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Abstract 
Missing mechanism is an important issue in analyzing data. In genetic association 

studies, one important question is whether missingness of genotype data depends 

on the underlying true genotypes. Using the genotypic constraints imposed by the 

family structure of offspring-parents trios, we propose a method that estimates the 

three call rates at a single nucleotide polymorphism (SNP). We also propose a 

likelihood ratio test to test whether the call rates are all the same. We then apply 

the methods to a genome-wide association study and we show that rare genotypes 

are usually more difficult to call, which introduces systematic bias that tends to 

estimate the common allele to be over transmitted. 

 

Running Title: Informative missingness in genotype calling 

 

Introduction 

The case-parents design is a simple yet efficient design that is robust against 

population stratification. In this design, parental genotypes are used as controls, 

and the transmission disequilibrium test (TDT) [1,2] and other alternative 

methods [3-5] have been widely used for testing genetic association using case-

parents trio data. In families that only one parent’s genotype is available, the 

allele transmitted from the parent to the affected offspring can be determined 

unambiguously when the genotype of the offspring is homozygous and the 

observed parental genotype is heterozygous. However, it has been shown that 

including such case-parent pairs in TDT can cause bias and these case-parent 

pairs should be excluded from TDT to ensure valid conclusions [6]. Many 

likelihood based methods have been proposed to handle missingness in parental 

genotypes [7-19]. Non-parametric approaches have also been developed and most 

of them can be thought as special scenarios, modifications, or extensions of the 

family-based association test framework [20]. In addition, bootstrap and multiple 

imputation have been considered [21,22]. More discussions regarding how to 

handle missing parental genotypes can be found in [23]. Missingness in both 

offspring and parental genotypes has also been considered [24,25].  

 

When analyzing data with missing values, both “complete-case” analyses and 

“available-case” analyses often yield erroneous conclusions when missingness 

depends on the underlying true genotypes [26]. Such genotype-specific 

missingness affects family-based association tests more than case-control 

association tests [27,28]. However, identifying missing mechanism is usually 
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difficult, and often impossible. For data composed of unrelated subjects, 

incorporating genotype-specific missingness into statistical analysis at a single 

marker is not possible, as the genotype-specific call rate parameters are not 

identifiable [29]. When there are multiple markers that are close to each other, the 

linkage disequilibrium among them can be used to evaluate whether there is 

genotype-specific missingness [29-31]. For case-parents data, methods that 

incorporate informative missingness have been proposed [8,11]. These methods 

focus on the missingness resulted from the unavailability of parental DNA 

samples. Recently, Yu [24] proposed to incorporate genotype-specific call rates 

into a likelihood ratio test to reduce the bias caused by informative missingness in 

genotype calling rather than sampling.  

 

Despite the previous efforts to incorporate informative missingness into 

association tests in case-parents studies, the degree of informative missingness 

has not been systematically investigated. Guo et al. [32] assessed the missing 

mechanism of parental genotypes by testing whether the conditional distributions 

of parental genotypes given offspring’s are the same between case-parents trios 

and case-parent pairs. In their method, the missing mechanism of offspring’s 

genotypes is not studied and offspring’s missing status does not contribute 

information. For example, consider a trio with AA father, AA mother, and 

missing offspring genotype. This trio is excluded from their test. However, it is 

obvious that the offspring has the AA genotype. In family-based association 

studies where all the three members of each trio are successfully recruited, an 

important question is whether the three genotypes at a SNP have the same missing 

rate. Although Hao and Cawley [27] studied whether missingness relies on 

genotypes, they did not test informative missingness directly; instead, they tested 

Hardy-Weinberg equilibrium (HWE) to assess equal missingness. Using 

experimental methods, Fu et al. [33], recently reported informative missingness in 

genotyping. However, they only examined a few SNPs. Here we propose a 

likelihood ratio test that can be used to test whether there is genotype-specific 

missingness using offspring-parents data. In addition, we also propose a method 

to estimate call rates of the three genotypes at a SNP.  

 

Methods 
Consider a SNP with alleles A and B. Let Gi=(GiF, GiM, Gio) denote the vector of 

true genotypes for the ith trio in a data set of n offspring-parents trios, where the 

subscripts F, M, and O indicate father, mother, and offspring, respectively. Under 

the assumption of no Mendelian errors, there are fifteen possible trio types 

(genotype vectors), as shown in Table 1 and we use ),...,( 151 θθθ =
 
to denote the 

frequencies of the trio types in the sampled population. The observed genotypes 

for the ith trio is denoted by gi=(giF, giM, gio), which can contain up to three 

missing values. Let the vector of call rates be ),,( BBABAA cccc = .  

 

Table 1: Trio types. 

father 

genotype 

mother 

genotype 

offspring 

genotype 

frequency 

parameter 
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AA AA AA 1θ  

AA AB AA 2θ  

AA AB AB 3θ  

AA BB AB 4θ  

AB AA AA 5θ  

AB AA AB 6θ  

AB AB AA 7θ  

AB AB AB 8θ  

AB AB BB 9θ  

AB BB AB 10θ  

AB BB BB 11θ  

BB AA AB 12θ  

BB AB AB 13θ  

BB AB BB 14θ  

BB BB BB 15θ  

 

Given the trio type frequencies θ, Gi  follows a multinomial distribution, and 

given call rates, the event whether a genotype at a subject is observed or not 

follows a Bernoulli distribution. Thus, the complete- and observed-data likelihood 

functions contributed by the ith trio are 
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respectively.  

 

We derived the expectation-maximization (EM) steps according to the EM 

algorithm [34]: 

E-step: 
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where ni ,...,1= , },,{ BBABAAj∈ , },,{geno BBABAA∈ , 15,...,1=k , and )(•I  is 

the indicator function that is 1 when the condition in the parentheses is true and 0 

otherwise. The maximum likelihood estimates of call rates are obtained once the 

algorithm converges.  

 

To test whether the missingness is genotype-specific, we then conduct the EM 

algorithm under the null hypothesis of equal call rates, i.e., cAA=cAB=cBB. The E 

and M steps are similar to those above except that the call rates are updated by the 

following formula: 
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Based on the above maximized likelihood, the likelihood ratio test with two 

degrees of freedom can be used to test the null hypothesis of equal call rates. 

Under the null hypothesis, it has an asymptotic chi-square distribution with two 

degrees of freedom. Note that we estimate the frequencies of all the 15 possible 

trio types (with the order of parental genotypes matters), rather than make 

assumptions on genetic models and random mating. Thus, our methods are not 

biased by model misspecifications or population stratifications.  

 

Simulations and results 
We first simulate offspring-parents trio data to examine the accuracy of the 

maximum likelihood estimation of call rates and the type I error rate of the 

likelihood ratio test. In each of 1000 simulations, 1000 trios from a random 

mating population are simulated under a combination of allele frequency and call 

rate parameters:  the frequency of allele A varies from 0.1 to 0.5; the true call 

rates of the three genotypes are either all equal to 0.95 or all equal to 0.99.  The 

calculation of type I error is based on the p-value cutoff of 0.05. 

 

Figure 1 shows the difference between the estimated call rates and the true call 

rates using box plots. The estimation accuracy at the true call rate of 0.95 (upper 

panel of Figure 1) is lower than at 0.99 (lower panel of Figure 1), when the 

frequency of allele A is the same and the genotype group is the same. When the 

true call rate is the same, the estimation accuracy is low for rare genotypes and 

high for common genotypes. These results are expected, as it is more difficult to 

estimate parameters when there are more missing values or less data points.  
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Figure 1: Box plots of the difference between the estimated call rates and the true call 

rates. Upper: when the true call rate is 0.95; lower: when the true call rate is 0.99. Here 

“AA” refers to the minor homozygous group, “AB” refers to the heterozygous group, and 

“BB” refers to the major homozygous group. pA is the frequency of allele A. 

 

The type I error rates of the likelihood ratio test are presented in Table 2.  The 

values are generally not far away from 0.05 except that the test seems slightly 

conservative when call rates are 0.99 and liberal when call rates are 0.95. 

 

Table 2: Type I error rates of the test for equal missingness. 

  pA=0.1 pA=0.2 pA=0.3 pA=0.4 pA=0.5 

call rate 
0.95 0.049 0.049 0.053 0.062 0.066 

0.99 0.037 0.039 0.047 0.048 0.047 

 

 

Application to the oral clefts study 
We then apply our proposed methods to a subset of data collected by International 

Consortium to Identify Genes and Interactions Controlling Oral Clefts. The 

original study has been reported before [35] and here we focus on 889 case-

parents trios of European descendents. Genotypes from 596,292 SNPs were 

measured using Illumina Human610. To remove low-quality SNPs, we only keep 

SNPs with minor allele frequency no less than 0.05, the number of Mendelian 

errors no more than 1, the overall call rate no less than 0.95, and the HWE chi-

square no greater than 10. Note that these filters are calculated based on the 

observed genotypes. For SNPs with overall call rates very close to 1 we found 
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that all the estimated genotype-specific call rates are close to 1; thus, we further 

filter out SNPs with overall call rates greater than or equal to 0.99. With all these 

restrictions, 5,039 SNPs remain in our analysis. To examine the trend of call rates 

with genotype frequencies, we code the rare homozygous genotype to “AA”, the 

common homozygous genotype to “BB”, and the heterozygous genotype to “AB”.   

 
Figure 2: Box plots of the estimated call rates using SNPs from the oral clefts study. Here 

“AA” refers to the minor homozygous group, “AB” refers to the heterozygous group, and 

“BB” refers to the major homozygous group.  

 
The box plots of estimated genotype-specific call rates are presented in Figure 2. 

Clearly the call rates decrease with the genotype frequencies. Although all the 

SNPs used in Figure 2 have overall rates between 0.95 and 0.99, we see that the 

call rates for the rare genotype group can be as low as below 0.5. This result 

agrees with what have been seen from previous experimental studies [33].  

 

We next examine the null hypothesis of equal missingness across genotypes by 

plotting a quantitle-quantile plot of the likelihood ratio test statistics against the 

chi-square distribution with two degrees of freedom. As shown in Figure 3, the 

observed data are quite far away from the straight line with an intercept of 0 and a 

slope of 1, which indicates that there are an excessively large number of SNPs 

that show genotype-specific missingness.  

 
Figure 3: The quantile-quantile plot of the observed likelihood ratio test statistics for 

equal missingness against the chi-square distribution with two degrees of freedom. The 

intercept and the slope of the straight line are 0 and 1, respectively. 
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The median of the TDT statistic, calculated using complete trios, is -0.066. Note 

that in our calculation we use the common allele as the reference allele and the 

rare allele as the risk allele. Thus, this negative median implies that the bias due to 

informative missingness is toward predicting the common allele as the risk allele, 

as have been observed in [24]. To examine false positives, we calculate the 

inflation factor [36], which is defined as the ratio of the observed median of the 

squared TDT statistic to the median of the chi-square distribution with one degree 

of freedom. The inflation factor is calculated to be 1.16, which indicates inflated 

Type I errors. To examine the relationship between the magnitude of bias in 

association tests and the degree of informative missingness, we present the 

medians and inflation factors stratified by the values of the likelihood ratio test 

statistics: <10 (3853 SNPs), 10-20 (612 SNPs), 20-30 (234 SNPs), 30-40 (120 

SNPs), and ≥40 (220 SNPs). The upper panel and the lower panel of Figure 4 

present the stratified medians and the stratified inflation factors, respectively. The 

overall trend is that both the bias and the inflation increase with the likelihood 

ratio test statistic, which shows that the identified informative missingness can 

have a negative impact on association tests for case-parents studies. Note that we 

have not seen a TDT statistic that reaches significance at the genome-wide level. 

Thus, informative missingness is likely to cause a small but systematic bias for 

genome-wide association studies using the case-parents design. 

 
Figure 4: The medians and inflation factors of TDT with complete trios, stratified by the 

likelihood ratio test statistic for equal missingness.  
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Discussion 
In this article we proposed methods to study the missing mechanism of genotypes 

that is caused by imperfect genotyping technologies. The family structure imposes 

restrictions on genotypes of the members of a family thus provides useful 

information to make statistical inference for missing mechanisms of genotypes. 

Based on this observation, we proposed a method to estimate genotype-specific 

call rates. We also proposed a likelihood ratio test to examine whether 

missingness during genotype calling is informative. We found that informative 

missingness during genotype calling is probably the norm rather than the 

exception.  

 

In our methods we assume that the DNA samples of all subjects in a study were 

processed together. If this is not true, for example when parental genotypes were 

collected at a later time, pulling data from samples processed at different sites or 

different time points might introduce biases [37]. In this situation, we can use 

different call rates for samples in different batches. Multiple types of DNA 

specimens, such as blood or saliva, were often collected in the same study. If the 

difference in different types is a concern, we can also use different call rate 

parameters for different types of specimens.  

 

We analyzed real genotype data measured using Illumina Human610. The 

methods we proposed can also be applied to data generated by other genotyping 

platforms, such as more recent Illumina genotyping platforms and genotyping 

platforms based on other technologies. The methods can also be used to evaluate 

the genotype missing mechanisms for data from next-generation sequencing data 

when both offspring and parents are sequenced. Our methods are developed for 
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offspring-parents data, and similar strategies can be used to develop methods for 

other study designs, although there are some challenges. For example, offspring-

mother pairs can be used, although a large number of pairs might be needed to 

obtain reliable information, as the genotypic restriction in offspring-mother pairs 

is not as strong as that in offspring-parents trios. All family members in nuclear 

families can also be used, but some assumptions, such as genetic models and 

HWE, might be needed, which could lead to biased results when population 

stratification presents.  
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