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Abstract: There is no diagnostic test to identify trauma patients who have
had severe hemorrhage (SH) and may need a massive transfusion protocol (MTP).
However, several predictive models have been developed based on the traditional
definition of massive transfusion, which is transfusion of 10 units of red blood cells
(RBCs) within 24 hours of Emergency Department (ED) admission. This definition
excludes patients with severe bleeding who died before a 10th unit of RBCs could
be transfused, resulting in survival bias. The lack of a valid definition for severe
hemorrhage calls these prediction models into question. We proposed a latent class
model for identifying a subgroup of patients with SH. We developed an EM algorithm
for estimating the posterior probability of being an SH patient based on information
at ED admission, blood product utilization, and survival status during the first 24
hours. We assessed the performance of our latent class model in classifying SH
patients and compare to the traditional massive transfusion definition using data
from a retrospective trauma transfusion study.
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1 Introduction

Hemorrhagic shock accounts for the largest proportion of mortality occurring within
the first hour of trauma center care, over 80% of operating room deaths after major
trauma, and almost 50% of deaths in the first 24 hours of trauma care [1, 2, 3, 4].
A massive transfusion protocol (MTP) is defined as an order to the blood bank for
the rapid delivery of multiple blood products typically including at least six units
of red blood cells (RBCs) along with plasma and platelets and is often required
for the treatment of uncontrolled hemorrhage. The traditional massive transfusion
protocol, as codified in the Advanced Trauma Life Support manual [5], supports
the sequential use of crystalloid, followed by red blood cells and then plasma and
platelets. The central problem of research in this area is that there is no diagnostic
test to identify patients who have had serious blood loss and/or are bleeding severely
and are in need of receiving MTP.

Recently, Brohi et. al [6] and MacLeod et. al [7] reported that 25% of trauma pa-
tients are coagulopathic upon ED admission and have increased mortality. With this
new finding, a transfusion strategy has been proposed which advocates the use of 1:1
ratios of plasma to RBC and platelets to RBC, which are the ratios inherent in whole
blood. Several recent observational studies have associated decreased mortality with
higher ratios in both combat and civilian trauma [8, 9, 10, 11, 12, 13, 14, 15, 16],
but relevant randomized clinical trials have not been reported although several are
ongoing.

There are potential adverse effects associated with the transfusion of plasma
and platelets, such as acute lung injury and acute respiratory distress syndrome
[17, 18, 19]. Most importantly, higher ratios are only intended for patients with
coagulopathy and maybe harmful to other patients. Therefore, while estimating the
treatment effects of higher ratios, it is critical to identify the subgroup of patients
with severe bleeding/severe blood loss.

The term massive transfusion (MT), commonly defined as the transfusion of
≥ 10 units of RBCs within 24 hours of ED admission, has been used to describe this
subgroup. However, this definition of MT has several recognized limitations. First,
a patient must survive until 10 units of RBCs have been transfused to be counted
as MT. As a result, a massively bleeding patient who died within 24 hours of ED
admission and before the 10th unit of RBCs was transfused will not be considered
as a MT patient. This is an important source of survival bias and hence causes bias
in findings reported in many observational studies. Second, although the amount
of RBCs transfused has a direct relationship with the patient’s need for massive
transfusion, it is also highly affected by the treatments he or she receives after ED
admission. Cotton et. al [9] reported that the 24-hour total blood product (RBCs,
plasma and platelet) consumption as well as the 24-hour platelet transfusion were
reduced with a MTP, but this observational study is also susceptible to survival
bias. With this information in mind, it may be questionable to apply a uniform MT
definition for different patients under various treatments. Other definitions of MT
can be found in the literature using different cut points for total number of RBCs
[20] or time periods [21], however, they suffer from the same limitations.
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The correct classification of patients at highest risk of exsanguination or other
hemorrhage-related mortality is critical in order for MTP to be restricted to these
patients because there are risks associated with unnecessary transfusion. Several
predictive models using early physiologic and laboratory values available soon after
ED arrival, e.g., heart rate, systolic blood pressure, mechanism of injury, focused as-
sessment for the sonography of trauma (FAST), pH, hematocrit have been proposed,
including the work by McLaughlin [22], TASH-score by Yucel [23] and ABC-score
by Nunez [24]. These models used the traditional MT definition, which is subject
to survival bias.

We propose a latent class model to identify a subgroup of patients with severe
hemorrhage. This model incorporates plasma:RBC and platelet:RBC ratios, total
transfusions, and 24-hour survival. The path diagram in Figure 1 illustrates the
relationships among all the variables including the latent class membership. This
model captures the nature of the problem and provides an alternative method to
existing analysis based on the traditional definition of massive transfusion. The
remainder of this paper is organized as follows. Section 2 formally introduces the
latent class model. Section 3 describes the estimation procedure for the latent class
model. Section 4 provides a real data analysis using civilian trauma patients. Section
5 is devoted to discussion of the strengths and limitations of this approach.

Figure 1: The relationships between the latent variable and the observed variables
including initial vital signs, blood transfusion and survival status.

2 The latent class model

Assume that the patients consist of 2 subgroups: M = 1 if a patient has SH and M =
0 otherwise. Let Z denote the baseline covariates available at ED arrival, A denote
the treatment (plasma:RBC and platelet:RBC ratios), Ỹ denote the logarithm of the
total amount of RBCs transfused within 24 hours, and U denote whether the patient
survives 24 hours. We can observe Ỹ only if the patient survives 24 hours (U = 1).
Let Y denote the logarithm of the observed total amount of RBC transfused within
24 hours or up to death, whichever comes first. That is, Ỹ = Y if U = 1 and Ỹ ≥ Y

if U = 0.
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The complete data likelihood is

L(Z, M, A, Ỹ , U) = f(Z)P (M |Z)f(A|Z, M)f(Ỹ |A, M, Z)P (U |Ỹ , A, M, Z)

Since the treatment A is completely decided by the physicians based on observed
variables Z, not the unobserved latent variable M , it is reasonable to assume that
A ⊥ M |Z, that is, f(A|Z, M) = f(A|Z) which does not involve M and will be
omitted together with f(Z) from the above equation.

We impose the following models for each component in the complete likelihood.

(M1). A logistic model for the latent class membership:

P (M |Z; α) =
exp{µ1(Z; α)M}
1 + exp(µ1(Z; α))

.

(M2). A multiple linear regression model with dependent variable having normal
distribution for the log-transformed 24 hours RBCs utilization with density
function:

f(Ỹ |A, M, Z; β, σ) =
1√

2πσ2
exp

[

−{Ỹ − µ2(A, M, Z; β)}2

2σ2

]

,

(M3). A logistic model for 24 hour mortality:

P (U |Ỹ , A, M, Z; γ) =
exp{µ3(Ỹ , A, M, Z; γ)U}

1 + exp{µ3(Ỹ , A, M, Z; γ)}
.

Here µ1 is a function of the regression parameter vector α and the baseline vector
of variables, Z. Similarly, µ2 is a function of the regression parameter vector β and
the treatment vector of variables, A; baseline variable vector Z; and latent variable
M (an indicator of SH status). Finally, µ3 is a function of the regression parameter
vector γ, and the log-transformed 24-hour total RBC units (Ỹ ), the treatment vector
A, baseline vector Z, and latent variable M .

Consider n independent, identically distributed (i.i.d.) complete samples (Zi, Mi,
Ai, Ỹi, Ui) for i = 1, ..., n. The values of Mi are not observed and the values of Ỹi can
not be observed for subjects who die within 24 hours of ED admission. The observed
samples are (Zi, Ai, Yi, Ui), i = 1, · · · , n. Since the likelihood of the observed data
is very complicated involving integrations, for computational convenience, we max-
imize the likelihood function of the complete data instead of observed data, which
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is equal to

l =
n

∑

i=1

µ1(Zi; α)Mi −
n

∑

i=1

log[1 + exp{µ1(Zi; α)}] − 1

2
n log σ2

+
n

∑

i=1

[

− 1

2σ2
{Ỹi − µ2(Ai, Mi, Zi; β)}2 + µ3(Ỹi, Ai, Mi, Zi; γ)Ui

− log(1 + exp{µ3(Ỹi, Ai, Mi, Zi; γ)})
]

.

Since the likelihood of the complete data includes the latent variable M and partially
observed variable Ỹ , we use the expectation-maximization (EM) algorithm to obtain
parameter estimates. The standard errors of the estimates are calculated via the
bootstrap method.

3 Model Fitting

The EM algorithm starts with an initial value of the model coefficients. Let θ =
(αT , βT , σ, γT )T and θ(t) denote the estimate of coefficients θ in the tth iteration.
The iteration t + 1 of EM is as follows:

E step: Find the expected probability of Mi = 1 given the observed data and
θ(t). For i = 1, ..., n, if Ui = 1,

p̂i(t) = P (Mi = 1|Zi, Ai, Yi, Ui; θ(t))

=
L(Zi, Mi = 1, Ai, Yi, Ui; θ(t))

L(Zi, Mi = 1, Ai, Yi, Ui; θ(t)) + L(Zi, Mi = 0, Ai, Yi, Ui; θ(t))
. (1)

If Ui = 0, the value of Ỹi is censored. However, based on the model assumptions,
the conditional expectation of Mi given the observed data is

p̂i(t) =

∫

∞

Yi

1

Ci

ρi1(y; θ(t))dy, (2)

where

Ci =

∫

∞

Yi

[ρi1{y; θ(t)} + ρi0{y; θ(t)}]dy,
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and

ρi1(y; θ(t)) =
exp{µ1(Zi; α(t))}

1 + exp{µ1(Zi; α(t))}
exp

[

−
{y − µ2(Ai, Mi = 1, Zi; β(t))}2

2σ2
(t)

]

1

1 + exp{µ3(y, Ai, Mi = 1, Zi; γ(t))}
,

ρi0(y; θ(t)) =
1

1 + exp{µ1(Zi; α(t))}
exp

[

−
{y − µ2(Ai, Mi = 0, Zi; β(t))}2

2σ2
(t)

]

1

1 + exp{µ3(y, Ai, Mi = 0, Zi; γ(t))}
.

Then calculate the expected complete data log-likelihood given the observed
data and θ(t):

l(θ|θ(t)) =
n

∑

i=1

µ1(Zi; α)p̂i(t) −
n

∑

i=1

log(1 + exp(µ1(Zi; α)) − 1

2
n log σ2

+
n

∑

i=1

Uip̂i(t)[−
1

2σ2
{Yi − µ2(Ai, Mi = 1, Zi; β)}2 + µ3(Yi, Ai, Mi = 1, Zi; γ)

− log(1 + exp(µ3(Yi, Ai, Mi = 1, Zi; γ)))]

+
n

∑

i=1

Ui(1 − p̂i(t))[−
1

2σ2
(Yi − µ2(Ai, Mi = 0, Zi; β))2

+ µ3(Yi, Ai, Mi = 0, Zi; γ)

− log(1 + exp(µ3(Yi, Ai, Mi = 0, Zi; γ)))]

+
n

∑

i=1

(1 − Ui)

∫

∞

Yi

[−{y − µ2(Ai, Mi = 1, Zi; β)}2

2σ2

− log(1 + exp{µ3(y, Ai, Mi = 1, Zi; γ)})]
ρi1(y, θ(t))

Ci

dy

+

n
∑

i=1

(1 − Ui)

∫

∞

Yi

[−{y − µ2(Ai, Mi = 0, Zi; β)}2

2σ2

− log(1 + exp{µ3(y, Ai, Mi = 0, Zi; γ)})]
ρi0(y, θ(t))

Ci

dy.

M step: Estimate θ(t+1) by maximizing l(θ|θ(t)). Specifically, the estimates of
θ can be updated by solving the corresponding score equation, defined as the first
derivative of the expected complete data likelihood, for which the Newton-Raphson
algorithm is used.
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Table 1: Summary characteristics of trauma patients in the retrospective study.

Mortality
Mortality at 24 hour (%) 15
Mortality at 30 day(%) 25

Clinical outcomes
Ventilation days 5 ± 10
ICU days 7 ± 11
Hospital days 15 ± 20

Patient characteristics
Age (year) 42 ± 20
Men (%) 73
Penetrating injury (%) 36
Systolic blood pressure (mmHg) 115 ± 35
Diastolic blood pressure (mmHg) 71 ± 23
Heart rate (bpm) 104 ± 27
Respiratory rate 21 ± 7
Temperature (◦C) 36 ± 1
pH 7.24 ± 0.15
International Normalized Ratio 1.4 ± 1.0
Base deficit -8.7 ± 6.5
Glasgow Coma Scale 10.9 ± 6.0
Injury severity score 26 ± 16

Blood products usage
RBC 0-6 hrs (units) 7.8 ± 10.9
RBC 0-24 hrs (units) 10.1 ± 12.6
Plasma 0-6 hrs (units) 4.0 ± 6.7
Plasma 0-24 hrs (units) 5.8 ± 8.9
Platelets 0-6 hrs (units) 2.5 ± 6.1
Platelets 0-24 hrs (units) 4.1 ± 8.8
Plasma:RBC ratio 0-24 hrs 0.49 ± 0.76
Platelet:RBC ratio 0-24 hrs 0.32 ± 1.05

4 Application to retrospective data

Data in this section came from a multicenter retrospective study of transfused
trauma patients conducted by Holcomb et al. (2009) [15]. The original dataset
included 1574 adult trauma patients (≥ 16 years old) admitted to 16 level 1 trauma
centers between July 2005 and June 2006 and received ≥ 1 unit of RBC within 24
hours of ED admission. Included in these data analysis was a subset of 950 patients
admitted to 10 out of the 16 trauma centers, among which 337 were massively trans-
fused, that is, transfused with ≥ 10 units of RBCs within 24 hours of ED admission.
Table 1 describes the study population.

The baseline covariates Z used in our latent class model include the following
patient admission characteristics
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• ED systolic blood pressure (SBP) of 90 mm Hg or less (0=no, 1=yes)

• ED heart rate (HR) of 120 bpm or greater (0=no, 1=yes)

• ED pH of 7.25 or less (0=no, 1=yes)

• ED Hemoglobin of 9 or less (0=no, 1=yes)

Table 2: Estimates and Standard Errors of the regression coefficients in the three
components of the latent class model

Variables Coefficient Standard Error

Model M1
(Intercept) -1.84 0.13
SBP 0.30 0.13
HR 0.37 0.10
pH 1.15 0.12
Hemoglobin 0.41 0.17

Model M2
(Intercept) 1.01 0.04
latent SH 3.07 0.18
Plasma:RBC ratio 0.42 0.16
Platelet:RBC ratio 1.32 0.18
SBP 0.17 0.04
HR 0.24 0.03
pH 0.21 0.05
Hemoglobin 0.41 0.04
latent SH*Plasma:RBC ratio -1.61 0.26
latent SH*Platelet:RBC ratio -2.23 0.29

Model M3
(Intercept) 5.95 3.26
latent SH -11.72 2.80
logRBC24 0.59 0.21
Plasma:RBC ratio -1.16 1.36
Platelet:RBC ratio -3.45 2.33
pH -0.92 0.34
latent SH*Plasma:RBC ratio 6.11 1.50
latent SH*Platelet:RBC ratio 8.36 2.38

The analysis includes 471 patients without any missing data. To choose the
initial values for model parameter θ, we first fix the latent class membership M to
be the traditional definition of ≥ 10 units of RBC transfused within 24 hours of ED
admission. The maximum likelihood estimates for parameters in models M1, M2
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and M3 are then taken as θ(0). The EM algorithm was then applied until the esti-

mation converged. Table 2 lists the EM estimate θ̂ together with the corresponding
standard errors which were computed based on the bootstrap method, resampling
471 patients with replacement 500 times. For each resample, we calculated the esti-
mated coefficients, and from these 500 estimates we calculated the standard errors
displayed in Table 2.

Table 3: Comparison between the results from the new definition and the traditional
definition.

traditional non-MT traditional MT

latent non-SH 221 38
latent SH 39 173

Given the observed variables and estimated coefficients, we define SH as the
posterior probability of M = 1 being greater than 0.5 (equations 1 and 2). Table
3 compares our new definition of SH with the traditional definition of whether a
patient was transfused ≥ 10 units of RBCs within the first 24 hours and shows
that these two agree for 84% of patients. Among the 17 patients who died before
receiving 10 units of RBCs, 13 are classified as SH. Therefore our new definition
is advantageous in identifying the majority of these bleeding patients who didn’t
survive long enough to receive 10 units of RBC transfusion within 24 hours of ED
admission

Further comparison between the traditional MT definition and the new one based
on the latent class model is illustrated in Figure 2. In Figure 2b, the distribution
of the posterior probabilities is displayed and is bimodal, indicating a more distinct
separation between patients with severe hemorrhage and those who do not have
severe hemorrhage. In contrast, the distribution of the total 24-hour number of
RBCs is unimodal and does not indicate a clear cut point as shown in Figure 2a.

5 Discussion

In this paper, we propose a new likelihood based method to classify patients with
severe hemorrhage. The new definition is based on the posterior probability of being
an SH patient based on information at ED admission, blood product utilization, and
survival status during the first 24 hours. Our new definition is different from the
traditional MT definition which requires at least 10 units of RBC transfused within
24 hours. The major advantage of our new definition over the traditional one is that
it classifies based on available information during the first 24 hours rather than only
the amount of RBCs transfused within this period. One limitation is that we used a
simple latent class model which is fully parametric and therefore may not be robust
to model misspecification. We also acknowledge that the blood product ratios may
have been impacted by survival status of patients during the first 24 hours. In future
work, we will incorporate survival analysis techniques to more accurately utilize the
blood product ratio information in our latent class model. More specifically, we will
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Figure 2: 2a: distribution of total amount of RBCs transfused within 24 hours of
ED admission (RBC24). 2b: posterior distribution of SH based on our latent class
model. The vertical lines represent the cutoff.

replace the linear model with a recurrent event model for the timing of each RBC
transfusion. Similarly, we will replace the logistic model with a Cox proportional
hazards model for time to death counted from ED admission.

Our next step is to apply this analysis method to data from the Prospective
Observational Multicenter Major Trauma Transfusion (PROMMTT) study, which
is the first large scale, prospective study of trauma patients admitted directly from
the injury scene to Level 1 Trauma Centers [25]. We expect to have improved
classification of patients with severe hemorrhage since PROMMTT has additional
data fields and collected detailed timing of treatments and blood product utilization.
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