv1 ◦ vvv2 ◦ vvvq)
�

(vvv2 ◦ vvv3 ◦ vvv4)
�

...

(vvv2 ◦ vvv3 ◦ vvvq)
�

...

(vvvq−2 ◦ vvvq−1 ◦ vvvq)
�




,

and then, for example,

H[1:3] =




H[1]

. . .

H[2]

. . .

H[3]



.
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For q = 3,

H[1:3] =




0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

· · ·
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

· · ·
0 0 0 0 0 0 0 1




.

A general matrix H[t:u] to obtain marginals of any order can be defined in a similar

fashion by using Hadamard products among the columns of VVV . H[1 : q] gives a mapping

from joint proportions to the entire set of (2q − 1) marginal proportions:

PPP = H[1 : q]πππ ,

where

PPP = (P1 P2 P3 . . . Pq P12 P13 . . . Pq−1,q P112 . . . Pq−2,q−1,q . . . P123...q)
�

is the vector of marginal proportions

2.3 Residuals

Define the unstandardized residual rs = p̂s − πs(θ̂θθ), where

p̂s =
ns

n
is element s of p̂, the vector of multinomial proportions,

ns = element s of n, the vector of observed frequencies,

n = total sample size =
T�

s=1

ns,

θ̂θθ = parameter estimator vector,

πs(θ̂θθ) = estimated expected proportion for cell s,

and denote the vector of unstandardized residuals as rrr with element rs .

A vector of simple residuals for marginals of any order may be defined such that

eee = H(p̂− πππ(θ̂θθ)) = Hrrr,

and a vector, ξξξ , of differences between the marginals specified by the relevant model and

the true population marginals may be defined for marginals of any order such that

ξξξ = H(πππ − πππ(θθθ)).

3. Testing Fit on Marginal Distributions

3.1 Linear Combinations of Joint Frequencies

A traditional test of fit for of a multinomial model uses the null hypothesis Ho : πππ = πππ(θθθ),
where πππ(θθθ) is a vector of multinomial probabilities as a function of θθθ. Linear combina-

tions of πππ may be tested under the null hypothesis Ho : Hπππ = Hπππ(θθθ), or equivalently
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Ho : ξξξ [t : u] = 000. H may specify linear combinations that form marginal proportions as

defined in the previous section. If H is full rank, then Ho : Hπππ = Hπππ(θθθ) become equiv-

alent to Ho : πππ = πππ(θθθ). If πππ has less than full rank, then Ho : Hπππ = Hπππ(θθθ) becomes

specifies a test of components of the Pearson statistic, and the relationship between these

null hypotheses works as follows: “Reject Ho : Hπππ = Hπππ(θθθ)” is a sufficient but not nec-
essary condition for “Reject Ho : πππ = πππ(θθθ)”; “Do not reject Ho : Hπππ = Hπππ(θθθ)” is a

necessary but not sufficient condition for “Do not reject Ho : πππ = πππ(θθθ)”. “Do not reject

Ho : Hπππ = Hπππ(θθθ)” is not a sufficient condition because it is possible that lack of fit may

be manifest only in marginals of higher order than u, where u is defined as in H[t : u] .

The null hypothesis Ho : πππ = πππ(θθθ) can be partitioned into components corresponding to

hypotheses Ho : Hπππ = Hπππ(θθθ), with corresponding partition of degrees of freedom.

3.2 Test Statistics

When the model parameters θθθ are unknown and estimated, the null hypothesis Ho : πππ =
πππ(θθθ) is often tested with the Pearson-Fisher statistic:

X2
PF = n

�

s

z2s ,

where

zs = (πs(θ̂θθ))
−

1

2
�
p̂s − πs(θ̂θθ)

�
.

A test ofHo : Hπππ = Hπππ(θθθ) may be considered to be a “limited-information” test since

the full information in the joint distribution of YYY is not entirely employed. The original

limited-information statistic with features of cell collapsing and cell focusing was given by

Christoffersson (1975). In our notation, this statistic would be written as

X2
Ch = r̃̃r̃r�H�

[1 : 2](D(p̂) − p̂p̂�)−1H[1 : 2] r̃̃r̃r ,

where r̃̃r̃r is the residual calculated using a generalized least squares estimator of θθθ. X2
Ch has

an asymptotic-square distribution with 2q − g degrees of freedom, where g = number of

model parameters to be estimated. The statistic could be generalized to include higher-order

marginals, but even if marginals from first- to order q were included, this statistic would not

be equivalent to the Pearson-Fisher statistic. Muthén (1978) developed a modified version

of Christoffersson’s statistic.

Reiser(1996) and Reiser and Lin (1999) proposed the following statistic. Let ΣΣΣeee repre-

sent the covariance matrix of the residuals, eee, where eee = HHH [t:u]rrr. Using the matrix H[t : u]

as given above,

X2
[t : u] = eee��ΣΣΣ−1

eee eee

where
�ΣΣΣeee = n−1ΩΩΩeee,

with ΩΩΩeee evaluated at the maximum likelihood estimates π̂ππ and θ̂θθ, and where

ΩΩΩeee = H(D(πππ) − ππππππ � −G(A�A)−1G�)H�,

D(πππ) = diagonal matrix with (s, s) element equal to πs(θθθ),

A = D(πππ)−1/2∂πππ(θθθ)

∂θθθ
,

and G =
∂πππ(θθθ)

∂θθθ
.
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Ωr = (D(πππ) − ππππππ � − G(A�A)−1G�) is the asymptotic covariance matrix of rrr. Matrices

are evaluated with θθθ = θ̂̂θ̂θ, which may be the maximum likelihood estimator.

The limiting distribution of X2
[t : u] as n → ∞ can be shown to be the χ2-distribution

because eee is a linear combination of the elements of rrr, n�ΣΣΣeee
P

−→ΩΩΩeee , and eee
L

−→MVN(ξξξ, ΣΣΣeee).
The regularity conditions for the asymptotic chi-square distribution are given by Birch

(1964). X2
[t : u] can be seen as a special case of the score statistic given in Theorem 7.1.1 of

Rayner and Best (1989).

The degrees of freedom are determined by the rank of ΩΩΩeee . In general X2
[2] will have

degrees of freedom ≤ min(2q − g,0.5q(q − 1)), where g is the number of estimated pa-

rameters. Some model parameterizations may reduce the rank of ΩΩΩeee and hence the degrees

of freedom for X2
[t:u] in general. Any linear dependency among the rows of H and the

columns of G will produce a marginal or sum of marginals that is perfectly fit when cal-

culating X2
[t : u] and will lead to the loss of a degree of freedom. A second-order marginal

that is perfectly fit under the model will reduce the degrees of freedom for X2
[t : u] by 1

if t ≤ 2 ≤ u. The statistic has been extended to ordinal response variables by Cagnone

and Mignani (2007). Reiser (2008) defined orthogonal components of the Pearson statistic

using this approach.

Bartholomew and Leung (2002) proposed the statistic Y based on only second order

marginals:

Y = eee�[2]DDD
−1
[2] eee[2],

where eee[2] = HHH [2](p̂pp − πππ) and DDD [2] = diag(HHH [2]πππ)(III − diag(HHH [2]πππ). Bartholomew and

Leung gave a chi-square approximation for the distribution of

Y − a

b

on c degrees of freedom, where a, b and c are functions of the asymptotic moments of Y :

b =
µ3(Y )

4µ2(Y )
, c =

µ2(Y )

2b2
, a = µ1(Y ) − bc.

The statistic was presented in terms of known πππ , but in an application, πππ is replaced by

probabilities estimated from the model under consideration. In the original form, the statis-

tic is simpler to calculate because it only requires estimates for πππ. Cai, Maydeu-Olivares,

Coffman and Thissen (2006) found that this statistic does not perform well with the degrees

of freedom given by Bartholomew and Leung, and they proposed a modified version of the

statistic,Y2, using both first- and second-order marginals, and revised degrees of freedom:

Y2 = eee�DDD−1
[1:2]eee,

where eee = HHH [1:2]rrr and DDD [1:2] = diag(HHH [1:2]πππ(θ̂θθ))(III−diag(HHH [1:2]πππ(θ̂θθ))), and θ̂θθ is the max-

imum likelihood estimator of θθθ. Since calculation ofG = ∂πππ(θθθ)
∂θθθ

is required for determina-

tion of the revised degrees of freedom, there is little computational advantage compared to

X2
[t : u].

Tollenaar and Mooijaart (2003) proposed X2
red = eee��Γ−1eee. where �Γ = D(πππ(θ̂̂θ̂θ)) −

π(θ̂θθ)π(θ̂θθ)�. X2
red is a “reduced” version of X2

[t : u] in that the covariance matrix Γ does not

include the term G(A�A)−1G�. As noted by Tollenaar and Mooijaart, omitting this term

may substantially reduce computations, depending on the model under investigation. Since

X2
red and X2

[t : u] have different covariance matrices, the degrees of freedom are different.

X2
red has an asymptotic-square distribution with 2q − g degrees of freedom, where g =
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number of model parameters to be estimated, so the chi-square approximation for the dis-

tribution of X2
red has the same degrees of freedom as the distribution of X2

Ch. X
2
red can

also be viewed as a similar form to Christoffersson’s statistic, but with different estimators.

X2
red uses the maximum likelihood estimator for θθθ and πππ(θθθ) instead of the GLS estimator,

and �ΓΓΓ uses the maximum likelihood estimator π̂ππ(θθθ) instead of the observed proportions.

Fitted versus observed proportions is a key difference. �Γ is consistent for ΣΣΣ as n → ∞
even under the sparseness condition on the frequencies.

Maydeu-Olivares and Joe (2005) developed a statistic, Mr, that is closely related to

X2
[1 : r]. The two statistics are not equivalent, however, due to a different covariance matrix

in the quadratic form. For eee = HHH [1:r]rrr,

Mr = eee��CCC reee

where �CCC r = (H�ΓΓΓH�)−1−(H�ΓΓΓH�)−1H �G
� �G�H�(H�ΓΓΓH�)−1H �G

�−1 �G�H�(H�ΓΓΓH�)−1, and

where �Γ = D(πππ(θ̂̂θ̂θ)) − π(θ̂θθ)π(θ̂θθ)�. HHH is always equal to HHH [1 : r] when applied to the defini-

tion of Mr. �ΣΣΣeee is a generalized inverse of �CCC r. Because �CCC r appears in the quadratic form,

the degrees of freedom for Mr do not match degrees of freedom for X2
[1 : r], when r < q,

and the two statistics are not equivalent under that condition. Mr has an asymptotic-square

distribution with 2q − g degrees of freedom, where g = number of model parameters to be

estimated, so the distribution ofMr has the same degrees of freedom as the distribution of

X2
Ch and X2

red. X
2
[t : u] is more general in two ways. First, the possibility that the statistic

will not include some marginals of an entire lower order is allowed because power of a test

may be reduced by including them. Second, Maydeu-Olivares and Joe adopt a condition

whereby their statistic does not apply to certain circumstances in which X2
[t : u] would ap-

ply. This condition is r ≥ r0, where r0 is the smallest integer r such that the model is

(locally) identified from the joint moments up to order r. See Reiser (2008). The statistic

has been extended to ordinal response variables by Maydeu-Olivares and Joe (2006).

4. Orthogonal Components

Consider the T − g − 1 by 2q matrix H∗ = FFF �H[1:q;−g] . H
∗ has full row rank. FFF is the

upper triangular matrix such that FFF �ΩΩΩeeeFFF = III . FFF = (CCC �)−1, where CCC is the Cholesky factor

of ΩΩΩeee . Premultiplication by (CCC �)−1 orthonormalizes the matrix H[1:q;−g] in the matrix

D(πππ) − ππππππ � −G(A�A)−1G�.

X2
PF = X2

[1:q;−g] = n−1rrr�( �H∗)� �H∗rrr

where �H∗ = H∗(θ̂θθ).
Define

γ̂γγ = n−
1

2 �FFF �

Hrrr = n−
1

2 �H∗rrr

where �FFF is the matrix FFF evaluated at θθθ = θ̂θθ. Then

X2
PF = γ̂γγ � γ̂γγ =

j=T−g−1�

j=1

γ̂2j

�H∗rrr has asymptotic covariance matrix FFF �ΩΩΩeeeFFF = IIIT−g−1 The elements γ̂2j are asymptoti-

cally independent χ2
1 random variables (Reiser, 2008).

The orthogonal components can be obtained as the sequential sum of squares from a

weighted orthogonal regression as follows. Define

zs = (πs(θ̂θθ))
−

1

2
�
p̂s − πs(θ̂θθ)

�
.
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The the regression of zs on the columns of H is

zzz = Hβββ,

and

β̂ββ = (H�WWWH�)−1H�WWW zzz

where �WWW = �DDD−
1

2 �ΣΣΣ�ΣΣΣ �DDD−
1

2 = �DDD−
1

2 �ΣΣΣ �DDD−
1

2 , and DDD = diag(πππ(θθθ)). ΣΣΣ = ΣΣΣ(θθθ) = (III −

πππ
1

2 (πππ
1

2 )� − AAA(AAA�AAA)−1AAA�) is idempotent. There is no error term in the regression if H

contains columns representing marginals of all possible degree.

Let �MMM = �ΣΣΣ �DDD−
1

2H�. Then

β̂ββ = (�MMM ��MMM )−1�MMM �

zzz

γ̂γγ2
j , j = 1, T −g−1 are the sequential SS from this regression. γγγ = CCC �βββ are the orthogonal

coefficients. Components obtained as sequential sum of squares from the SWEEP operator

(Goodnight, 1978; SAS PROC REG) are very accurate numerically when pivot values are

checked for singularity. SAS PROC REG uses the tolerance value 1E−7*CSS, where CSS

is the corrected sum of squares for the regressor, to check for singularities.

4.1 The GFfit(ij) Statistic

The matrices VVV and H defined earlier can be extended when the number of categories for

observed variables is 3 or more. For example, 3 variables with 3 categories H[1] = VVV �,

where

VVV 27 x 6 =




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 1 0 1 0
...

...
...

...
...

...

1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1
...

...
...

...
...

...

0 1 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 1




For higher-order marginal proportions, the columns ofH are again Hadamard products

among the columns of VVV . If q = 3 and c = 3,H is an 18 by 27 matrix:

H[2] =




(vvv1 ◦ vvv3)
�

(vvv1 ◦ vvv4)
�

...

(vvv1 ◦ vvv5)
�

(vvv1 ◦ vvv6)
�

...

(vvv3 ◦ vvv5)
�

...

(vvvi(c−1) ◦ vvvj(c−1))
�



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Joreskog and Moustaki (2001) defined

GFfit(ij) = nΣab
(p̂

(ij)
ab − π̂

(ij)
ab )2

π̂
(ij)
ab

where i = 1, . . . , q − 1 j = i + 1, . . . , q; a = 1, . . . , c; b = 1, . . . , c. Define

H
(ij)
[2] =




hhh�

m+1

hhh�

m+2
...

hhh�

m+(k−1)2




[2]

where m = (i− 1)(c − 1)2 + (j − 2)(c− 1)2. Then GFfit(ij) is a special case of X2
[t:u]

(Cagnone and Mignani, 2007):

GFfit(ij) = eee��ΣΣΣ−1

eee eee

where �ΣΣΣeee = n−1ΩΩΩeee with ΩΩΩeee evaluated at the MLE θ̂θθ. Now

ΩΩΩeee = H
(ij)
[2] (D(πππ) − ππππππ � −G(A�A)−1G�)(H

(ij)
[2] )�

H
(ij)
[2] is a partition of the general matrix H[1:q] The extension to higher-order statistics

is straightforward: Define

H
(ijk)
[3] =




hhh�

m+1

hhh�

m+2
...

hhh�

m+(k−1)3




[3]

wherem = (i− 1)(c− 1)3 + (j − 2)(c− 1)3 + (k − 3)(c− 1)3. Then

GFfit(ijk) = eee��ΣΣΣ−1

eee eee

where �ΣΣΣeee = n−1ΩΩΩeee with ΩΩΩeee evaluated at the MLE θ̂θθ. Now

ΩΩΩeee = H
(ijk)
[3] (D(πππ) − ππππππ � −G(A�A)−1G�)(H

(ijk)
[3] )�

H
(ijk)
[3] is a partition of the general matrixH[1:q]

Now define an orthogonal components version of GFfit:

GFfit
(ij)
⊥

=

�=m+(c−1)2�

�=m+1

γ̂2�

wherem = q + (i− 1)(c− 1)2 + (j − 2)(c− 1)2.
Then

X2
[2] =

i=q−1�

i=1

j=q�

j=i+1

GFfit
(ij)
⊥

More general,

X2
PF =

�=q(c−1)�

�=1

γ̂2� +

�=(q
2
)(c−1)2�

�=q(c−1)+1

γ̂2� +

�=(q
3
)(c−1)3�

�=(q
2
)(c−1)2+1

γ̂2� + · · · + γ̂2T−g−1
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Then

X2
PF =

�

i

GFfit
(i)
⊥

+
�

i

�

j

GFfit
(ij)
⊥

+
�

i

�

j

�

k

GFfit
(ijk)
⊥

+· · ·+GFfit(1,2,...,q)

because

X2
PF = γ̂γγ � γ̂γγ =

�=T−g−1�

�=1

γ̂2�

The extended GFfit
(ij)
⊥

are independent chi-squared statistics on (c− 1)2 degrees of free-
dom due to the definition on orthogonal components. The original GFfit(ij) statistics

are not necessarily independent and do not necessarily sum to X2
[2]. Because the extended

GFfit
(ij)
⊥

are defined on orthogonal components, they are order dependent.

Orthogonal components may be calculated using a Cholesky decomposition. Other

methods for calculation are QR decomposition and sequential sum of squares from a weighted

regression. The statistic X2
[t:u] may be calculated from a sum of orthogonal components.

It is also possible to form orthogonal components of Pearson’s statistic from X2
red by

the methods described above, but the components fromX2
red are not distributed chi-square

with 1 degree of freedom. X2
red yields 2k − 1 components to reproduce the Pearson-Fisher

statistic, and the decomposition is more arithmetic than stochastic.

5. Comparison of Statistics When the Number of Variables is Large

5.1 Application to Factor Analysis

Factor analysis often involves a large number of variables. When the manifest variables

are categorical, the model is known as categorical variable factor analysis and sometimes

as the item response theory model. In an application of educational testing, the number

of manifest variables could be 50 or more. Comparisons of the statistics reviewed in the

previous section will be will be presented using this model with one factor. According to

this model, the probability of the response to a manifest variable, sometimes also referred

to as an item, can be given by a logistic item response function:

π(Yi = 1 | βββ �

i, X = x) = (1 + exp(−βi0 − βi1x))−1

where Yi represents the response to item i,

βi0 = intercept parameter for item i

βi1 = slope parameter for item i

βββ �

i = (β0i, β1i)

x = value taken on by latent random variable X

Since

π(Yi = 0 | βββ �

i, X = x) = 1.0 − π(Yi = 1 | βββ �

i, X = x),

it follows that

π(Yi = yi | βββ
�

i, x) = π(Yi = 1 | βββ �

i, x)yi [1.0 − π(Yi = 1 | βββ �

i, x)]1−yi

It is assumed that, conditional upon the latent variable, responses to the manifest vari-

ables are independent. Let YYY represent a random vector of responses to the items, with
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element Yi, and let y represent a realized value of YYY . Then

π(YYY = y | βββ, x) =

k�

i=1

π(Yi = 1 | βββ, x)yi [1 − π(Yi = 1 | βββ, x)]1−yi

where βββ =




β01 βi1
β02 β12
β03 β13
...

...

β0k β1k



.

Finally, the probability of response pattern s, say, is obtained by taking the expected

value of the conditional probability over the distribution of X in the population, and is

sometimes called the marginal probability:

πs(βββ) = π(YYY = ys | βββ) =

�
∞

−∞

π(YYY = ys | βββ, x)f(x)dx

where f(x) is the density function of X in the population of respondents.

If V represents a T -dimensional multinomial random vector of frequencies associated

with the response patterns, the distribution of V is given by

π(V = n) = n!
T�

s=1

[πs(βββ)]

ns!

ns

where n =vector of observed frequencies

ns =element s of n

n =total sample size =

T�

s=1

ns

The maximum likelihood solution for parameter estimation based on the marginal likeli-

hood function, but with a probit function in place of the logit function, was first given by

Bock and Lieberman (1970).

5.2 Calculations with 20 or More Variables

For testing the fit of a multinomial model, the Pearson and likelihood ratio statistics are

common. When the number of manifest variables is as large as 20, the cross-classified

table has 220, or 1,048,576 cells. If the relevant sample size for testing the fit of the model

is on the order of a few thousand observations, then the data table will be sparse in the

sense that many cells will have counts of zero or 1. It is well known that the asymptotic

chi-square approximation for the distribution of the Pearson and likelihood ratio statistics

may not be valid when the data table is sparse. Extensive simulations have shown that p-

values obtained from the chi-square distribution for a test of the categorical factor analysis

model on a sample of size 1000 start to become unreliable at about 6 to 8 manifest variables,

depending on the skew of distribution of the frequencies.

Calculation of the Pearson statistic itself does not necessarily encounter memory limits

because the contribution of each cell can be calculated individually and cumulated. Pro-

cessing time is not a concern at 20 variables, but it becomes a concern at 25 variables. At 25
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variables, calculation of the Pearson statistic requires 225 expected values, each of which re-
quires numerical evaluation of an integral by a method such as Gauss-Hermite quadrature.

If the calculations are performed in RAM, processing time is several minutes, and if the

calculations are performed in virtual memory, reading and writing to disk, processing time

is several hours. When the number of manifest variables becomes larger, the fitted prob-

abilities become very small, but a 64 bit machine can accurately store very small values.

The primary hurdle for a large number of variables is obtaining a p-value by a method such

as the parametric bootstrap. For 30 variables and 100 bootstrap samples, processing time

would exceed 20 hours. An application to a test data set with n=500 and k=20 variables

resulted in a Pearson chi-square value of 212969.73 on 1048535 degrees of freedom.

Given values for generalized least squares estimates of model parameters,X2
Ch is fairly

straightforward since the covariance matrix can be calculated from the observed counts or

proportions. However, use of observed proportions in the estimator of ΣΣΣ r̃rr also restricts the

usefulness of the statistic. H�

[1 : 2](D(p̂) − p̂p̂�)H[1 : 2] is consistent for ΣΣΣ r̃rr under typical

conditions, but it is not a consistent estimator under sparseness conditions. Simulations

reported by Reiser and VandenBerg (1994) show that chi-square approximation for the

distribution of X2
Ch is valid only up to 8 to 10 variables for typical sample sizes. An

application to a test data set with n=500 and 20 variables resulted in a value of 441.396 on

170 degrees of freedom.

Computation of X2
[t : u] is more demanding and requires careful calculations for some

models. X2
[t : u] requires calculation of G = ∂πππ(θθθ)

∂θθθ
which requires k2k+1 integrals to be

evaluated by numerical quadrature for the factor analysis model. Using SAS PROC IML,

these calculations can be accomplished entirely in random access memory for 20 variables,

if 6 to 8 GB of RAM are available, in approximately 4 minutes of CPU time. If the cal-

culations are done using virtual memory, reading and writing to disk, then processing time

for 20 variables is on the order of 30 hours. The R system has a limit of 3.5 GB of RAM

for 32 bit installation. Due to an increase in the size of matrices by an exponential factor,

increasing the number of manifest variable to just 25, increases the amount of RAM re-

quired to avoid virtual memory to approximately 100 GB. Although it is possible to locate

servers with 100GB of RAM, the limit for currently available desktop computers appears

to be 20 manifest variables for calculations performed in SAS or R. Also, if the number

of manifest variables is greater than 27, the SAS IML will be exceeded, and if the number

of variables is greater than 30, R limits on array size may be exceeded, depending on the

operating system.

Calculation ofX2
[t : u] may be accomplished by directly inverting �ΣΣΣeee . However, because

there is high collinearity among the columns of H, the covariance matrix �ΣΣΣeee is highly ill-

conditioned. Calculations of the inverse may be numerically unstable with even as few as

five manifest variables. A better approach is to calculate the orthogonal components and

then calculate X2
[t : u] as a sum of components. Calculation of components by finding the

Cholesky factor of �ΣΣΣeee , is more stable, but may become inaccurate with fewer than 10 vari-

ables. A QR decomposition of �ΣΣΣeee than the Cholesky factor, but also becomes inaccurate

with more variables. A very accurate calculation of components can be accomplished by

obtaining the sequential sum of squares from a weighted least squares approach. If SAS

PROC REG is used for the weighted least squares, for example, the components in the form

of sequential sum of squares can be obtained very quickly and accurately for 20 variables.

An application to a test data set with n=500 and 20 variables using a direct generalized

inverse of Σ̂ΣΣeee resulted in a value for X2
[1:2] of 21035.86 on 210 degrees of freedom and a

value for X2
[2] of 12267.347 on 210 degrees of freedom. Using the orthogonal components

method resulted in a value for X2
[1:2] of 217.05 on 200 degrees of freedom. Using only

Section on Statistical Computing – JSM 2012

2485



second-order marginals and the method of orthogonal components resulted in a value for

X2
[2] of 209.056 on 190 degrees of freedom.

Direct calculation of Y2, X
2
red, and Mr are usually numerically stable even for a large

number of variables because the inverse of �ΣΣΣeee is not required. However, computational

demands for the calculation of Mr and Y2 are the same as for X2
[t : u] because Mr also

requires the calculation of the derivatives G = ∂πππ(θθθ)
∂θθθ

and of degrees of freedom for Y2

requires �ΣΣΣeee An application to a test data set with n=500 and 20 variables resulted in Y2 =
43.16 on 43 degrees of freedom (rounding down from c = 43.039),X2

red = 187.79 on 170

degrees of freedom, andMr = 87.77 on 170 degrees of freedom.

6. Simulation Study for 20 Variables

A Monte Carlo simulation study was performed under the following conditions: q = 20
manifest variables, unidimensional latent variable,n = 300 sample size, and N = 1000
pseudo samples. With 20 variables and sample size 300, the cross-classified table of the

20 variables is very sparse. The following parameter values were used for the simulation

study: βββ �
0 = (0.40, 0.65, 0.60, 0.35, 0.25, 0.75, 0.50, 0.60, 0.40, 0.50, 0.50, 0.40, 0.60,

0.50, 0.75, 0.25, 0.35, 0.60, 0.65, 0.40); βββ �
1 = (-3.8, -3.4, -3.0, -2.6, -2.2, -1.8, -1.4, -1.0,

-0.6, -0.2, 0.2, 0.6, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8).

Simulation results for Type I error are shown in Table 1. Consistent with many previous

simulation studies, a chi-square approximation for the Pearson and likelihood ratio statistics

does not perform well under severe sparseness, although the Pearson statistic performs

noticeably better than the likelihood ratio statistic. X2
[1:2] and X2

[2] do not perform well

when a generalized inverse or Cholesky decomposition are used to calculate values. X2
[1:2]

andX2
[2] perform well when values are obtained by using a sum of orthogonal components

calculated from sequential sum of squares using the SWEEP operator with a check of pivot

values for a singularity. Y2,X
2
red, andMr perform within an acceptable range. Some of the

empirical Type I error rates are low, but the true nominal level is contained within a 95%

confidence interval around the empirical value.

Simulation results for power are shown in Table 2. In the simulation, the model under

Ho is misspecified because it contrains all slopes equal. X2
[2], X

2
red, and Mr show equiv-

alent power levels. X2
[1:2] and Y2 have somewhat lower power due to dilution of the test

caused by inclusion of first-order marginals in the statistics.

7. Conclusion

X2
red requires substantially less computation that the other statistics considered and per-

forms as well in terms of power and Type I error levels. When the number of cross-

classified manifest variables is large, the difference in computation time is important. While

X2
[1:2] and X2

[2] require more computation, they have the advantage that they can be de-

composed into orthogonal components that have asymptotic chi-square distribution. These

components can be used to investigate the source of lack of fit when the model is rejected

by a more omnibus test statistic.
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Table 1. Simulation Results Type 1 Error

Statistic N α = 0.05 α = 0.01

Pearson 1000 0.055 0.054

LR 1000 0 0

Christoff 1000 1.00 0.999

Y2 1000 0.047 0.015

X2
[1:2] inv 953 0.953 0.939

X2
[1:2] SS 998 0.047 0.007

X2
[2] inv 998 0.212 0.143

X2
[2] chol 0 . .

X2
[2] SS 998 0.047 0.007

X2
red 1000 0.040 0.004

M2 1000 0.038 0.004

Table 2. Simulation Results for Power

Statistic N α = 0.05 α = 0.01

Y2 1000 0.190 0.061

X2
[1:2] SS 1000 0.196 0.067

X2
[2] SS 1000 0.217 0.065

X2
red 1000 0.218 0.065

M2 1000 0.218 0.065
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