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Spatio-Temporal Trend Analysisof Historic Bird Arrival Data
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Abstract

There is increasing interest in spatio-temporal analysengironmental and ecological response
to changes in the climate due to the recent concerns abtelichange. In this work we propose
a spatio-temporal modeling framework that is suitable falgses of environmental and ecological
data while accounting for spatial and temporal structuiseyell as climate effects. As an example,
we consider data on bird migration in the United States aatyaa the spring arrival dates of Purple
Martins between historic data (1905-1940) from the Northehican Bird Phenology Program and
recent data (2001-2010) from the Purple Martin Conseraadissociation. The proposed approach
allows researchers to compare mean arrival dates whilaiatiog for spatial and temporal variabil-
ity. Our results for Purple Martins showed statisticallgrsficant late arrivals in parts of the United
States (South, East, Midwest). However, no statisticafpiicant change in mean arrival dates
were detected in the Northern U.S. (including Great Lakea)arThe proposed approach provides
a useful tool for statistical analysis of spatio-tempouwtkdrelated to climate change studies.
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1. Introduction

The study of environmental and ecological response to tdirmhange in the recent years
has provided ample evidence of the ecological impacts aneclimate change (e.g.,
Walther et al. 2002). In particular, bird migration is knownbe sensitive to changes
in the climate and thus, recently there is increasing istareanalyzing potential changes
in the migration patterns of migratory bird that may providsight on environmental and
ecological response to climate change.

The history of bird migration studies dates back to Arigtattho compiled notes on
more than 140 species of birds and formalized ornithologg asience (Alerstam 1990;
Berthold 2001). Historically, ecologists and ornitholstgi have studied patterns of bird
migration to learn about individual or groups of bird specias well as to understand the
ecological impact of long- and short-term migration on lamad global ecosystems. Re-
cently, statistical analysis of bird migration and phegidal changes has become increas-
ingly popular in the context of more general problems suctiiagate change (e.g., Mgller
et al. 2004; Cox 2010) and epidemiology of infectious disedhkat are linked to bird mi-
gration such as avian influenza outbreaks (e.g., Liu et @52Beare 2007; Bourouiba et
al. 2010). Often, these analyses require spatial or spatiporal models due to the nature
of migration data. There are several recent examples of sffictis in ornithology (e.g.,
Tattrup et al. 2006; Huppop and Winkel 2006) and epidengipliterature (e.g., Munster
et al. 2007; Onozuka and Hagihara 2008; LaDeau et al. 2008;ai 2009; LaDeau et al.
2010).

In this paper, we focus on the analysis of migratory birda dabrder to detect shifts in
spatio-temporal patterns of spring arrival dates in thaeghBtates (specifically, east of the
Rocky Mountains). Notwithstanding the spatial and spagioporal nature of the spring
arrival process, the literature on analysis of spring altrdates using spatial and spatio-
temporal models is sparse (e.g., Gordo 2007; and Both andhetdlidle 2007, use spatial
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models; Fink et al. 2010, Hulbert and Liang 2012, use sgatiggoral models). In this pa-
per, our goal is to develop a straightforward spatio-terap@pproach for analysis of spring
arrival data. The proposed framework allows us to includatter, climate and other types
of predictor variables in the model. The main focus is on tigiag an exploratory data

analysis tool for inferential purposes. However, the flgitjbof the proposed framework

allows for using this approach for predictive purposes téd@ a case study for spatio-
temporal analysis of spring arrival dates, we discuss théyais of historic and recent data
on Purple Martins. Section 2 discusses the data and intesdilne methodology. Results
are given in Sections 3, followed by discussion and conshssin Section 4.

2. Materials and Methods

2.1 Spring Arrival Data

The Purple Martin IProgne subis) is the largest member of the swallow family in North
America and are of special interest to birders, in large, gmatause of the close proxim-
ity of their nesting sites to human settlements. Purple Marspend their non-breeding
season in Brazil and migrate to North America to nest. Aduliple Martins commonly
return to the same nesting sites where they were successfukvious years (see e.g.,
www.purplemartin.org for more information).

The North American Bird Phenology Program (NABPP), housethé United States
Geological-Patuxent Wildlife Research Center (USGS-PWR¥@s revitalized in 2008
(Zelt et al. 2012). The NABPP houses millions of data indaxisan more than 200 bird
species collected over a 90 year span between 1881-1970NABPP data collection is
the product of records collected by a network of over 3,000nteers on bird migration,
breeding, wintering, and distribution. As of date, over #liori handwritten records have
been scanned, in an effort to digitize the data and are ghnogigh a thorough data valida-
tion process. Once validated, the records will be accessifiline by biologists, managers,
and members of the general public.

Due to low sampling efforts during the early decades as vediha last decades of the
existence of NABPP, we chose data during 1905-1940 on &daias of Purple Martins.
We label these historic records as “old” data in our analyéie also use data from Courter
(2012) on arrival dates of Purple Martins between 2001-2@llected by the Purple Martin
Conservation Association (www.purplemartin.org). In @malysis, we label the recent
data as “new” data. Unfortunately, there are no comprefersid reliable sources (or no
straightforward method) to compile data on arrival recarfdBurple Martins for the period
between the 1960s and the late 1990s based on acceptalite spatrage and sampling
effort that is of interest in this study.

Here, we convert the arrival dates to Julian Date (or Dayaes#f) calendar, which is
based on the number of days in a calendar year starting Jafigtfor each year. For
example, an arrival date of February 1st, translates to 82mthe Julian Date Calendar,
as it is the 32nd day of the year (of course, one has to accoutgdp years accordingly).
We consider a spatial grid with ten irregular sized cellg@if¢ 1). The spatial grid and cell
sizes were decided based on a data criteria which requiobsgeal cell and for each year
to include at least five data points to achieve reasonablabitiy in arrival data within
each cell.

Since we are interested in understanding the relationsktiywd®en migration patterns
and climate, we include climate effects as predictor véemlin the model. As an ex-
ample, we consider data on Winter North Atlantic Oscillati®inter NAO or WNAO;
http://climatedataguide.ucar.edu/). Similarly, othBmate indices and weather variables
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Figure 1. Map with grid cells.

can be easily included in the model.

2.2 Spatio-Temporal Model

LetY; = (Yi4,...,Y, ) denote the vector of mean arrival days for the grid cells<(
1,...,10) over the total number of years in the study= 1, ...,46; 36 years in the old
data for 1905-1940, and 10 years in the new data for 2001)20h6reY; ; represent the
mean arrival days for théth grid cell in thet-th year. Using a hierarchical modeling
framework (Berliner 1996) which relies on three stages aédprocess, and parameter
models, we define the followinData Model

Y ~ N(mg, 0°T) (1)

where the observed arrival days in (1) are assumed to betmrally independent (condi-
tioned on a process model that accounts for spatial and t@ingeependence).

The Process Modd is defined based on a time series threshold modeling approach
(Tong 1983; Geweke and Terui 1993)

b071 + M1,sp + b171Xt +e1t if 1 <t<36 (years 1905-1940)

m; = po + bo2 + M2sp + b12Xg +eay if 37 <t <46 (years 2001-2010)
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wherepy = (1.1, - - -, fo,n) denotes the spatially-varying common mean for the old and
the new datag; = (u11,...,p1,,) denotes the spatially-varying mean specific to the
old data, andus = (u2,1,...,u2,)" denotes the spatially-varying mean specific to the

new data. The predictor data on Winter NAO is given in thealdsa X with different
coefficients for old&; ;) and new datalf »). Parameterg, ; andb » represent the constant
means for the old and new data, respectively. Also, we cenglifferent autoregressive
error processes; ; andey ¢, for the old and new data, respectively.

The autoregressive error processes are based on the failoWR(1) models (e.g.,
Cressie and Wikle 2011):

ers=vies1+n, e~ NOo m) 2
€t =12€2¢ 1 +M2t, M2t~ N(0, 0'772) 3

and the spatial structure for the spatially-varying par@nsgs,, for p = 0,1, 2, are based

on a Conditional Autoregressive (CAR) model (see e.g.,SieelD93; Banerjee et al. 2004,
Arab et al. 2008)

Hp,t|Hip,ss 7’5,1 ~ N(fips + Z Cpis(p,s — Bp,s)s Tg,l)' (4)
sEN;
wherel,s =1,...,n, andcp 1s'S are weights defined such thgt;; = 1forl # s, ¢y 49 = 0
forq=1,...,n, andcp IsT, l = cp7sl7'2

Inference is conducted in a Bayesian framework using a Maidaain Monte Carlo
(MCMC). The Bayesian framework requires that we define pistributions for unknown
parameters (also called tirarameter Models in the hierarchical framework). We define,
the following relatively non-informative prior distribions for the unknown parameters

ijf NN(M = 0,0’2 — 100)7 j = 07 17 k = 1’27
o? ~InvGamma(mean= 1,var = 100)
vy ~Uniform(—1,1)
1/2 ~Uniform(—1,1)
771 ~Uniform(0, 100)
(

2
a,, ~Uniform(0,100)

We also define the following prior distribution for the vare@ components of the CAR
Priors (i.e., hyperparameters for the CAR priors)

7']02 ~ InvGamma(mean= 1,var= 100) p =0, 1,2. (5)

Also, for the AR(1) models in (2) and (3), we need to defindahgtatese; o andes g.
We assign the following prior distributions for these ialtstates

e~ N(0, ) (Old data; yeard905, . .., 1940)
ez~ N(0, ) (New data; year8001, ... ,2010)

Note that we have already defined prior distributions forvéwance parameters (i.e., hy-
perparameters); ando?,
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Table 1: Posterior results for the model parameters.

Parameter Posterior Mean Posterior St. De®95% Credible Interval

Do 1 16.36 6.73 (3.177, 29.51)
bo.2 1.675 6.721 (-11.55, 14.83)
b1 35.31 4.298 (26.7, 43.73)

b1 -11.06 9.605 (-30.52, 7.325)

Table 2: Posterior results for the overall difference in spatiabmeeof the oldb; + w1 p)
and new datdby + p2 sp) -

Grid Cell Posterior Mean 95% Credible Interval

1 18.02 (9.42, 26.41)
2 21.27 (12.63, 29.69)
3 17.50 (8.89, 25.84)
4 22.75 (14.20, 31.06)
5 19.90 (11.36, 28.20)
6 10.49 (1.89, 18.88)
7 14.39 (5.74, 22.77)
8 7.61 (-0.98, 15.95)
9 7.74 (-0.87, 16.10)
10 7.22 (-1.40, 15.63)
3. Resaults

The MCMC algorithm was implemented in OpenBUGS (http://wepenbugs.info/) for
100,000 iterations. We discarded the first 10,000 iteratasri‘burn-in” and based our
inference on the remaining 90,000 iterations. The MCMC i@tlgn achieved convergence
rapidly within the first few thousand iterations. Convergemwas assessed using visual
inspection, as well as autocorrelation of the MCMC chains.

Our results show significant changes in arrival dates of [BuMartins in recent years.
Table 1 shows the posterior inference for the regressioanpeters. Table 2 shows the
inference for the overall difference in total means for tee/rand old data (combined mean
effect of the constant and spatially-varying medgg, + p, for £ = 1, 2).

Figure 2 shows boxplots of the posterior distributions ef¢tbmmon spatially-varying
mean for the two periods. Figures 3 and 4 show boxplots ofdlseepior distributions of the
spatially-varying specific to the old and new data, respelsti Figure 5 shows boxplots
of the posterior distributions of the difference of the st-varying means for the old
and new data. Critically, the spatial structure (strongudinal effect and mild to weak
longitudinal effect) pronounced in Figures 2-4 providesry justification for the need for
spatially-varying mean parameters in the model.
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Figure 2. Common spatially-varying mean for the two periods.

4. Discussion and Conclusions

Our model results show significant shifts in the mean arieals of Purple Martins in the
South, East and part of North West of the United States (Sbke T3 with significantly
earlier arrivals for the recent data compared to the old. dBitidgs may be an indication of
the linkage between the recent changes in the climate dgi@bal warming) and shifts in
the Purple Martin migration patterns.

Also, we have detected a significantly positive associatietween the Winter NAO
index and the mean arrival days for the old data (1905-194). significant effect of
Winter NAO was detected for the new data (See Table 1). Weestidpat this may be
mainly due to low variability in the Winter NAO data for thecent data since the 2000s
Winter NAO values are mostly negative with low variabilig.g., the standard deviation of
Winter NAO values for the old period is more than 2.5 timesstandard deviation of the
values for the recent period.).

As mentioned in the previous section, the inherent spattalitlinal and longitudinal
structure verifies the importance of considering spatiadlyying mean parameters. Criti-
cally, our results how that shifts in arrival patterns of fla@rMartins are not constant over
space.

Potential future directions include analysis of multiedei arrival dates for closely re-
lated bird species, and characterize the potential assmtibetween the changes in the
arrival dates and climate change. In this work, as an exgmy#eused a climate index
(Winter NAO) as a predictor variable in the model. However,d thorough investigation
of the link between changes in the climate and shifts in niigmgpatterns, one should con-
sider other related weather variables (e.g., temperagtueejpitation) and climate indices
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Figure 3: Spatially-varying mean for the 1905-1940 data.

(e.g., North Pacific (NP); Atlantic Multi-decadal Oscilat (AMO); information on El
Nifio and La Nifia seasons).
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