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Abstract

Randomized clinical trials commonly include one or more planned interim analyses. With
a time-to-event endpoint, timing of interim analysis or final analysis is usually event-
driven. Because these analyses involve timeline and resource planning, it is worthwhile to
predict timing of these analyses early and accurately. Parametric models on observed
event data from on-going clinical trials were used in Bagiella and Heitjan (2001) and
Ying and Heitjan (2008). However, parametric model may not be flexible enough to fit
the real data well. We propose the piecewise exponential (PE) model to fit the observed
event data and estimate the parameters of the model, then predict timing of interim
analysis or final analysis. PE model is quite flexible, and can fit most of time-to-event
data quite well. Accuracy of prediction is assessed by simulation studies by comparing
the performance of exponential (E) model and PE model.

Key Words: time-to-event, predicting analysis time, interim analysis, piecewise
exponential model

1. Introduction

Randomized clinical trials commonly include one or more planned interim analyses. With
a time-to-event endpoint, timing of interim analyses or final analysis is usually event-
driven. Because these analyses involve timeline and resource planning, it is worthwhile to
predict timing of these analyses early and accurately.

Parametric models on observed event data were discussed by several authors. With
observed event data, Bagiella and Heitjan (2001) discussed estimating parameters and
making predictions under an exponential (E) model. Ying and Heitjan (2008) extended
this approach to more general parametric model, Weibull model. However, parametric
model may not be flexible enough to fit the real data well. Ying et al (2004) also
proposed a non-parametric prediction model.

We propose the piecewise exponential (PE) model to fit the observed event data and
estimate the parameters of the model, then predict timing of interim analysis or final
analysis. PE model is quite flexible, and can fit most of time-to-event data quite well.

Simulation results are given by comparing E mode and PE model.

2. Statistical Method
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2.1 Piecewise Exponential (PE) Model
For a defined event, the hazard function of a PE model with J pieces is given by

ll(tl‘[l,‘[z, ey T]—l) == Z§=1 I(Tj—lvfj](t)lj (1)
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Let f{%) be the probability density function, then f{¢) can be written as
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It can be shown that f;of(tl‘rl,rz, v, Top)dt =1

2.2 Likelihood Function for PE Model with Dropouts

Let 7 and V be the independent random variables of the underlying time-to-event and
time-to-dropout. ¢ is denoted as the censored time (administrative censoring only). Y is
the observed survival time. For i subject, the observed survival time is

T;, if it is an event
Y; =< V,,if itis adropout and Y; = min (T;, V;, ¢;)
c;, if it is censored

Let d; represent the event indicator for subjects with d; = 1if Y;=T, and d,=0if ¥; =V, or
ci; let /i represent the dropout indicator for subjects with /;=1if ¥;=V; and ;= 0if ¥; =T,
Oor ¢;.

Under PE model, assume that ¥ ~ PE(4) for time-to-event and Y ~ PE(») for time-to-
dropout, where 4 is a J dimension vector and v is a K dimension vector. With given nodes
T1,T2, -, Tj-qfor time-to-event and o), Gy,..., Ok, for time-to-dropout, the probability
density functions of Y for time-to-event and time-to-dropout are denoted by f{y) and g(y),
and the corresponding distribution functions are denoted by F(y) and G(y). Then the
likelihood function for n subjects is expressed as follows

L =TT f Qo HI%[L = Fu D14 g ML - G WITTE (@)

2.3 MLE of 1‘ ; with Known Node Positions

From (4) we can see that the likelihood functions for time-to-event and time-to-dropout
are well separated, thus we only need to use the corresponding part to estimate the
parameters. For A, consider
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L@ = [f 0 HI%[L = F (i, D%
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For a simple case with three pieces, the parameters of interest are A,,4,, 4, . Let n; be the

number of subjects with observed time-to-eventy;; in (Tj_l,‘[j], j=1,2and 3 with
79 = 0 and 73 = «, and n; + n, + n3 = n. The event indicators in each of three pieces
are djy, dj, ..., djnj: j =1, ..., 3. Then the likelihood L can be partition into three parts,

L= 1_[,3-:1 nzl[h(tﬁ)]dﬁ[l — F(tj,4)]

nq n,
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Then,
nq ni
logL(4,) = <Z‘—1d1i) xlog(Ay) — A4 [Z,_ltn‘ + (ng + n3)‘[1]

l 1=
It’s easy to show

n
Zi=11 dli

0 -
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# of events in (0,74]

~ Total follow up time in (0,74]

The general formula for MLE of 4, is

( "oy
o 2z & ; , when1<j<]J
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" od,
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where X is the summation over all subjects whose event time is between 7j_1and 7;.
For the drop-out rate, the result is similar as (7).
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2.4 Node Selection
Optimal nodes can be selected by maximizing the likelihood function when number of
nodes are fixed.

2.5 Prediction of Event Number

After we obtain the MLE of parameters based on the observed data at t,, we can predict
the number of events at a future time ¢. Following the notation from Bagiella and Heitjan
(2001), let the starting time of the study be the time origin, then define

T=e+Y, ®)

where e is the interval length between origin and the enrollment time, Y, is the
observed length for time to event. The predicted number of events at ¢, ED (t,,t), can be
evaluated by

ED(to,t) = D(to) + Q(to,t) + R(to, 1) )
Where D(ty) is the observed number of events at or before #,, O(f,f) is the expected
number of events between ¢, and ¢ among those censored at or before ¢, and R(#, t) is the

expected number of events between ¢, and ¢ among those to be enrolled between ¢, and ¢.

More specifically,

NQ
Q(to, t) = 2 1Pi,di=1(yi +e <tlY;+e >tp)
i=

_ ENQ Pia=1(to—e; < Y; <t—e)
i=1 pi(Y; >ty —€)

NQ ffo__ejif(yi, D[1-6(yy, Vdy;
=1 [1-F(to—ey)][1-G(to—eyv)]

=3

(10)

where NQ is the number of subjects who are censored at 7. Given the enrollment times
are known for all the subjects, R(t, ) is computed by

NR
R(to, t) = Z Pig=1(e; <Y +e; <t)
i

MR LT D L = 6] dy; (1)
where NR is the number of subjects to be enrolled between #, and ¢.
3. Example
Our model is illustrated by an example below.
This is a randomized, phase 3 trial for the treatment of a solid tumor cancer comparing an

experimental treatment with a control treatment. Below are the main bullet points in trial
design:
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* Subjects are randomized at 1:1 ratio to receive either experimental treatment or control
treatment.

* The primary endpoint is Progression Free Survival (PFS).

* The enrollment rate is 1 subject/day.

* N=600 (480 PFS events are required).

* There is 1 interim analysis at 50% of information fractions (240 PFS events).

The goal is to predict the time for interim analysis based on data when 160 events are
observed.

Computer-generated data (complete data) were used for this example. Assume time-to-
event and time-to-dropout follow PE distributions with distribution function F(t) and G(t)

for the combined treatment groups respectively.

F(t|ty, T2, T3)

( 1—e ™t if0<t<ty
_ 1—eMTxe ) jfr <t <,
1 — e MT1 5 A4 (T27T1) 4 o= A3x(t-T3) if 1, <t<rt3

kl — e—/11T1 * e_AZ*(TZ_Tl) % 3—13*(T3—T2) * 3—14*(t—T3)’ if t> 15

where (A1, A2, A3, L4)=(0.00080, 0.02200, 0.00060, 0.00300)and (t;, T2, T3)=(35, 46, 170)
were selected arbitrarily.
G(tloy, 03, 03)
1—e™ ¥t  if0<t<o

1 — e V101 x @~ V2*(t=01) if o, <t<oy
- 1 — e V101 % e—Uz*(Uz—Uﬂ * e—U3*(t—03)’ if 0y <t< O3
k 1 — e V191 % e—Uz*(Uz—Uﬂ % e—U3*(U3—02) % e—U4*(t—03)’ if t > o3

where (v, V2, V3, v4)=(0.00040, 0.00200, 0.00010, 0.00005) and (o, ©,, 03)=(40, 70, 270)
were selected arbitrarily.

After complete data were generated, then we can determine calendar time t, (160 event
were observed) and observed data up to t,. The 1* subject was randomized on 01/03/07.
By 04/01/08, 453 subjects had been randomized with 160 events and 22 dropouts. For the
observed data, the rest of 271 (453-160-22) subjects were censored at t,.

Applying the methods in Sections 2.2 and 2.4, it was estimated that

(Al’ Az, 13, 14, 15, 2‘6) -
(0.0006662225,0.02024965,0.003753351,0.0003756446,0.004668930, 0.002440955)
, and

(fl' fz, fg, f4, 7?5) = (35, 45, 51, 170, 196)

(V4,7,,7V3,V,) = (0.0006287726,0.0003043908,0.003033367,0.00008777127) ,
and

(&1, &2, 63) = (18, 53, 63)

The estimates of nodes (74,75, %3,T4,T5) and (6;, 65, 63) are considered optimal if 5
nodes for time to event and 3 nodes for time to dropout are selected, respectively.
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Figure 1 and Figure 2 are the figures for observed event-free probability versus estimated
event-free probability, and observed dropout-free probability versus estimated dropout-
free probability based on observed data up to t,.

Figure 1. Event-free Probability
curves based on observed vs. estimated
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Figure 2. Dropout-free Probability
estimated curve and curve based on observed data
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Results of prediction are given in Table 1. Applying formulas (10) and (11), we predicted
that 240 events would occur on 07/31/08. Since we have the complete data, we can
compare our prediction with actual cumulative number of events in complete data. In the
complete data, 240th events occurred on 07/30/08.

Table 1 Results on Predicted Number of Events

Results Date for 240
events
Actual from complete data 07/30/08
Estimated from observed data based on PE model 07/31/08
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4. Simulations

To assess the model performance, we generate the survival data from the Exponential
distribution and the Weibull distribution respectively. t, = 10, 13.3 and 16" month from
origin are chosen to be the current calendar time with observed data. Number of deaths
are predicted at T=20, 30, and 40" month from origin under each method. Then compare
the prediction accuracy of our PE model and the conventional E model under each data
set using 100 Monte Carlo simulations.

4.1 Simulation settings

4.1.1 Generate Data from Exponential Distribution
The p.d.f- of Exponential (A) is
f)=2e", ift>0

Set the death hazard rates for the control and treatment as A; = 0.003851 per day, A, =
0.002567 per day, and the hazard rates for the drop out of the two groups are v, =
0.001155 per day, v,= 0.001155 per day. Total sample size is 600 with equal allocation
for the treatment and control group. In addition, we assume the enrollment rate is 1
subject/day until 600™ day. Both complete data and observed data are generated.

4.1.2 Generate Data from the Weibull Distribution
The simulation settings are very similar as 4.1.1, expect the true data are generated under
the Weibull distribution. The p.d.f. of Weibull(a,b) is

a x.. 7(%)11
x)=—(—)"e , x>0
S (x) b(b)

where @ > 0 is the shape parameter, and b > 0 is the scale parameter.

4.1.3 Comparison of E model and PE Model

In E model we assumed that time to death and time to dropout followed an exponential
distribution for each treatment arm. Parameters in E model were estimated following the
paper by Donovan et al (2006). In PE model we assumed that time to death and time
dropout followed a PE model for the combined treatment arms. We applied the PE
model with two nodes for time to death and time to dropout. Then prediction accuracy of
PE model was compared with the one from E model.

4.2. Simulation Results

4.2.1. Data from the Exponential Distribution
Results from 100 simulations are listed below.

Table 2 Mean death number and dropout number
at current calendar time ty and the study end time T.
t(h=10m ft,=13.3m fr=16m T=40 m
Mean Deaths 95 152 202 424
Mean Dropouts | 34 56 74 158
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Table 3 Mean and the standard deviation (SD) of the absolute difference between the
observed event number and the predicted event number for the future time T using the

data at t,
T=20m T=30m T=40 m
Mean | SD Mean | SD Mean SD
PE 149 | 10.0 22.1 14.6 22.7 15.6
H=10m g 142 111|215 |182 |235 |203
fo=13.3m PE 9.6 7.7 15.3 11.0 14.2 11.8
E 9.6 7.1 14.5 11.5 14.1 11.7
fo=16m PE 6.9 5.2 11.1 8.2 10.9 8.4
E 6.9 5.2 11.2 8.6 11.1 10.3

Note: PE represents the results from the piecewise exponential model with 2 nodes, and E
represents the results from the exponential model.

Figure 3 Plot of Mean absolute difference between the observed event number in the
complete data and the predicted event number for the future time T using the data at t, by
the PE model and the E model.
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Note: the unit for calendar time is month.

As shown in Table 3, when both data of time to event and time to drop out are from the
exponential distribution, the performances of the PE and E models are very similar. The
mean and standard deviation for absolute differences between the observed and predicted
event numbers are very close for all scenarios of the current calendar time with observed
data t, and the future time T for both models.

4.2.2. Data from the Weibull Distribution
Results from 100 simulations are listed below.

Table 4 Mean death number and dropout number
at current calendar time to and the study end time T
t0=10m t0=13.3m t0=16m t0=40m
Mean Death 44 110 169 446
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| Mean DropOut | 44 | 70 | 90 | 155 |

Table 5 Mean and the standard deviation (SD) of the absolute difference between the
observed event number and the predicted event number for the future time T using the

data at t,.
T=20m T=30m T=40 m
Mean | SD Mean SD Mean SD
t,=10m PE 22 16.7 32 24.8 25 19.3
E 120 14.8 214 20.8 175 21.9
fo=13.3m PE 10 7.5 16 11.1 13 8.8
E 58 11.6 136 15.1 100 15.3
f,=16 m PE 6 39 12 8.7 10 7.1
E 28 7.1 104 11.4 72 11.6

Note: PE represents the results from the piecewise exponential model with 2 nodes, and E
represents the results from the exponential model.

Figure 4. Plot of Mean absolute difference between the observed event number in the
complete data and the predicted event number for the future time T using the data at t0 by
the PE model and the E model.
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Note: the unit for calendar time is month.

Unlike the simulation results from the previous section, when both data of time to event
and time to drop out are from the Weibull distribution, the prediction of the PE model is
much better than the E model based on the results in Table 5. The mean absolute
differences between the observed and predicted event numbers from the E model is about
6 to 9 times as that from the PE model. In general, the PE model has smaller standard
deviation than that from the E model.

4.3 Conclusion from Simulations
In summary, the simulations show that when data is from exponential distribution, the
results from the PE model are very close to the results from E model; when data is from

the Weibull distribution (non-exponential distribution), the predictions from PE model
are much better than those from the E model.
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5. Conclusion/Discussion

PE model is quite flexible to predict number of events for data from unknown distribution.
With maximum likelihood method to estimate parameters in PE model, the calculation
has the close form, so it is also relative simple.

One of the critical assumptions in this method is to assume future data to be similar to
observed data. This means future data within the maximum length of follow up time in

the observed data [max subject enrolled on or before to(to — ei), where e; is the interval

length between origin and the enrollment time for i subject] to be similar to the observed
data. This also means that the longer follow up data [longer than the maximum length of
follow up time in the observed data] to be similar to the last piece in the PE model.
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