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Abstract 
The process capability index Cpk involves both of the two parameters of a process, the 

process mean µ and the process standard deviation σ. When µ and σ are unknown and we 

have uncertain prior information about their values, we may check the uncertain prior 

information by preliminary tests. Then we can construct a conditional confidence interval 

of the process capability index Cpk following rejection of the preliminary tests. In this 

paper, we adopt two tests for testing µ and σ separately and sequentially, instead of 

testing µ and σ jointly. Conditional confidence intervals of Cpk following different results 

of the two tests are provided. For the case that both of the two null hypotheses are 

rejected, we construct the confidence interval of Cpk for which the two parameters µ and 

σ are all unknown.  An extension of the general method for finding a confidence interval 

of an unknown quantity that is a function of two parameters is also discussed. 

 

Key Words: the process capability index Cpk; conditional confidence interval; 

preliminary test; sequential tests. 

 

1. Introduction 

 
The conditional confidence intervals of the process capability index Cp is discussed by 

Zhang J.C. and Han C.-P. (2011). When the process mean µ, which is also the expected 

value of the measurement (X) of a product, is equal to the midpoint of the specified 

interval (LSL,USL), where LSL and USL are the lower and upper specification limits of 

measurements respectively,  then the expected proportion of non-conforming (NC) 

product is equal to 2Φ(-3Cp). But if the expected value of X is not equal to the midpoint 

of the specified interval, i.e., µ ≠ (1/2)(LSL + USL), then the expected proportion of NC 

product will be bigger than 2Φ(-3Cp). In this case, the process capability index Cp is no 

longer the best index to measure the quality of a product. Thus, we introduce another 

process capability index Cpk. 

 

If we consider the effects of the value of the process mean μ, then the process   capability 

index Cpk  is defined as 

 

                                  Cpk = 




3

),min( LSLUSL 
 

 

Since min(a ,b) = 
2

1
 for any a ≥ 0 and b ≥ 0, therefore, we also have (׀a - b׀-׀a + b׀ )
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Cpk =  



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1
USLLSLd 

 

 

or simply 

 

                                                  Cpk =  




3

md 
 

 

where )(
2

1
USLLSLm   is the midpoint of the specified interval. 

 

In the above discussion, we assume that LSL ≤ μ ≤ USL. If μ is outside of the specified 

interval, then by the initial definition of Cpk, the value of  Cpk would be negative, and the 

process would clearly be inadequate for controlling the quality of the product. 

 

The process capability index Cpk involves both the process mean and the process 

variance. When we have a random sample X1, X2, … , Xn from a process which follows a 

N(μ, σ
2
) distribution, then an estimator of μ is the sample mean X , and an estimator of  σ 

is the sample standard deviation S . Therefore, a point estimator of Cpk is given by 

 

pkĈ
S

mXd

3



 
 

Since X  and S are mutually independently distributed, it is possible for us to calculate 

the mean and the variance of pkĈ  by first carrying out its rth moment about the origin. 

But this procedure is much more complicated than what we did for the process capability 

index Cp (Kotz & Lovelace (1998), page 55), and it involves another type of distribution 

which is so called “folded” distribution.  

 

If we consider both the mean µ and the variance σ
2 

as unknown parameters, then the 

construction of (unconditional) confidence intervals of Cpk is difficult due to the fact that 

the distribution of pkĈ  involves the joint distribution of two non-central t-distributed 

random variables. No single technique is considered best in practice at this time (Kotz & 

Lovelace (1998), page 57). Although the explicit expression of such a confidence interval 

is almost impossible, but theoretically, this confidence interval is still possible to be 

determined for particular problems. The idea is to extend the general method for finding a 

confidence interval of an unknown parameter to the two parameters case. That is, first try 

to find the joint confidence region of the two parameters µ and σ, and then use this joint 

confidence region to obtain a confidence interval of Cpk, this method is discussed in 

Section 4. 

 

In the case that we have some uncertain prior information about the values of µ and σ, we 

will use preliminary tests for testing the values of the two parameters. We will adopt two 

tests for testing µ and σ separately and sequentially, instead of testing µ and σ jointly. 
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The conditional confidence interval (CCI) of Cpk will be considered following rejection 

of any of the tests.  

 

We will discuss the conditional confidence intervals of Cpk for the following three 

different cases:  

(1) The mean µ is known, the variance σ
2 
is unknown 

(2) The mean µ is unknown, the variance σ
2 
is known 

(3) Both the mean µ and the variance σ
2 
are unknown 

 

2.   CCIs of Cpk When µ Is Known and σ
2 

Is Unknown 
       

If the process mean µ is known, then for the process capability index Cpk, there is only 

one unknown parameter σ. This situation is similar to the one for finding a conditional 

confidence interval of the process capability index Cp.  In this case, the preliminary test 

should be constructed as Ho: opk CC 
 
 vs.  H1: opk CC   , or, simply use the parameter 

σ: Ho: o 
 
 vs.  H1: o   , where the value of σo can be determined by the formula 

 

                                                Co = 
o

md





3


 

 

[Result 2.1] If a process has a known mean µ and an unknown variance σ
2
, then a 100(1- 

α1 - α2)%  conditional confidence interval of Cpk following rejection of the null hypothesis 

Ho: opk CC 
 
(or Ho: o   ) can be determined by the following interval  

 

(
U

md





3


   ,   

L

md





3


) 

 

where ),( 22

UL  is a 100(1- α1 - α2)%  conditional confidence interval of σ
2
 following 

rejection of the preliminary test for testing Ho: o    vs.  H1: o  . The value 
2

U

is a 100(1- α1)%  conditional upper confidence limit of σ
2
, and the value of 

2

L
 
is a 

100(1- α2)%  conditional lower confidence limit of σ
2
. These two values can be obtained 

by using the method given by Zhang J.C. & Han C.-P. (2011). 

 

3.   CCIs of Cpk When µ Is Unknown and σ
2 
Is Known 

 
In some situations, if we have enough information about the variance of a process, i.e. the 

variance σ
2
 of the process can be regarded as known. Then for the process capability 

index Cpk , there is only one unknown parameter, the process mean µ. If the measurement 

of a process follows a normal distribution, then we can use the sample mean X as a point 

estimator of µ. Therefore, a point estimator of the process capability index Cpk becomes 

 

                                               
pkĈ   =  

3

mXd 

 
 

Quality and Productivity Section – JSM 2012

1628



 

 

                                                        = 




















mXif
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In this case, finding a conditional confidence interval of the process capability index Cpk 

is really a matter of finding a conditional confidence interval of the process mean µ. 

 

For the process mean µ, if a random sample X1, X2,  …… Xn drawn from the process 

follows a normal distribution N(μ, σ
2
), then a 100(1-α)% unconditional confidence 

interval of µ is given by the interval 

 

)/,/( 2/12/1 nzXnzX      

 

After we obtain an unconditional confidence interval of µ, then an unconditional 

confidence interval of Cpk can be easily determined by using the formula Cpk = 





3

md 
 ,  since the only unknown parameter in this formula is µ. 

 

The test hypothesis for the parameter Cpk for this case (µ is unknown, σ
2 
is known) can be 

constructed as Ho: opk CC   vs.  H1: opk CC   , or equivalent to the hypothesis Ho: µ = 

µo  vs. H1: µ   µo,  where oo Cdm  3  if mo  , and oo Cdm  3  if 

mo  . For the same value of Co, whether we choose the value µo by using the 

condition mo   or mo   depend on prior information. For example, if we allow 

more deviation from the lower side of the mean, then we need to use the condition

mo  . That is, we choose oo Cdm  3 . Otherwise, we use the condition

mo   and choose oo Cdm  3 . 

 

A common rule of how to use the above preliminary test is that, if the null hypothesis is 

not rejected, then we use µ0 as an estimate of µ to give the estimate of Cpk, there is no 

need to construct a conditional confidence interval of Cpk in this case. But if the null 

hypothesis is rejected, we should use x  as an estimate of µ to give the estimate of Cpk , 

and then we need to find a conditional confidence interval of Cpk following rejection of 

the null hypothesis Ho: opk CC   , or equivalently Ho: µ = µo. 

 

As we already know, when the process variance σ
2
 is known, the process capability index 

Cpk contains only one unknown parameter, the process mean µ. Therefore, in order to 

find a conditional confidence interval of Cpk, we need to find a conditional confidence 

interval of the mean µ. 

 

Arabatzis, Gregoire and Reynolds (1989) investigated the conditional confidence interval 

of the normal mean following rejection of a two-sided test when σ is known, although the 

main conclusion they have reached is still discussible, but some partial results are useful. 
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Next, we’ll follow the general method to find a conditional confidence interval of µ 

following rejection of the null hypothesis Ho: µ = µo . 

 

If a random sample X1, X2, … , Xn is taken from a normal distribution N(μ, σ
2
),  where µ 

is unknown and σ
2 
is known. Then a level α test for testing Ho: µ = µo vs. H1: µ   µo has 

the critical region  

 

 )/(: 2/1 nzXXK o    

 

where 2/1 z  is the 2/1   quantile of the standard normal distribution. The null 

hypothesis is rejected if X K , and a conditional confidence interval of µ is computed 

only after we rejected the null hypothesis.  

 

The conditional pdf of X can be expressed as 

 

)(xf c  







  

otherwise

nzxifDxf o

,0

)/(,/)( 2/1  

 

 

where )(xf is the unconditional pdf of X , and D is the power of the test which is given 

by 

 

              D = ))/(( 2/1   nzxP o   

 

                  =      /)(/)(1 2/12/1 oo nznz    

 

                  =        2/12/11 zz  

 

where  /)( on  , and    is the CDF of the standard normal distribution. 

Under Ho, D =  .  When  , D approaches 1. 

 

The conditional CDF of X  can be expressed as 
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The above formula implies that if the null hypothesis is rejected by a small observation of 

X , i.e., if nzx o /2/1   , then the conditional CDF of X  can be expressed as 

 

    
 

   



 




 2/12/11

/)(
)(

zz

xn
xFc  

 

                = 
 

   



 /)(/)(1

/)(

2/12/1 oo nznz

xn





          

 (3.1) 

 

 If the null hypothesis is rejected by a large observation of X , i.e., if 

nzx o /2/1   , then the conditional CDF of X  can be expressed as 

 

     
   
















2/12/1

2/12/1

1

/)(
)(

zz

zzxn
xFc  

 

= 
     

   







/)(/)(1

/)(/)(/)(

2/12/1

2/12/1

oo

oo

nznz

nznzxn








 

                                                                                                                    (3.2) 

 

It’s quite obvious from equations (3.1) and (3.2) that the conditional CDF of X  depends 

only on the parameter µ, but not on any other nuisance parameters. It also can be verified 

numerically that the two functions )(1 h and )(2 h constructed by the following 

equations 

 

11 ));((  hFc  

 

and 

 

 22 1));((  hFc  

 

are increasing functions. So we can use the general method for finding a confidence 

interval of an unknown parameter to find a conditional confidence interval of µ. Thus, 

following the general method, we get  

 

[Result 3.1] Suppose the random sample X1, X2,  …… Xn is taken from a normal 

distribution N(μ, σ
2
), where µ is unknown and σ

2 
is known. Let 0 < α1 < 1, 0 < α2 < 1 with 

α1 + α2 < 1, and x be an observed value of X .  Let )(  denote the CDF of the standard 

normal distribution. If the observed value x  results in rejecting the null hypothesis Ho: µ 

= µo at level   by the condition nzx o /2/1    , then the solutions of 

 

 
   



 /)(/)(1

/)(

2/12/1 o

c

uo

c

u

c

u

nznz

xn





  

=  α1                 (3.3) 
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And 

 

 
   
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
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= 1 - α2           (3.4) 

 

construct a 100(1- α1 - α2)% conditional confidence interval (
c

l , 
c

u ) of µ. Otherwise, if 

the observed value x  results in rejecting the null hypothesis Ho: µ = µo at level   by the 

condition nzx o /2/1    , then the solutions of 
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                                                                    (3.5) 

and 
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                                                             (3.6) 

 

construct a 100(1- α1 - α2)% conditional confidence interval (
c

l , 
c

u ) of µ. 

 

The above equations look like complicated, but if we use IMSL numerical library, we can 

solve the equations for the conditional lower and upper confidence limits of
 
µ easily. 

 

Once we obtain the conditional confidence interval of µ as (
c

l , 
c

u ), to obtain a 

conditional confidence interval of Cpk just follows some simple calculations. 

 

The relationship between the conditional confidence interval of Cpk and the unconditional 

confidence interval of Cpk for the case that µ is unknown and σ is known can be similarly 

obtained following the analysis by Meeks, S. L. & D’Agostino, R. B. (1983). Except in 

this case, the procedure is much more complicated. We will not discuss in detail at this 

time. 

  

In some special cases, we still need to test a one-sided hypothesis for the process 

capability Cpk,  this include the following two different situations, Ho: Cpk ≤ Co  vs. H1: Cpk 

> Co  or  Ho: Cpk ≥ Co  vs. H1: Cpk < Co. To find a conditional confidence interval of Cpk 

following rejection of any of the above null hypotheses follows a similar procedure 

discussed in this section. That is, first we need to find a conditional confidence interval of 

the process mean µ following rejection of the preliminary test, and then we use the 

relationship Cpk =  




3

md 
 to obtain a conditional confidence interval of Cpk.  
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4.   CCls of Cpk When both µ and σ
2 
Are Unknown 

 
So far, we discussed the conditional confidence intervals of the process capability index 

Cpk for either µ is known and σ
2 

is unknown or µ is unknown and σ
2 

is known. But in 

most situations, the true values of the two parameters µ and σ
2 

are all unknown. So next, 

we’ll discuss the conditional confidence intervals of Cpk when both µ and σ
2 

are 

unknown. 

 

The testing hypotheses we need to consider for this situation depends on how much prior 

information we have. If we have prior information for both parameters µ and σ
2
, then we 

need to construct testing hypotheses for the two parameters µ and σ
2
. But in some cases, 

we may only have information for one of the two parameters, so we can construct only 

one testing hypothesis. Next, we will discuss case by case. 

 

4.1   Testing for both Parameters 

 

As we mentioned at the beginning, if both the mean µ and the variance σ
2 
of a process are 

unknown, and we have uncertain prior information for both of them, then we will test the 

parameters µ and σ
2
 separately using two sequential tests. The conditional confidence 

interval of Cpk will be considered following rejection of any of the two tests. The 

procedure is given as the following. First, test the hypothesis Ho: σ = σo vs. H1: σ ≠ σo , if 

the null hypothesis is not rejected, we regard σ as given (σ = σo), and then test Ho: µ = µo 

vs. H1: µ ≠ µo for the parameter µ, this test is a normal test since σ is given. If the null 

hypothesis Ho: µ = µo  is also not rejected, then we use µo and σo as two estimates of µ and 

σ to give the estimate of Cpk, no conditional confidence interval of Cpk is needed. But if 

the null hypothesis Ho: µ = µo is rejected, we use x  and σo as two estimates to give the 

estimate of Cpk. And then we will find a conditional confidence interval of µ following 

rejection of the null hypothesis Ho: µ = µo. Finally, we use the above conditional 

confidence interval of µ together with the value of σo (since σ = σo is regarded as known 

in this case) to obtain a conditional confidence interval of Cpk. This procedure is similar 

to the one we discussed in Section3. 

 

If the null hypothesis of the first test for testing Ho: σ = σo vs. H1: σ ≠ σo has been 

rejected, in this case, we need to use the sample standard deviation s as an estimate of σ, 

and then regard σ as unknown to construct the second hypothesis Ho: µ = µo vs. H1: µ ≠ 

µo for testing the process mean µ. This time the test is a t-test since σ is unknown. If the 

null hypothesis of the second test is not rejected, we need to use µo and s  as two estimates 

of µ and σ to give the point estimate of Cpk, and then find a conditional confidence 

interval of σ following rejection of the null hypothesis Ho: σ = σo. The conditional 

confidence interval of Cpk following rejection of the null hypothesis Ho: σ = σo of the two 

sequential tests can be obtained as following.  We regard µ as known (µ = µo) and σ as 

unknown and use the conditional confidence interval of σ together with the known value 

of µ (µ = µo) to construct a conditional confidence interval of Cpk. 

 

If the null hypothesis of the second test for testing Ho: µ = µo vs. H1: µ ≠ µo is also 

rejected, then both µ and σ need to be considered as unknown, and the conditional 

confidence interval of Cpk should be considered following rejection of the  two 

preliminary tests. In order to find a conditional confidence interval of Cpk in this case, we 

should first consider a joint confidence region of µ and σ. Next, we’ll give some basic 

analyses for how to find a conditional confidence interval of Cpk for this situation. 
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Following the general method, to find such a conditional joint confidence region of µ and 

σ, we need first to find the conditional joint CDF of X and S. We start with finding the 

unconditional joint pdf of X and S.  

 

If a random sample X1, X2, … , Xn is taken from a normal distribution N(μ, σ
2
),  then X

~ N(μ, σ
2
/n), 

2S ~ 
2

1

2

1



n

n



, and X and S are independent. Follows Arabatzis, Gregoire 

and Reynolds (1989), the unconditional joint pdf of X and S can be expressed as 
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for  sx 0, , where )( is the Gamma function. 

 

The conditional joint pdf of X and S following rejection of the two tests for testing Ho: σ 

= σo vs.  H1: σ ≠ σo   and Ho: µ = µo vs. H1: µ ≠ µo can be expressed as 
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where K is the critical region of the two tests determined by the intersection of 
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sn
, which is 

also the total shaded open regions of  I, II, III and IV shown in figure 4.1; D is the total 

unconditional probability of ),( sx
 

falling into the above critical region, which is 

determined by the following double integral 

 


K

dsxdsxfD ),(

 
 

The conditional joint CDF of X and S following rejection of the two tests for testing Ho: 

σ = σo vs. H1: σ ≠ σo   and  Ho: µ = µo  vs. H1: µ ≠ µo can be expressed as 

 

Ksxfor
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                                (4.1)
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      Figure 4.1   The joint domain of ),( sx  for the conditional joint CDF of X and     

                          S following rejection of two tests. The lines AB and AC are  

                          determined by )/(2/1 nstx o   . The lines DE and FG are  

                          determined by 
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and
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It should be noticed that the calculations of the double integral  dsxdsxf ),(  in 

equation (4.1) are quite different when the pair of observations ),( sx  falls into different 

regions of I, II, III or IV. From equation (4.1), it’s quite obvious that the conditional joint 

CDF of X and S only depends on the two unknown parameters µ and σ. With powerful 

computer programs, it’s possible to calculate the cumulated probability for any observed 

value of ),( sx using equation (4.1), if the two parameters µ and σ
2
 are given. 

 

Now, let us focus on the conditional joint confidence region of µ and σ. Since the 

conditional joint CDF of X and S only depends on the two unknown parameters µ and σ 

but not on any other unknown nuisance parameters, if a conditional joint confidence 

region of µ and σ exists, it could be found by using the above information. Next, we’ll try 

to extend the general method for finding a confidence interval of an unknown parameter 

to the two parameters case. 

 

Suppose K  is one relatively small region of X and S such that

 1]),[( SXP , if we regard ),( sx as random statistics and let (µ, σ) change 

jointly, then the statement ),( sx  is equivalent to the statement

21 1),(   sxFc for some α1 and α2 such that   21 . Therefore, if the 

inequality 21 1),(   sxFc  has a solution for the region of (µ, σ), then this 

solution should construct a 100(1-α)% joint confidence region of µ and σ. In other words, 

if we plug any pair of (µ, σ) values into the above inequality and make the inequality a 

true statement for a pair of observed statistics x and s. then this pair of (µ, σ) value 

should be in a 100(1- α1 - α2)% conditional joint confidence region of µ and σ which is 

related to this observed pair of statistics x and s. In this way, we can extend the general 

method to the two parameters case, and obtain the following result. 
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[Result 4.1] Suppose a random sample X1, X2,  …… Xn is taken from a normal 

distribution N(μ, σ
2
), where µ and σ

2 
are both unknown. Let 0 < α1 < 1, 0 < α2 < 1 such 

that 0 < 1 - α1 - α2 < 1. Let x  and s be the observed values of X  and S, and let ),( sxFc  

denote the conditional joint CDF of X  and S (equation (4.1)). If the observed values of 

x  and s result in rejecting the two null hypotheses Ho: µ = µo  and  Ho: σ = σo at level  , 

then the solution of 

   

                                      21 1),(   sxFc                                                                                               (4.2) 

 

for all pairs of (µ, σ) construct a 100(1- α1 - α2)% conditional joint confidence region of µ 

and σ. 

 

The solution of equation (4.2) for the joint confidence region is not easy to be formulated, 

but we may think in the following way to get a rough picture.  In equation (4.2), if we fix 

one of the two unknown parameters, say σ, at one value σ1, then the problem becomes to 

finding a conditional confidence interval of one single unknown parameter.  By the 

general method, the solution should be a finite interval if the value of σ1 is within the joint 

confidence region. If we change σ to another fixed value σ2, then the solution of µ is 

another finite interval if σ2 is also in the joint confidence region. Same situation happens 

when we fix µ at one value and try to find the solution of σ. So, we may conclude that the 

solution of equation (4.2) is just one connected region of µ and σ, and this region should 

contain the pair of observed value of ),( sx . 

  

Result 4.1 is numerically verified by examples, but hasn’t been proved theoretically. 

After we obtained the conditional joint confidence region of µ and σ, the conditional 

confidence interval of Cpk following rejection of the two tests for testing Ho: σ = σo  vs. 

H1: σ ≠ σo   and  Ho: µ = µo  vs. H1: µ ≠ µo can also be determined, but the computation is 

still very complicated. 

 

4.2   Testing for One of the Two Parameters 

 

In some situations, we may have uncertain prior information on one of the two unknown 

parameters. If this is the case, then we can construct only one preliminary test. We now 

consider the first case that we have some prior information about the process mean µ, and 

we test the hypothesis Ho: µ = µo vs. H1: µ ≠ µo. If the null hypothesis is not rejected, then 

we regard µ = µo as known, no conditional confidence interval of Cpk is needed to 

construct. If the null hypothesis Ho: µ = µo has been rejected, then we need to use x and s 

as two estimates of µ and σ to give a point estimate of Cpk. The conditional confidence 

interval of Cpk following rejection of the null hypothesis Ho: µ = µo can be obtained by 

using a similar procedure discussed in this section (4.1).  

 

The conditional joint pdf of X and S following rejection of the null hypothesis Ho: µ = µo 

can be expressed as 
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where ),( sxf is the unconditional joint pdf of X and S; K is the critical region of the 

test which is determined by )/(2/1 nstx o   , i.e., the regions I and II shown in 

figure 4.2; D is the total unconditional probability of ),( sx
 
falling into the above critical 

region, which is determined by the following double integral. 

 


K

dsxdsxfD ),(

 
 

In this situation, D is also the power of the test for testing Ho: µ = µo vs. H1: µ ≠ µo , 

which can be calculated by using the non-central t-distribution, that is 

 

                                       D = ))/(( 2/1   nStXP o   

 

                                          )
/
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                                           = )()(1 2/12/1    tHtH
 

 

where  H  is the CDF of the non-central t-distribution with (n-1) degrees of freedom 

and with non-centrality parameter 
n/

0







 . It’s quite obvious that D involves the 

two unknown parameters µ and σ. 

 

 
 

      Figure 4.2   The joint domain of ),( sx  for the conditional joint CDF of X and     

                          S following rejection of one test for the mean Ho: µ = µo vs. H1: µ ≠ µo.  

                          The lines AB and AC are determined by )/(2/1 nstx o   . 
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The conditional joint CDF of X and S following rejection of the null hypothesis Ho: µ = 

µo  can be expressed as 

 

Ksxfor
D

dsxdsxf
sxFc 
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                      (4.3)
 

 

This conditional joint CDF of X and S depends only on the two unknown parameters µ 

and σ but not on any other nuisance parameters, so we can follow the same procedure 

discussed in this section (4.1) to find a conditional joint confidence region of µ and σ 

following rejection of the null hypothesis Ho: µ = µo. After we obtained the joint 

confidence region of µ and σ, we can use it to obtain a conditional confidence interval of 

Cpk. 

 

In case we only have uncertain prior information about the process variance σ
2
, we need 

to test the hypothesis Ho: σ = σo vs. H1: σ ≠ σo. If the null hypothesis is not rejected, then 

we regard σ = σo as known. No conditional confidence interval of Cpk is needed for this 

case, since there is no test hypothesis has been rejected. If the null hypothesis Ho: σ = σo 

has been rejected, then we need to use x and s as two estimates of µ and σ to give a point 

estimate of Cpk. The conditional confidence interval of Cpk following rejection of the null 

hypothesis Ho: σ = σo can be constructed similarly to the previous case, except the 

rejection region is different.  

 

The conditional joint pdf of X and S following rejection of the null hypothesis Ho: σ = σo 

can be expressed as 
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where ),( sxf is the unconditional joint pdf of X and S.  K is the critical region of the 

test which is determined by 
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, that is, the 

regions I and II shown in figure 4.3. D is the total unconditional probability of ),( sx
falling into the above critical region, which is also determined by the double integral. 

 


K

dsxdsxfD ),(

 

 

The conditional joint CDF of X and S following rejection of the null hypothesis Ho: σ = 

σo  can be expressed as 
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     Figure 4.3   The joint domain of ),( sx  for the conditional joint CDF of X and  

                         S following rejection of one test for σ Ho: σ = σo vs. H1: σ ≠ σo.  

                         The lines AB and CD are determined by 
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and 
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As we can check, this conditional joint CDF of X and S only depends on the two 

unknown parameters µ and σ. Therefore, we can use result 4.1 to find a conditional joint 

confidence region of µ and σ following rejection of the null hypothesis Ho: σ = σo. Once 

the conditional joint confidence region of µ and σ is obtained, a conditional confidence 

interval of Cpk following rejection of the null hypothesis Ho: σ = σo can also be 

determined. 
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