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Abstract
There is increasing interest in spatio-temporal analysis of environmental and ecological response

to changes in the climate due to the recent concerns about climate change. In this work we propose
a spatio-temporal modeling framework that is suitable for analyses of environmental and ecological
data while accounting for spatial and temporal structure, as well as climate effects. As an example,
we consider data on bird migration in the United States and analyze the spring arrival dates of Purple
Martins between historic data (1905-1940) from the North American Bird Phenology Program and
recent data (2001-2010) from the Purple Martin Conservation Association. The proposed approach
allows researchers to compare mean arrival dates while accounting for spatial and temporal variabil-
ity. Our results for Purple Martins showed statistically significant late arrivals in parts of the United
States (South, East, Midwest). However, no statistically significant change in mean arrival dates
were detected in the Northern U.S. (including Great Lakes area). The proposed approach provides
a useful tool for statistical analysis of spatio-temporal data related to climate change studies.
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1. Introduction

The study of environmental and ecological response to climate change in the recent years
has provided ample evidence of the ecological impacts of recent climate change (e.g.,
Walther et al. 2002). In particular, bird migration is knownto be sensitive to changes
in the climate and thus, recently there is increasing interest in analyzing potential changes
in the migration patterns of migratory bird that may provideinsight on environmental and
ecological response to climate change.

The history of bird migration studies dates back to Aristotle who compiled notes on
more than 140 species of birds and formalized ornithology asa science (Alerstam 1990;
Berthold 2001). Historically, ecologists and ornithologists have studied patterns of bird
migration to learn about individual or groups of bird species, as well as to understand the
ecological impact of long- and short-term migration on local and global ecosystems. Re-
cently, statistical analysis of bird migration and phenological changes has become increas-
ingly popular in the context of more general problems such asclimate change (e.g., Møller
et al. 2004; Cox 2010) and epidemiology of infectious diseases that are linked to bird mi-
gration such as avian influenza outbreaks (e.g., Liu et al. 2005; Feare 2007; Bourouiba et
al. 2010). Often, these analyses require spatial or spatio-temporal models due to the nature
of migration data. There are several recent examples of suchefforts in ornithology (e.g.,
Tøttrup et al. 2006; Hüppop and Winkel 2006) and epidemiology literature (e.g., Munster
et al. 2007; Onozuka and Hagihara 2008; LaDeau et al. 2008; Siet al. 2009; LaDeau et al.
2010).

In this paper, we focus on the analysis of migratory birds data in order to detect shifts in
spatio-temporal patterns of spring arrival dates in the United States (specifically, east of the
Rocky Mountains). Notwithstanding the spatial and spatio-temporal nature of the spring
arrival process, the literature on analysis of spring arrival dates using spatial and spatio-
temporal models is sparse (e.g., Gordo 2007; and Both and et Marvelde 2007, use spatial
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models; Fink et al. 2010, Hulbert and Liang 2012, use spatio-temporal models). In this pa-
per, our goal is to develop a straightforward spatio-temporal approach for analysis of spring
arrival data. The proposed framework allows us to include weather, climate and other types
of predictor variables in the model. The main focus is on developing an exploratory data
analysis tool for inferential purposes. However, the flexibility of the proposed framework
allows for using this approach for predictive purposes too.As a case study for spatio-
temporal analysis of spring arrival dates, we discuss the analysis of historic and recent data
on Purple Martins. Section 2 discusses the data and introduces the methodology. Results
are given in Sections 3, followed by discussion and conclusions in Section 4.

2. Materials and Methods

2.1 Spring Arrival Data

The Purple Martin (Progne subis) is the largest member of the swallow family in North
America and are of special interest to birders, in large part, because of the close proxim-
ity of their nesting sites to human settlements. Purple Martins spend their non-breeding
season in Brazil and migrate to North America to nest. Adult Purple Martins commonly
return to the same nesting sites where they were successful in previous years (see e.g.,
www.purplemartin.org for more information).

The North American Bird Phenology Program (NABPP), housed in the United States
Geological-Patuxent Wildlife Research Center (USGS-PWRC), was revitalized in 2008
(Zelt et al. 2012). The NABPP houses millions of data index cards on more than 200 bird
species collected over a 90 year span between 1881-1970. TheNABPP data collection is
the product of records collected by a network of over 3,000 volunteers on bird migration,
breeding, wintering, and distribution. As of date, over a million handwritten records have
been scanned, in an effort to digitize the data and are going through a thorough data valida-
tion process. Once validated, the records will be accessible online by biologists, managers,
and members of the general public.

Due to low sampling efforts during the early decades as well as the last decades of the
existence of NABPP, we chose data during 1905-1940 on arrival dates of Purple Martins.
We label these historic records as “old” data in our analysis. We also use data from Courter
(2012) on arrival dates of Purple Martins between 2001-2010collected by the Purple Martin
Conservation Association (www.purplemartin.org). In ouranalysis, we label the recent
data as “new” data. Unfortunately, there are no comprehensive and reliable sources (or no
straightforward method) to compile data on arrival recordsof Purple Martins for the period
between the 1960s and the late 1990s based on acceptable spatial coverage and sampling
effort that is of interest in this study.

Here, we convert the arrival dates to Julian Date (or Day-of-Year) calendar, which is
based on the number of days in a calendar year starting January 1st for each year. For
example, an arrival date of February 1st, translates to 32 under the Julian Date Calendar,
as it is the 32nd day of the year (of course, one has to account for leap years accordingly).
We consider a spatial grid with ten irregular sized cells (Figure 1). The spatial grid and cell
sizes were decided based on a data criteria which requires each grid cell and for each year
to include at least five data points to achieve reasonable variability in arrival data within
each cell.

Since we are interested in understanding the relationship between migration patterns
and climate, we include climate effects as predictor variables in the model. As an ex-
ample, we consider data on Winter North Atlantic Oscillation (Winter NAO or WNAO;
http://climatedataguide.ucar.edu/). Similarly, other climate indices and weather variables
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Figure 1: Map with grid cells.

can be easily included in the model.

2.2 Spatio-Temporal Model

Let Yt = (Y1,t, . . . , Yn,t)
′ denote the vector of mean arrival days for the grid cells (n =

1, . . . , 10) over the total number of years in the study (t = 1, . . . , 46; 36 years in the old
data for 1905-1940, and 10 years in the new data for 2001-2010) whereYi,t represent the
mean arrival days for thei-th grid cell in thet-th year. Using a hierarchical modeling
framework (Berliner 1996) which relies on three stages of data, process, and parameter
models, we define the followingData Model

Yt ∼ N(mt, σ
2
I) (1)

where the observed arrival days in (1) are assumed to be conditionally independent (condi-
tioned on a process model that accounts for spatial and temporal dependence).

The Process Model is defined based on a time series threshold modeling approach
(Tong 1983; Geweke and Terui 1993)

mt = µ0 +















b0,1 + µ1,sp + b1,1Xt + e1,t if 1 ≤ t ≤ 36 (years 1905-1940)

b0,2 + µ2,sp + b1,2Xt + e2,t if 37 ≤ t ≤ 46 (years 2001-2010)
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whereµ0 = (µ0,1, . . . , µ0,n)′ denotes the spatially-varying common mean for the old and
the new data,µ1 = (µ1,1, . . . , µ1,n)′ denotes the spatially-varying mean specific to the
old data, andµ2 = (µ2,1, . . . , µ2,n)′ denotes the spatially-varying mean specific to the
new data. The predictor data on Winter NAO is given in the variableXt with different
coefficients for old (b1,1) and new data (b1,2). Parametersb0,1 andb0,2 represent the constant
means for the old and new data, respectively. Also, we consider different autoregressive
error processese1,t ande2,t, for the old and new data, respectively.

The autoregressive error processes are based on the following AR(1) models (e.g.,
Cressie and Wikle 2011):

e1,t = ν1e1,t−1 + η1,t, η1,t ∼ N(0, σ2

η1
) (2)

e2,t = ν2e2,t−1 + η2,t, η2,t ∼ N(0, σ2

η2
) (3)

and the spatial structure for the spatially-varying parametersµp, for p = 0, 1, 2, are based
on a Conditional Autoregressive (CAR) model (see e.g., Cressie 1993; Banerjee et al. 2004;
Arab et al. 2008)

µp,l|µp,s, τ
2

p,l ∼ N(µ̄p,l +
∑

s∈Nl

cp,ls(µp,s − µ̄p,s), τ
2

p,l). (4)

wherel, s = 1, . . . , n, andcp,ls’s are weights defined such thatcp,ls = 1 for l 6= s, cp,qq = 0
for q = 1, . . . , n, andcp,lsτ

2

p,l = cp,slτ
2
p,s.

Inference is conducted in a Bayesian framework using a Markov Chain Monte Carlo
(MCMC). The Bayesian framework requires that we define priordistributions for unknown
parameters (also called theParameter Models in the hierarchical framework). We define,
the following relatively non-informative prior distributions for the unknown parameters

bj,k ∼N(µ = 0, σ2 = 100), j = 0, 1, k = 1, 2,

σ2 ∼InvGamma(mean= 1, var = 100)

ν1 ∼Uniform(−1, 1)

ν2 ∼Uniform(−1, 1)

σ2

η1
∼Uniform(0, 100)

σ2

η2
∼Uniform(0, 100)

We also define the following prior distribution for the variance components of the CAR
Priors (i.e., hyperparameters for the CAR priors)

τ2

p ∼ InvGamma(mean= 1, var = 100) p = 0, 1, 2. (5)

Also, for the AR(1) models in (2) and (3), we need to define initial states,e1,0 ande2,0.
We assign the following prior distributions for these initial states

e1,0 ∼ N(0, σ2

η1
) (Old data; years1905, . . . , 1940)

e2,0 ∼ N(0, σ2

η2
) (New data; years2001, . . . , 2010)

Note that we have already defined prior distributions for thevariance parameters (i.e., hy-
perparameters)σ2

η1
andσ2

η2
.

Section on Statistics and the Environment – JSM 2012

3092



Table 1: Posterior results for the model parameters.

Parameter Posterior Mean Posterior St. Dev.95% Credible Interval
b0,1 16.36 6.73 (3.177, 29.51)
b0,2 1.675 6.721 (-11.55, 14.83)
b1,1 35.31 4.298 (26.7, 43.73)
b1,2 -11.06 9.605 (-30.52, 7.325)

Table 2: Posterior results for the overall difference in spatial means of the old(b1 + µ1,sp)
and new data(b2 + µ2,sp) .

Grid Cell Posterior Mean 95% Credible Interval
1 18.02 (9.42, 26.41)
2 21.27 (12.63, 29.69)
3 17.50 (8.89, 25.84)
4 22.75 (14.20, 31.06)
5 19.90 (11.36, 28.20)
6 10.49 (1.89, 18.88)
7 14.39 (5.74, 22.77)
8 7.61 (-0.98, 15.95)
9 7.74 (-0.87, 16.10)
10 7.22 (-1.40, 15.63)

3. Results

The MCMC algorithm was implemented in OpenBUGS (http://www.openbugs.info/) for
100,000 iterations. We discarded the first 10,000 iterationfor “burn-in” and based our
inference on the remaining 90,000 iterations. The MCMC algorithm achieved convergence
rapidly within the first few thousand iterations. Convergence was assessed using visual
inspection, as well as autocorrelation of the MCMC chains.

Our results show significant changes in arrival dates of Purple Martins in recent years.
Table 1 shows the posterior inference for the regression parameters. Table 2 shows the
inference for the overall difference in total means for the new and old data (combined mean
effect of the constant and spatially-varying means,b0,k + µk for k = 1, 2).

Figure 2 shows boxplots of the posterior distributions of the common spatially-varying
mean for the two periods. Figures 3 and 4 show boxplots of the posterior distributions of the
spatially-varying specific to the old and new data, respectively. Figure 5 shows boxplots
of the posterior distributions of the difference of the spatially-varying means for the old
and new data. Critically, the spatial structure (strong latitudinal effect and mild to weak
longitudinal effect) pronounced in Figures 2-4 provides strong justification for the need for
spatially-varying mean parameters in the model.

Section on Statistics and the Environment – JSM 2012

3093



−10

−5

0

5

10

1 2 3 4 5 6 7 8 9 10

µ
0,sp

Figure 2: Common spatially-varying mean for the two periods.

4. Discussion and Conclusions

Our model results show significant shifts in the mean arrivaldays of Purple Martins in the
South, East and part of North West of the United States (See Table 2) with significantly
earlier arrivals for the recent data compared to the old data. This may be an indication of
the linkage between the recent changes in the climate (i.e.,global warming) and shifts in
the Purple Martin migration patterns.

Also, we have detected a significantly positive associationbetween the Winter NAO
index and the mean arrival days for the old data (1905-1940).No significant effect of
Winter NAO was detected for the new data (See Table 1). We suspect that this may be
mainly due to low variability in the Winter NAO data for the recent data since the 2000s
Winter NAO values are mostly negative with low variability (e.g., the standard deviation of
Winter NAO values for the old period is more than 2.5 times thestandard deviation of the
values for the recent period.).

As mentioned in the previous section, the inherent spatial latitudinal and longitudinal
structure verifies the importance of considering spatially-varying mean parameters. Criti-
cally, our results how that shifts in arrival patterns of Purple Martins are not constant over
space.

Potential future directions include analysis of multivariate arrival dates for closely re-
lated bird species, and characterize the potential association between the changes in the
arrival dates and climate change. In this work, as an example, we used a climate index
(Winter NAO) as a predictor variable in the model. However, for a thorough investigation
of the link between changes in the climate and shifts in migration patterns, one should con-
sider other related weather variables (e.g., temperature,precipitation) and climate indices
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Figure 3: Spatially-varying mean for the 1905-1940 data.

(e.g., North Pacific (NP); Atlantic Multi-decadal Oscillation (AMO); information on El
Niño and La Niña seasons).
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