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Abstract
Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal studies. For a

2nd degree polynomial, the vertex gives the location of the curve in the XY plane. We present an
approximate confidence region for the vertex using two methods, a gradient method and the delta
method. Under some models, an indirect test on the location of the vertex can be based on the
intercept and slope parameters, but in other models, a direct test on the vertices is required. We
present a quadratic-form statistic for a test of the null hypothesis that there is no shift in the location
of the vertex in a mixed linear model. The statistic has an approximate chi-squared distribution.
We also present results for a simulation study conducted to assess the influence of sample size and
nature of the random effects. Simulation results show that the test statistic performs well in terms
of Type I error rate and power. We also present interpretations of shift in the location of the vertex.
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1. Introduction

The relation between two variables x and y cannot be adequately described by a simple
linear regression model in most longitudinal studies. Adding a square of the fixed ef-
fect variable x to the model gives a quadratic model, which can often describes the true
unknown model very well. When the predictor variable is time, the model becomes a
quadratic growth curve model. The coefficient parameters of fixed effect are necessary to
determine the regression curve, but they are actually not the matter of interest. The vertex
of the quadratic growth curve should be more interesting because it gives the maximum and
minimum of such a curve. In practice, by all means reasonable, it is important to derive
the confidence region of the parabola’s vertex as well as the confidence interval of x and y
coordinate. Both the x and y coordinate are given by a non-linear combination of the model
coefficient parameters, not simply only one of them. However common statistical computer
packages usually display confidence intervals for the model coefficient parameters, but not
for any of their functions. Obviously it is reasonable to study it.
The main purpose of this project is to give methods for confidence interval and region of the
vertex of a quadratic growth curve mixed model and to perform simulations using different
models, parameters and sample sizes to show the validity of these methods and compare
them. The methods we focus on are delta method, gradient method and mean response
method for confidence interval and approximate chi-square method for confidence region.
For the power analysis, different non-vertex points are tested. Different types of covariance
structures are also compared in the project.
In Section 2, we make a review of some models and methods used in this project. In Section
3, we give the different methods used in simulation study. Simulation results are analyzed
in Section 4. We present the conclusion and discussion in Section 5.
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2. Review of Literature

2.1 Delta Method

In statistics, the delta method is a method for deriving an approximate probability distri-
bution for a function of an asymptotically normal statistical estimator from knowledge of
limiting variance of that estimator. More broadly, the delta method is known as a gener-
alization of the Central Limit Theorem using Taylor series approximations for mean and
variance. Using a Taylor series expansion, if a function g(Y ) has derivatives of order r,
that is, gr(Y ) = dr

dyr g(Y ) exists, then for any constant a, the Taylor polynomial of order r
about a is,

Tr(Y ) = Σr
i=0

g(i)(a)

i!
(Y − a)i.

Taylor’s major theorem is that the remainder from the approximation, g(Y )−Tr(Y ) always
tends to zero faster than the highest-order explicit term. Thus we can drop the higher-order
terms to give the approximation,

g(Y ) ≈ g(a) + g′(a)(Y − a) .

Let a = µ, the mean of Y , a Taylor series expansion of g(Y ) about µ gives the approxima-
tion,

g(Y ) = g(µ) + g′(µ)(Y − µ) .

Taking the variance of both sides yields,

V ar(g(Y )) ≈ (g′(µ))2V ar(Y ) .

For univariate delta method, the function g(Y ) is a real-valued continuous function of Y ,
for Y an element of N -dimensional Euclidean space. Let YN be a sequence of random
variables that satisfies

√
N(YN − µ) → N(0, σ2) in distribution. For a given function g

and a specific value of µ, suppose that g′(µ) exists and is not 0. Then
√
N(g(YN )− g(µ))→ N(0, σ2(g′(µ))2) in distribution.

For multivariate delta method, define the random vector Y = (Y1, ..., Yp) with mean
µ = (µ1, ..., µp) and covariances Cov(Yj , Yj′) = σjj′ . We shall observe N i.i.d random
samples of the population of Y and denote these samples as Y (1), ...,Y (N). Furthermore,
we call the sample means for each element of the vector Ŷj = ΣN

k=1Y
(k)
j , j = 1, ..., p and

Ŷ as the vector of sample means. Finally, we consider the multivariate function g : R 7→ R
with g(Y ) = g(Y1, ..., Yp) and use Taylor expansion to write

g(Ŷ1, ..., Ŷp) ≈ g(µ1, ...µp) + Σp
j=1g

′
j(µj)(Ŷj − µj).

In vector notation, this is

g(Ŷ ) ≈ g(µ) +∇′g(µ)(Ŷ − µ),

with the abuse of notation that∇′g(µ) = (∇′g(Y ))|Y =µ.
The multivariate delta method in vector form is, let Y (1), ...,Y (N) be a random sample
with E(Y (k)) = µ and covariance matrix E(Y (k) − µ)(Y (k) − µ)′ = Σ. For a given
function g with continuous first partial derivatives and a specific value of µ for which
τ2 = ∇′g(µ)Σ∇g(µ) > 0,

√
N(g(Ŷ )− g(µ))→ N(0, τ2) in distribution. (1)
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2.2 The Confidence Set for X-Coordinate With a Given Gradient

The univariate classical fixed effects quadratic model is given by

yi = β0 + β1xi + β2x
2
i + εi ,

where xi, i = 1, ...N, denote fixed x-values, yi denotes the response variable,N is the num-
ber of observations and εi the errors, which are assumed to be independent and normally
distributed random variables with an expected value 0 and a common unknown variance
σ2 > 0. The function p : xi → E(yi) = β0 + β1xi + β2x

2
i is a parabola in xi. The

x-coordinate where this parabola has given gradient m results in

xgigrad =
m− β1

2β2
Provided that β2 6= 0 .

A point estimate of it is given by x̂gigrad = (m − b1)/(2b2), where b1 and b2 are the least
squares estimates. This point estimation is not unbiased. It is that x−coordinate where the
empirical regression parabola has the given gradient.
An exact (1 − α)-confidence set for xgigrad is obtained as a solution of function below,
where t2n−3,1−α/2 denotes the squared t-quantile with n − 3 degrees of freedom, (Martin
Bachmaier, A confidence set for that x-coordinate where a quadratic regression model has
a given gradient, Stat Papers, 50:649-660, 2009.):

x0 ∈ C(xgigrad)

⇔ (b1 −m+ 2x0b2)2

ˆV ar(b1) + 4x0
ˆCov(b1, b2) + 4x2

0
ˆV ar(b2)

6 t2n−3,1−α/2 (2)

⇔ (b1 −m+ 2x0b2)2 6 [ ˆV ar(b1) + 4x0
ˆCov(b1, b2) + 4x2

0
ˆV ar(b2)] · t2n−3,1−α/2

⇔ A · x2
0 +B · x0 + C 6 0 .

Where, A = b22 − ˆV ar(b2) · t2n−3,1−α/2

B = (b1 −m)b2 − ˆCov(b1, b2) · t2n−3,1−α/2

C =
1

4
((b1 −m)2 − ˆV ar(b1) · t2n−3,1−α/2) .

The medium equivalence sign requires that the denominator in (2) is positive. This is ful-
filled if the mean square error is positive. Since the mean square error equals to zero only
occurs with probability zero, we can choose an optional confidence interval for this case
without violating the coverage probability of the confidence interval.
To solve the inequality, ifA 6= 0, thenA·x2

0+B ·x0+C is a parabola. It has two nulls if the
discriminant D = B2− 4AC is positive. With regard to the numerical stability concerning
small values of 4AC, we compute either zero in two different ways:

x01 =
−2C

B −
√
B2 − 4AC

when B < 0

=
−B −

√
B2 − 4AC

2A
when B > 0

x02 =
−B +

√
B2 − 4AC

2A
when B 6 0

=
−2C

B +
√
B2 − 4AC

when B > 0

Thus when A > 0 and D > 0, this leads to a two-sided confidence interval [x01, x02].
When A < 0 and D > 0, the confidence interval goes to (−∞, x02]

⋃
[x01,+∞).
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2.3 Interval Estimation for Mean Response

A common objective in regression analysis is to estimate the mean for one or more proba-
bility distributions of Y . Let Xh denote the level of X for which we wish to estimate the
mean response. Xh may be a value which occurred in the sample, or it may be some other
value of the predictor variable within the scope of the model. The mean response when
X = Xh is denoted by E{Yh}.
The sampling distribution of Ŷh refers to the different values of Ŷh that would be ob-
tained if repeated samples were selected, each holding the levels of the predictor variable
X constant, and calculating Ŷh for each sample. For normal error fixed effects model,
the sampling distribution of Ŷh is normal, with mean E{Ŷh} = E{Yh} and variance
σ2{Ŷh} = σ2[ 1

n + (Xh−X̄)2

Σ(Xi−X̄)2
]. When mean square error (MSE) is substituted for σ2, we

obtain s2{Ŷh}, the estimated variance of Ŷh,

s2{Ŷh} = MSE[
1

n
+

(Xh − X̄)2

Σ(Xi − X̄)2
] .

The estimated standard deviation of Ŷh is then s{Ŷh}, the positive square root of s2{Ŷh}.
Thus,

ŷh − E{yh}
s{ŷh}

is distributed as t(n− p) distribution, (3)

where p is the number of regression coefficients. A confidence interval for E{Yh} is con-
structed in the standard fashion, making use of the t distribution. The (1 − α) confidence
limits are,

Ŷh ± t(1− α/2;n− p)s{Ŷh}.

If there exists vertex V ′ = (Vx, Vy) of the model, when the value of x-coordinate Vx is
known, we could estimate the value of y-coordinate V̂y by substituting Vx in the regression
model and the standard deviation s{V̂y} = MSE[ 1

n + (Vx−X̄)2

Σ(Xi−X̄)2
]. Using formula(3), then

the (1− α) confidence limits of V̂y are,

V̂y ± t(1− α/2;n− p)s{V̂y} .

3. Methods for Growth Curve Mixed Model

In this report, we consider two growth curve models. One is second-order mixed model
with only random intercept, the other is second-order mixed model with random intercept
and random slope. Since the predictor variable is time, the two models are both quadratic
growth curve. They are defined as follows,
Second-order Mixed model with only random intercept,

yij = β0 + β1xij + β2x
2
ij + α0i + εij i = 1, ..., N j = 1, ..., n (4)

where,
yij denotes the response variable for the ith individual at the jth occasion, with E(yij) =
β0 + β1xij + β2x

2
ij ,

n is the number of time points, N is the number of individuals,
β0, β1 and β2 are regression coefficients of fixed effect,
α0i is random effect, α0i ∼ N(0, σ2

α0
),

εij are random error terms, εij ∼ N(0, σ2
e),

α0i and εij are independent, Cov(α0i, εij) = 0 for all i.
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Second-order Mixed model with random intercept and random slope,

yij = β0 + β1xij + β2x
2
ij + α0i + α1ixij + εij i = 1, ..., N j = 1, ..., n (5)

where,
yij denotes the response variable for the ith individual at the jth occasion, with E(yij) =
β0 + β1xij + β2x

2
ij ,

n is the number of time points, N is the number of individuals,
β0, β1 and β2 are regression coefficients of fixed effect,
α0i and α1i are independent random effects, with α0i ∼ N(0, σ2

α0
), α1i ∼ N(0, σ2

α1
) and

Cov(α0i, α1i) = 0 for all i,
εij are random error terms, εij ∼ N(0, σ2

e),
α0i, α1i and εij are independent, Cov(α0i, εij) = 0 and Cov(α1i, εij) = 0 for all i.
Let b′ = (b0, b1, b2) be the Generalized Least Square estimator of β′ = (β0, β1, β2). Under
some situations, the distribution of β̂ is exact. More generally, b is approximately normally
distributed with mean β and covariance Cov(b), i,e, b a∼ (β, Cov(b)). Where,

Cov(b) =

 σ2
b0

σb0b1 σb0b2
σb0b1 σ2

b1
σb1b2

σb0b2 σb1b2 σ2
b2

 .

Then the estimated covariance of Cov(b) could be expressed as

ˆCov(b) =

 σ̂2
b0

σ̂b0b1 σ̂b0b2
σ̂b0b1 σ̂2

b1
σ̂b1b2

σ̂b0b2 σ̂b1b2 σ̂2
b2

 .

Since, both mixed models are quadratic growth curve, there exists a vertex if the quadratic
coefficient β2 6= 0. Let V ′ = (Vx, Vy) be the vertex of mixed model (4) or model (5).
Then,

Vx(β1, β2) = −1

2
β1β

−1
2 ,

Vy(β0, β1, β2) = β0 −
1

4
β2

1β
−1
2 .

Let V̂ ′ = (V̂x, V̂y) be the estimated vertex. Then,

V̂x(b1, b2) = −1

2
b1b
−1
2 ,

V̂y(b0, b1, b2) = b0 −
1

4
b21b
−1
2 .

For the vertex V ′ = (Vx, Vy), the first derivative with respect to β is,

∂V

∂β
=

(
0 −1

2β
−1
2

1
2β1β

−2
2

1 −1
2β1β

−1
2

1
4β

2
1β
−2
2

)
.

Similarly, for the estimated vertex V̂ ′ = (V̂x, V̂y), the first derivative evaluated at β = b is,

∂V

∂β
|
β=b

=

(
0 −1

2b
−1
2

1
2b1b

−2
2

1 −1
2b1b

−1
2

1
4b

2
1b
−2
2

)
.
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3.1 Confidence Region

3.1.1 Delta Method for Confidence Interval of coordinate X and Y

When sample size goes large, V̂ is normally distributed with mean V and asymptotic co-
variance Cov(V̂ ). Where

Cov(V̂ ) =
∂V

∂β
Cov(b)

∂V

∂β′

=

(
σ2
V̂x

σV̂xV̂y
σV̂xV̂y σ2

V̂y

)
.

Let ˆCov(V̂ ) be the estimated asymptotic covariance of estimated vertex, then

ˆCov(V̂ ) =
∂V

∂β
ˆCov(b)

∂V

∂β′
|
β=b

=

(
σ̂2
V̂x

σ̂V̂xV̂y
σ̂V̂xV̂y σ̂2

V̂y

)
,

(6)

where,

σ̂2
V̂x

= (0, −1

2
b−1
2 ,

1

2
b1b
−2
2 ) · ˆCov(b) · (0, −1

2
b−1
2 ,

1

2
b1b
−2
2 )′ ,

σ̂2
V̂y

= (1, −1

2
b1b
−1
2 ,

1

4
b21b
−2
2 ) · ˆCov(b) · (1, −1

2
b1b
−1
2 ,

1

4
b21b
−2
2 )′ .

Let θ = (β′,α′)′ as the parameter vector and y = f(θ), y ∈ Rn. Let θ∗ be the true
parameter vector, then under H0 : θ∗ ∈ Θ0 ⊂ Rs,

1. θ∗ is an interior point of Θ0 and there is an s-dimensional neighborhood of θ∗ com-
pletely contained in Θ0, thus the variance is greater than zero.

2. The mapping f : Θ0 7→ y in totally differentiate at θ∗ so that partial derivative of
fi with respect to θj exist at θ∗ and f(θ) has a linear approximation at θ∗ given by
first-order Taylor series expansion.

3. The Jacobian matrix ∂f(θ∗)
∂θ is of full rank.

4. The mapping f : Θ0 7→ y is continuous at every point θ ∈ Θ0.

Thus the multivariate delta method(1) could be used by satisfying all the conditions. When
sample size goes large, V̂ , the estimate of V , is approximately multivariate normally dis-
tributed with mean V and covariance Cov(V̂ ), i.e., V̂ a∼ MVN(V , Cov(V̂ )). By using
the estimated covariance ˆCov(V̂ ) for Cov(V̂ ), V̂x is approximately normal distributed
with mean Vx and variance σ2

V̂x
, i.e. V̂x

a∼ N(Vx, σ
2
V̂x

). Similarly, V̂y is approximately

normal distributed with mean Vy and variance σ2
V̂y

, i.e. V̂y
a∼ N(Vy, σ

2
V̂y

).

Thus, the approximate (1 − α)% confidence interval of V̂x is (V̂x − Z1−α/2σ̂V̂x , V̂x +

Z1−α/2σ̂V̂x). Similarly, the approximate (1 − α)% confidence interval of V̂y is (V̂y −
Z1−α/2σ̂V̂y , V̂y + Z1−α/2σ̂V̂y).
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3.1.2 Gradient Method for Confidence Interval of Coordinate X

When given a gradient, formula (2) could be used to compute a confidence interval. For
testing the vertex of a quadratic mixed model, the gradient equals to zero, that is m = 0.
When θ is unknown, the distribution of θ̂ is approximately normal in large sample. Then
the distribution of V̂ is approximately normal and the normal distribution should be used
instead of t distribution in the confidence intervals for Vx and Vy. Thus an adjusted formula
(2) for confidence interval of x-coordinate of the vertex is,

x0 ∈ C(Vx)

⇔ (b1 + 2x0b2)2

σ̂2
b1

+ 4x0σ̂b1b2 + 4x2
0σ̂

2
b2

6 Z2
1−α/2 (7)

⇔ (b1 + 2x0b2)2 6 [σ̂2
b1 + 4x0σ̂b1b2 + 4x2

0σ̂
2
b2 ] · Z2

1−α/2

⇔ A · x2
0 +B · x0 + C 6 0 .

Where, A = b22 − σ̂2
b2 · Z

2
1−α/2

B = b1b2 − σ̂b1b2 · Z2
1−α/2

C =
1

4
(b21 − σ̂2

b1 · Z
2
1−α/2) .

To solve the inequality, if A 6= 0, then A · x2
0 + B · x0 + C in formula(7) is a parabola. It

has two nulls if the discriminant D = B2 − 4AC is positive. With regard to the numeri-
cal stability concerning small values of 4AC, we compute either zero in two different ways:

x01 =
−2C

B −
√
B2 − 4AC

when B < 0

=
−B −

√
B2 − 4AC

2A
when B > 0

(8)

x02 =
−B +

√
B2 − 4AC

2A
when B 6 0

=
−2C

B +
√
B2 − 4AC

when B > 0

(9)

Thus when A > 0 and D > 0, this leads to a two-sided confidence interval [x01, x02].
When A < 0 and D > 0, the confidence interval goes to (−∞, x02]

⋃
[x01,+∞).

In this report, we only consider the first situation. Then the confidence interval of coordi-
nate X for vertex V̂x is [x01, x02].

3.1.3 Mean Response Method for Confidence Interval of Coordinate Y

If the x−coordinate of the vertex V̂x is substituted into the regression model,

ŷij = b0 + b1xij + b2x
2
ij

the y−coordinate of vertex V̂y could be calculated as,

V̂y = b0 + b1 · V̂x + b2 · V̂x
2
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Here V̂y could be treated as a mean response of y when x = V̂x andE{Vy} = Vy, s{V̂y} =
σ̂V̂y . Since θ is unknown, the normal distribution should be used instead of the t distribution

when sample size goes large as usual. Thus for y−coordinate of vertex V̂y,

V̂y − Vy
σ̂2
V̂y

∼ N(0, 1) ,

where σ̂2
V̂y

= (1, V̂x, V̂ 2
x ) · ˆCov(b) · (1, V̂x, V̂ 2

x )′.

Thus the (1− α)% confidence interval of Vy is (V̂y − Z1−α/2σ̂V̂y , V̂y + Z1−α/2σ̂V̂y).

Since V̂x = −1
2b1b

−1
2 and V̂ 2

x = 1
4b

2
1b
−2
2 , then

σ̂2
V̂y

= (1, −1

2
b1b
−1
2 ,

1

4
b21b
−2
2 ) · ˆCov(b) · (1, −1

2
b1b
−1
2 ,

1

4
b21b
−2
2 )′ .

It is exactly same as the estimated variance of Vy from the delta method. Thus, the result
of these two methods should be exactly same.

3.1.4 Confidence Region for Vertex

The large sample chi-square distribution for a quadratic form could be used to compute
a confidence region. The chi-square distribution with k degrees of freedom is the distri-
bution of a sum of the squares of k independent standard normal random variables. We
have already proved that the estimated vertex follows an approximate multivariate normal
distribution,

V̂
a∼MVN(V , Cov(V̂ )) .

For the bivariate standard normal distribution in vector form, the sum of the squares of two
independent standard normal variables is chi-square distribution with 2 degrees of freedom:(

V̂x − Vx
V̂y − Vy

)′
Cov(V̂ )−1

(
V̂x − Vx
V̂y − Vy

)
a∼ χ2

(2) .

Because ˆCov(V̂ ) is consistent for Cov(V̂ ), substituting ˆCov(V̂ ) for Cov(V̂ ), an approx-
imate chi-square distribution with 2 degrees of freedom could be used,(

V̂x − Vx
V̂y − Vy

)′
ˆCov(V̂ )−1

(
V̂x − Vx
V̂y − Vy

)
a∼ χ2

(2) . (10)

Thus the approximate (1− α)% confidence region of the vertex is(
V̂x − Vx
V̂y − Vy

)′
ˆCov(V̂ )−1

(
V̂x − Vx
V̂y − Vy

)
6 χ2

1−α,2 ,

we conclude that the confidence region for vertex is an ellipse from this equation.

3.2 Power Analysis

The power of a statistical test is the probability that the test will reject the null hypothesis
when the null hypothesis is actually false. In this study, it is important to reject the null
hypothesis point if it is not the vertex; this is power analysis. For example,

H0 : V = V0 v.s. Ha : V = Va
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where V0 is not the vertex, Va is the vertex.
The large sample chi-square distribution for a quadratic form could be used to compute a
p-value similar to computing the confidence region. Let V ′0 = (V0x, V0y) be the non-vertex
tested point. Under null hypothesis, a chi-square distribution with 2 degrees of freedom
should be followed,(

V̂x − V0x

V̂y − V0y

)′
Cov(V̂ )−1

(
V̂x − V0x

V̂y − V0y

)
∼ χ2

(2) .

Similarly, because ˆCov(V̂ ) is consistent for Cov(V̂ ), when sample size is large enough,
substituting ˆCov(V̂ ) for Cov(V̂ ), an approximate chi-square distribution with 2 degrees
of freedom could be used(

V̂x − V0x

V̂y − V0y

)′
ˆCov(V̂ )−1

(
V̂x − V0x

V̂y − V0y

)
a∼ χ2

(2) . (11)

Thus reject the null hypothesis if(
V̂x − V0x

V̂y − V0y

)′
ˆCov(V̂ )−1

(
V̂x − V0x

V̂y − V0y

)
> χ2

1−α,2 .

4. Analysis of Simulation Results

Simulation studies are performed for the mixed model with only random intercept and for
the model with both random intercept and random slope. For each model, we construct the
confidence intervals for the x and y coordinate of the vertex using two different methods
and compare them. Confidence region and power analysis are also studied. Although the
methods derived in this project are from large sample size, we also want to check whether
the methods work for small sample size. Thus sample size 100, 50 and 20 are chosen for
the simulation studies, Type I error rate is chosen to be 0.01, 0.05 and 0.5. We choose six
time points for the growth curve mixed model, that is, every individual is measured six
times, without missing data.

4.1 Simulation Results for Mixed Model with only Random Intercept

For mixed model with only random intercept (4), we generate 1000 data sets with the same
coefficient parameters β0, β1 and β2 equal to 2, 8 and -1, and σ2

α0
equals to 1 for sample

size 100, 50 and 20. Thus the true model is,

yij = 2 + 8xij − x2
ij + α0i + εij , i = 1, 2, ..., N j = 1, 2, ..., 6.

Then,
E{yij} = 2 + 8xij − x2

ij , i = 1, 2, ..., N j = 1, 2, ..., 6.

The true vertex of this quadratic growth curve is V ′ = (4, 18).
The covariance structure should be decided before simulation. We examine the covariance
structures UN, CS and AR(1), and compare SAS default criteria AIC, BIC and AICC.
All the three criteria show minimum values when the covariance structure is compound
symmetry. Also the mixed model we generated is a quadratic function, the within-subject
factor is randomly allocated to subjects, it should be the compound symmetry. Thus we
choose the compound symmetry as covariance structure for all the 1000 data sets in this
simulation.
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Table 1: Confidence Intervals for X-Coordinate
Type I Sample Coverage lower upper Coverage lower upper
Error Size I bound bound II bound bound
0.01 100 0.985 0.9751 0.9949 0.984 0.97378 0.99422
0.01 50 0.984 0.97378 0.99422 0.987 0.97778 0.99622
0.01 20 0.984 0.97378 0.99422 0.983 0.97247 0.99353
0.05 100 0.940 0.92528 0.95472 0.937 0.92194 0.95206
*0.05 50 0.932 0.9164 0.9476 0.935 0.91972 0.95028
0.05 20 0.944 0.92975 0.95825 0.945 0.93087 0.95913
0.1 100 0.887 0.87053 0.90347 0.890 0.87372 0.90628
0.1 50 0.888 0.87159 0.90441 0.886 0.86947 0.90253
0.1 20 0.888 0.87159 0.90441 0.890 0.87372 0.90628

Table 2: Confidence Intervals for Y -Coordinate of Vertex
Type I Sample Coverage lower upper Coverage lower upper
Error Size I bound bound II bound bound
0.01 100 0.990 0.98190 0.99810 0.990 0.98190 0.99810
0.01 50 0.981 0.96988 0.99212 0.981 0.96988 0.99212
0.01 20 0.984 0.97378 0.99422 0.984 0.97378 0.99422
0.05 100 0.942 0.92751 0.95649 0.942 0.92751 0.95649
0.05 50 0.945 0.93087 0.95913 0.945 0.93087 0.95913
0.05 20 0.941 0.92640 0.95560 0.941 0.92640 0.95560
0.1 100 0.896 0.88012 0.91188 0.896 0.88012 0.91188
0.1 50 0.899 0.88333 0.91467 0.899 0.88333 0.91467
*0.1 20 0.88 0.86310 0.89690 0.88 0.86310 0.89690

4.1.1 Simulation Results for Confidence Interval

The results of simulation for confidence intervals of x-coordinate are shown in Table.1. In
this table, symbol I represents delta method and symbol II represents gradient method. The
results include the coverage as well as lower bound and upper bound for the coverage. To
obtain the coverage p in this report, when a confidence interval contains the true value it
is coded as 1, otherwise 0; then the count is obtained and divided by the total number of
data sets 1000. The count follows a binomial distribution with mean 1000p and variance

1000p(1 − p). Thus the standard deviation of coverage p = count
1000 is

√
p(1−p)
1000 and the

bounds on the true coverage are obtained from p± Z1−α/2

√
p(1−p)
1000 . From the columns of

coverage, only one of the 18 conditions had coverage outside the bounds; it is sample size
50 and Type I error 0.05 delta method. Thus we conclude that both methods are applicable
for the confidence interval for different sample sizes tested.
The results of simulation for confidence intervals of y-coordinate are shown in Table.2.
In this table, symbol I represents delta method and symbol II represents mean response
method. The results include the coverage as well as lower bound and upper bound for the
coverage. From the columns of coverage, two of the 18 conditions had coverage outside
the bounds; they are sample size 20 and Type I error 0.1 both methods. It seems that
respect to the y-coordinate, when sample size is small, the two methods are not quite good.
However, the other four conditions, sample size 20 and Type I error 0.01 and 0.05 all give
good results. We can conclude that both methods are usable for the confidence intervals.
But small sample size must be given more attention.
In section 3, we proved that although the two methods come from different approaches, the
results of them should be exactly same. Table.2 showed that not only the coverage, but also
the lower and upper bound are exactly same.
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Figure 1: Confidence Region of Vertex

Table 3: Confidence Region of Vertex
Type I Sample Coverage lower upper
Error Size I bound bound
0.01 100 0.988 0.97913 0.99687
0.01 50 0.985 0.97510 0.99490
0.01 20 0.98 0.96860 0.99140
*0.05 100 0.933 0.91750 0.94850
0.05 50 0.936 0.92083 0.95117
0.05 20 0.941 0.92640 0.95560
0.1 100 0.889 0.87266 0.90534
0.1 50 0.884 0.86734 0.90066
0.1 20 0.886 0.86947 0.90253

4.1.2 Simulation Results for Confidence Region

In Section 3.1.4, we have shown that the confidence region should be an ellipse. Figure.1
shows the model used in the simulation, i.e. E{y} = 2 + 8x+ x2. For the plot, the value
of chi-square, 599, is chosen as it is 100 times of 5.99 (the value of chi-square distribution
with two degrees of freedom when Type I error equals 0.05) to make the ellipse clear.
If the value is too small, the ellipse in the plot will reduce to a dot. The results of the
simulation for the confidence region of the vertex are shown in Table.3. The results include
the coverage as well as lower bound and upper bound for the coverage. From the column
of coverage, only one of the 9 conditions had coverage outside the bounds; it is sample size
100 and Type I error 0.05. Although we use the approximate chi-square distribution with
two degrees of freedom, we conclude that the method is practicable for confidence region
for different sample sizes tested.

4.1.3 Simulation Results for Power Analysis

The results of simulation for power are shown in Table.4. The null hypothesis is chosen
based on the difference of 0.05 and 0.1 between the point under the null hypothesis and
true vertex. We test all the pairwise combinations of these points. The results include
the power as well as lower bound and upper bound for the interval around the empirical
power. From the table, when we keep V0x as the true value, the change of V0y does not
affect the power much. However, when we keep V0y as the true value, the change of V0x

affects the power much more. The result means that the x-coordinate is more sensitive than
y-coordinate. The width of y-coordinate confidence interval are commonly larger than x-
coordinate confidence interval, which means that the variation of y-coordinate is larger than
x-coordinate. It is because the number of time points we choose for x is only 6, but the
range of y-coordinate is much larger than x. Finally, we simulate when the null hypothesis
is the true vertex, and the empirical power is nearly equal to the size of the test.
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Table 4: Power (N=100, α = 0.05)
V0x V0y Power Lower bound Upper bound
3.95 18.05 0.671 0.64188 0.70012
3.95 17.95 0.657 0.62758 0.68642
3.95 18.1 0.712 0.68393 0.74007
3.95 17.9 0.694 0.66544 0.72256
3.9 18.05 0.999 0.99704 1.00096
3.9 17.95 0.999 0.99704 1.00096
3.9 18.1 0.999 0.99704 1.00096
3.9 17.9 0.999 0.99704 1.00096
4.05 18.05 0.644 0.61432 0.67368
4.05 17.95 0.653 0.62350 0.68250
4.05 18.1 0.673 0.64392 0.70208
4.05 17.9 0.7 0.6716 0.7284
4.1 18.05 0.994 0.98921 0.99879
4.1 17.95 0.995 0.99063 0.99937
4.1 18.1 0.994 0.98921 0.99879
4.1 17.9 0.995 0.99063 0.99937
4 18 0.067 0.051503 0.082497

4.2 Simulation Results for Mixed Model with Random Intercept and Slope

For mixed model with random intercept and slope (5), we also generate 1000 data sets with
the same coefficient parameters β0, β1 and β2 equal to 2, 8 and -1, and σ2

α0
, σ2

α1
and σα0,α1

equal to 1, 0.5 and 0 for sample size 100, 50 and 20. Thus the true model is,

yij = 2 + 8xij − x2
ij + α0i + α1ixij + εij , i = 1, 2, ..., N j = 1, 2, ..., 6.

Then,
E{yij} = 2 + 8xij − x2

ij , i = 1, 2, ..., N j = 1, 2, ..., 6.

The true vertex of this quadratic growth curve is V ′ = (4, 18).
To choose the covariance structure, we proceed as before. After comparing the AIC, BIC
and AICC, we found that when covariance structure is unstructured, all the three criteria
are minimum.

4.2.1 Simulation Results for Confidence Interval

The results of simulation for confidence intervals of X-coordinate with covariance struc-
ture UN are shown in Table.5. In this table, symbol I represents delta method and symbol
II represents gradient method. The results include the coverage as well as lower bound and
upper bound for the coverage. In Table.5, four of the 18 conditions had coverage outside
the bounds; they are sample size 100 and Type I error 0.1 both methods and sample size 20
and Type I error 0.1 both methods. Thus we conclude that both the methods are available
for the confidence interval for different sample sizes tested.

The results of simulation for confidence intervals of y-coordinate with covariance structure
UN are shown in Table.6. In this table, symbol I represents delta method and symbol II
represents mean response method. The results include the coverage as well as lower bound
and upper bound for the coverage. In Table.6, four of the 18 conditions had coverage out-
side the bounds; they are sample size 100 and Type I error 0.1 both methods and sample
size 20 and Type I error 0.05 both methods.
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Table 5: Confidence Intervals for X-Coordinate with UN
Type I Sample Coverage lower upper Coverage lower upper
Error Size I bound bound II bound bound
0.01 100 0.984 0.97378 0.99422 0.985 0.97510 0.99490
0.01 50 0.983 0.97247 0.99353 0.982 0.97117 0.99283
0.01 20 0.986 0.97643 0.99557 0.985 0.97510 0.99490
0.05 100 0.945 0.93087 0.95913 0.944 0.92975 0.95825
0.05 50 0.94 0.92528 0.95472 0.939 0.92417 0.95383
0.05 20 0.938 0.92305 0.95295 0.937 0.92194 0.95206
*0.1 100 0.879 0.86204 0.89596 0.876 0.85886 0.89314
0.1 50 0.89 0.87372 0.90628 0.889 0.87266 0.90534
*0.1 20 0.882 0.86522 0.89878 0.882 0.86522 0.89878

Table 6: Confidence Intervals for Y -Coordinate with UN
Type I Sample Coverage lower upper Coverage lower upper
Error Size I bound bound II bound bound
0.01 100 0.989 0.98051 0.99749 0.989 0.98051 0.99749
0.01 50 0.991 0.98331 0.99869 0.991 0.98331 0.99869
0.01 20 0.984 0.97378 0.99422 0.984 0.97378 0.99422
0.05 100 0.941 0.92640 0.95560 0.941 0.92640 0.95560
0.05 50 0.938 0.92305 0.95295 0.938 0.92305 0.95295
*0.05 20 0.933 0.91750 0.94850 0.933 0.91750 0.94850
*0.1 100 0.88 0.86310 0.89690 0.88 0.86310 0.89690
0.1 50 0.892 0.87585 0.90815 0.892 0.87585 0.90815
0.1 20 0.889 0.87266 0.90534 0.889 0.87266 0.90534

4.2.2 Simulation Results for Confidence Region

The simulation results for confidence region of the vertex with covariance structure UN are
shown in Table.7. The results include the coverage as well as lower bound and upper bound
for the coverage. In Table.7, from the column of coverage, only one of the 9 conditions had
coverage outside the bounds; it is sample size 50 and type I error 0.05. Thus we can con-
clude that the approximate chi-square distribution used for confidence region is applicable
for different sample sizes tested.

4.2.3 Simulation Results for Power Analysis

We investigate the simulation of power with only covariance structure UN based on the
conclusion of confidence interval and confidence region. The results of simulation are
shown in Table.8. The points to be tested are chosen based on the difference of 0.05 and

Table 7: Confidence Region of Vertex with UN
Type I Sample Coverage lower upper
Error Size I bound bound
0.01 100 0.99 0.98190 0.99810
0.01 50 0.986 0.97643 0.99557
0.01 20 0.984 0.97378 0.99422
0.5 100 0.936 0.92083 0.95117
0.5 50 0.936 0.92083 0.95117
0.5 20 0.94 0.92528 0.95472
0.1 100 0.886 0.86947 0.90253
*0.1 50 0.875 0.85780 0.89220
0.1 20 0.885 0.86840 0.90160
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Table 8: Power (N=100, α = 0.05, UN)
V0x V0y Power Lower bound Upper bound
3.95 18.05 0.594 0.56356 0.62444
3.95 17.95 0.397 0.36667 0.42733
3.95 18.1 0.689 0.66031 0.71769
3.95 17.9 0.326 0.29695 0.35505
3.9 18.05 0.994 0.98921 0.99879
3.9 18.1 0.997 0.99361 1.00039
3.9 17.9 0.964 0.95245 0.97555
3.9 17.95 0.977 0.96771 0.98629
4.05 18.05 0.442 0.41122 0.47278
4.05 18.1 0.348 0.31848 0.37752
4.05 17.95 0.604 0.57369 0.63431
4.05 17.9 0.69 0.66133 0.71867
4.1 18.05 0.952 0.93875 0.96525
4.1 18.1 0.935 0.91972 0.95028
4.1 17.95 0.984 0.97622 0.99178
4.1 17.9 0.993 0.98783 0.99817
4 18 0.064 0.048830 0.079170

0.1 between the point under the null hypothesis and true vertex. We test all the pairwise
combinations of these points. The results include the power as well as lower bound and
upper bound for the interval around the empirical power.
From the table, when we keep V0x equal to the true value, the change of V0y does not
affect the power much. However, when we keep V0y equal to the true value, the change of
V0x extremely affects the results. It means that the x-coordinate is more sensitive than the
y-coordinate. The reason is similar as the mixed model with only random intercept. The
width of y-coordinate confidence interval is commonly larger than x-coordinate confidence
interval, which means that the variation of y-coordinate is larger than x-coordinate. It is
because the number of time points we choose for x-coordinate is only 6, but the range of y-
coordinate is much larger than x-coordinate. Finally, we simulate when the null hypothesis
is the true vertex, the result shows the empirical power is nearly equal to the size of the test.

5. Conclusion and Discussion

Several methods for confidence interval and confidence region for the vertex of the mixed
quadratic growth curve model were discussed in this report. Initially, delta method and
gradient method were performed for the confidence interval of x-coordinate of the vertex,
while delta method and mean response method for the y-coordinate. The approximate
chi-square distribution with two degrees of freedom were derived in the confidence region
analysis and power analysis. Furthermore, in the simulation study, two models, mixed
model with only random intercept and mixed model with random intercept and random
slope, were considered. For each model, three different sample sizes were chosen in order
to examine the influence of size for all the methods. Three different Type I error rates were
chosen as well for the purpose of making the methods more convincible. The different
types of covariance structure were compared for these two different mixed model. Results
show that compound symmetry is the best for mixed model with only random intercept
while unstructured is the best for mixed model with random intercept and slope, which
conforms to the properties of different models. Depending on all the simulation results, a
conclusion could be drawn that all methods described in this study for confidence region of
the vertex of quadratic growth curves of 2nd degree polynomial are applicable for different
sample sizes, different Type I error rates and different models. For the power analysis,
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some non-vertex points were tested to show the efficiency of the methods as well as the
relationship between confidence region and power.
An interesting topic for further research can be dealing with two different samples, such
as treatment and control groups. A test for switch in the location of the vertices might
be performed. One the other hand, for only one sample, number of measurement time
points should be considered as the influence of confidence region for the vertex. Covariates
also could be added in the regression model; the change of vertex with covariates may be
examined.
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[7] Xitao Fan, Ákos Felsóvályi, Stephen A. Sivo, and Sean C. Keenan. SAS for Monte Carlo Studies A Guide
for Quantitiative Researchers. SAS Institute Inc., Cary, NC, USA, 2002.

[8] Robinson G.K. That blup is a good thing: The estimation of random effects. Statistical Science, 6(1):15–
32, 1991.

[9] James H.Ware. Linear models for the analysis of longitudinal studies. The American Statistican,
39(2):95–101, May 1985.

[10] Anant M. Kshirsagar and William B. Smith. Growth Curves. New York: Marcel Dekker, 1995.

[11] Michael H. Kutner, William Li, Chrisopher J. Nachtsheim, and John Neter. Applied Linear Statistical
Models. Boston: Montreal McGraw-Hill, fifth edition, 2005.

[12] Garrentt M.Fitzmaurice, Nan M.Laird, and James H.Ware. Applied Longitudinal Analysis. A John Wiley
& Sons,INC. Publication, 2004.

[13] Nan M.Laird and James H.Ware. Random-effects models for longitudinal data. Biometrics, 38,936-974,
December 1982.

[14] Jianxin Pan and KaiTai Fang. Growth Curve Models and Statistical Diagnostics. New York: Springer,
2002.

[15] Alex Papanicolaou. Taylor approximation and the delta method.

[16] Oliver Schabenberger and F.J.Pierce. Contemporary Statistical Models for the Plant and Soil Sciences.
CRC Press, 2002.

[17] Susan J. Slaughter and Lora D. Delwiche. Sas macro programming for beginners. SUGI Tutorials, 29.

Biometrics Section – JSM 2012

231


