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Abstract 
Randomized clinical trials commonly include one or more planned interim analyses. With 
a time-to-event endpoint, timing of interim analysis or final analysis is usually event-
driven. Because these analyses involve timeline and resource planning, it is worthwhile to 
predict timing of these analyses early and accurately. Parametric models on observed 
event data from on-going clinical trials were used in Bagiella and Heitjan (2001) and 
Ying and Heitjan (2008). However, parametric model may not be flexible enough to fit 
the real data well. We propose the piecewise exponential (PE) model to fit the observed 
event data and estimate the parameters of the model, then predict timing of interim 
analysis or final analysis. PE model is quite flexible, and can fit most of time-to-event 
data quite well. Accuracy of prediction is assessed by simulation studies by comparing 
the performance of exponential (E) model and PE model. 
 
Key Words: time-to-event, predicting analysis time, interim analysis, piecewise 
exponential model 
 
 

1.  Introduction 
 
Randomized clinical trials commonly include one or more planned interim analyses. With 
a time-to-event endpoint, timing of interim analyses or final analysis is usually event-
driven. Because these analyses involve timeline and resource planning, it is worthwhile to 
predict timing of these analyses early and accurately. 
 
Parametric models on observed event data were discussed by several authors. With 
observed event data, Bagiella and Heitjan (2001) discussed estimating parameters and 
making predictions under an exponential (E) model. Ying and Heitjan (2008) extended 
this approach to more general parametric model, Weibull model. However, parametric 
model may not be flexible enough to fit the real data well. Ying et al (2004) also 
proposed a non-parametric prediction model.  
 
We propose the piecewise exponential (PE) model to fit the observed event data and 
estimate the parameters of the model, then predict timing of interim analysis or final 
analysis. PE model is quite flexible, and can fit most of time-to-event data quite well. 
 
Simulation results are given by comparing E mode and PE model.    
 

2.  Statistical Method 
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2.1 Piecewise Exponential (PE) Model 
For a defined event, the hazard function of a PE model with J pieces is given by 
 | , , … , ∑ 1, 1     (1) 

  
 

where IA(t) is a indication function, and 
1,  0,  . 00   and J ,  

Jjforj ,...,1,0  and 0 ∞. The survival function will be 

 

 | , , … , | , ,… ,      (2) 
 
Let f(t) be the probability density function, then f(t) can be written as   
 
 | , , … , | , , … , | , , … ,  
 
 | , , … , ∑ ,     (3) 

 
It can be shown that | , , … , 1∞

 
 
2.2  Likelihood Function for PE Model with Dropouts 
Let T and V be the independent random variables of the underlying time-to-event and 
time-to-dropout. c is denoted as the censored time (administrative censoring only). Y is 
the observed survival time. For ith subject, the observed survival time is 
 

 
,       ,      ,     and  min , ,   

  
Let di represent the event indicator for subjects with di = 1 if Yi = Ti, and di = 0 if Yi = Vi or 
ci; let li represent the dropout indicator for subjects with li = 1 if Yi = Vi, and li = 0 if Yi = Ti, 
or ci. 
 
Under PE model, assume that Y ~ PE(λ) for time-to-event and Y ~ PE(v) for time-to-
dropout, where λ is a J dimension vector and v is a K dimension vector. With given nodes , , … , for time-to-event and 1, 2,…, K-1 for time-to-dropout, the probability 
density functions of Y for time-to-event and time-to-dropout are denoted by f(y) and g(y), 
and the corresponding distribution functions are denoted by F(y) and G(y). Then the 
likelihood function for n subjects is expressed as follows 
 ∏ , 1 , , 1 ,  (4) 
 
2.3  MLE of j  with Known Node Positions 
From (4) we can see that the likelihood functions for time-to-event and time-to-dropout 
are well separated, thus we only need to use the corresponding part to estimate the 
parameters. For λ, consider   
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, 1 ,  1 , 1 ,  ∏ 1 ,      (5) 
 
For a simple case with three pieces, the parameters of interest are 321 ,,  . Let nj be the 

number of subjects with observed time-to-event ,  in , , 1, 2  3 with 0  ∞, and . The event indicators in each of three pieces 
are , , … , , 1, … , 3. Then the likelihood L can be partition into three parts, 
 1 ,  

      
 

     ∑ ∑ ∑ ∑  

 ∑ ∑  

    ∑ ∑ ∑ ∑   
  

       ∑ ∑       (6) 
 
Then,  

 

It’s easy to show 
 0   ∑∑    #    0,     0,  

 
The general formula for MLE of j is  

 ∑∑   ∑ ,    1
∑∑ ,                                                  (7) 

        

where jn

i 1 is the summation over all subjects whose event time is between and . 

For the drop-out rate, the result is similar as (7).  
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2.4 Node Selection 
Optimal nodes can be selected by maximizing the likelihood function when number of 
nodes are fixed. 
 
2.5 Prediction of Event Number 
After we obtain the MLE of parameters based on the observed data at , we can predict 
the number of events at a future time t. Following the notation from Bagiella and Heitjan 
(2001), let the starting time of the study be the time origin, then define 
 

obsYeT        (8) 

where e is the interval length between origin and the enrollment time,  is the 
observed length for time to event. The predicted number of events at t, , , can be 
evaluated by 

 , , ,     (9)  
   

Where D(t0) is the observed number of events at or before t0, Q(t0,t) is the expected 
number of events between t0 and t among those censored at or before t0, and R(t0, t) is the 
expected number of events between t0 and t among those to be enrolled between t0 and t.  
 
More specifically,  
 , , |  

,   
 

∑ ,   ,   , ,      (10) 

where NQ is the number of subjects who are censored at t0. Given the enrollment times 
are known for all the subjects, R(t0, t) is computed  by 
 , ,  

∑ , 1 ,     (11) 

where NR is the number of subjects to be enrolled between t0 and t. 
 

3. Example 
 
Our model is illustrated by an example below.  
 
This is a randomized, phase 3 trial for the treatment of a solid tumor cancer comparing an 
experimental treatment with a control treatment. Below are the main bullet points in trial 
design: 
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• Subjects are randomized at 1:1 ratio to receive either experimental treatment or control 
treatment. 
• The primary endpoint is Progression Free Survival (PFS). 
• The enrollment rate is 1 subject/day. 
• N=600 (480 PFS events are required). 
• There is 1 interim analysis at 50% of information fractions (240 PFS events). 
 
The goal is to predict the time for interim analysis based on data when 160 events are 
observed. 
 
Computer-generated data (complete data) were used for this example. Assume time-to-
event and time-to-dropout follow PE distributions with distribution function F(t) and G(t) 
for the combined treatment groups respectively. 
 | ,  ,                                                                           1 ,  0 1 ,                    1 ,   1 ,        

 
where (1, 2, 3, 4)=(0.00080, 0.02200, 0.00060, 0.00300)and (1, 2, 3)=(35, 46, 170) 
were selected arbitrarily. 
  | , ,                                                                          1 ,          0 1 ,                    1 ,         1 ,          

where (1, 2, 3, 4)=(0.00040, 0.00200, 0.00010, 0.00005) and (1, 2, 3)=(40, 70, 270) 
were selected arbitrarily. 
 
After complete data were generated, then we can determine  calendar time t0 (160 event 
were observed) and observed data up to t0. The 1st subject was randomized on 01/03/07. 
By 04/01/08, 453 subjects had been randomized with 160 events and 22 dropouts. For the 
observed data, the rest of 271 (453-160-22) subjects were censored at t0.  
 
Applying the methods in Sections 2.2 and 2.4, it was estimated that , , , , ,0.0006662225, 0.02024965, 0.003753351, 0.0003756446, 0.004668930, 0.002440955  
, and ̂ , ̂ , ̂ , ̂ , ̂ 35, 45, 51, 170, 196  
 ̂ , ̂ , ̂ , ̂ 0.0006287726, 0.0003043908, 0.003033367, 0.00008777127 , 
and , , 18, 53, 63  
 
The estimates of nodes ̂ , ̂ , ̂ , ̂ , ̂  and , ,  are considered optimal if 5 
nodes for time to event and 3 nodes for time to dropout are selected, respectively. 
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Figure 1 and Figure 2 are the figures for observed event-free probability versus estimated 
event-free probability, and observed dropout-free probability versus estimated dropout-
free probability based on observed data up to t0.  
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Figure 1. Event-free Probability
curves based on observed vs. estimated
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Figure 2. Dropout-free Probability
estimated curve and curve based on observed data
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Results of prediction are given in Table 1. Applying formulas (10) and (11), we predicted 
that 240 events would occur on 07/31/08. Since we have the complete data, we can 
compare our prediction with actual cumulative number of events in complete data. In the 
complete data, 240th events occurred on 07/30/08. 
  

Table 1 Results on Predicted Number of Events  

Results 
Date for 240 

events 
Actual from complete data 07/30/08 

Estimated from observed data based on PE model 07/31/08 
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4. Simulations 
 
To assess the model performance, we generate the survival data from the Exponential 
distribution and the Weibull distribution respectively. t0 = 10, 13.3 and 16th month from 
origin are chosen to be the current calendar time with observed data. Number of deaths 
are predicted at T=20, 30, and 40th month from origin under each method. Then compare 
the prediction accuracy of our PE model and the conventional E model under each data 
set using 100 Monte Carlo simulations.  
 
4.1 Simulation settings 
 
4.1.1 Generate Data from Exponential Distribution 
The p.d.f. of Exponential () is  

     0,)(   tifetf t  
 
Set the death hazard rates for the control and treatment as λ1 = 0.003851 per day, λ2 = 
0.002567 per day, and the hazard rates for the drop out of the two groups are v1 = 
0.001155 per day, v2 = 0.001155 per day. Total sample size is 600 with equal allocation 
for the treatment and control group. In addition, we assume the enrollment rate is 1 
subject/day until 600th day. Both complete data and observed data are generated. 
 
4.1.2 Generate Data from the Weibull Distribution 
The simulation settings are very similar as 4.1.1, expect the true data are generated under 
the Weibull distribution. The p.d.f. of Weibull(a,b) is  
 

     0,)()(
)(

1 
 xe

b

x

b

a
xf

a

b

x
a  

where a > 0  is the shape parameter, and b > 0 is the scale parameter. 
 
4.1.3 Comparison of E model and PE Model 
In E model we assumed that time to death and time to dropout followed an exponential 
distribution for each treatment arm. Parameters in E model were estimated following the 
paper by Donovan et al (2006). In PE model we assumed that time to death and time 
dropout followed a PE model for the combined treatment arms. We applied the PE 
model with two nodes for time to death and time to dropout. Then prediction accuracy of 
PE model was compared with the one from E model.  
 
4.2. Simulation Results 
 
4.2.1. Data from the Exponential Distribution 
Results from 100 simulations are listed below. 
 

Table 2 Mean death number and dropout number 
at current calendar time t0 and the study end time T. 

 t0 = 10 m t0 = 13.3m t0 = 16 m T = 40 m 
Mean Deaths 95 152 202 424 
Mean Dropouts 34 56 74 158 
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Table 3 Mean and the standard deviation (SD) of the absolute difference between the 
observed event number and the predicted event number for the future time T using the 

data at t0 
  T = 20 m T = 30 m T = 40 m 
  Mean SD Mean SD Mean SD 

t0 = 10 m 
PE 14.9 10.0 22.1 14.6 22.7 15.6 

E 14.2 11.1 21.5 18.2 23.5 20.3 

t0 = 13.3m PE 9.6 7.7 15.3 11.0 14.2 11.8 
E 9.6 7.1 14.5 11.5 14.1 11.7 

t0 = 16 m PE 6.9 5.2 11.1 8.2 10.9 8.4 
E 6.9 5.2 11.2 8.6 11.1 10.3 

Note: PE represents the results from the piecewise exponential model with 2 nodes, and E 
represents the results from the exponential model. 
 
Figure 3 Plot of Mean absolute difference between the observed event number in the 
complete data and the predicted event number for the future time T using the data at t0 by 
the PE model and the E model. 

 
Note: the unit for calendar time is month. 
 
As shown in Table 3, when both data of time to event and time to drop out are from the 
exponential distribution, the performances of the PE and E models are very similar. The 
mean and standard deviation for absolute differences between the observed and predicted 
event numbers are very close for all scenarios of the current calendar time with observed 
data t0 and the future time T for both models.  
 
4.2.2. Data from the Weibull Distribution 
Results from 100 simulations are listed below. 
 

Table 4 Mean death number and dropout number 
at current calendar time t0 and the study end time T 

 t0 = 10 m t0 = 13.3m t0 = 16 m t0 = 40 m 
Mean Death 44 110 169 446 
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Mean DropOut 44 70 90 155 
 

Table 5 Mean and the standard deviation (SD) of the absolute difference between the 
observed event number and the predicted event number for the future time T using the 

data at t0. 
  T = 20 m T = 30 m T = 40 m 
  Mean SD Mean SD Mean SD 

t0 = 10 m PE 22 16.7 32 24.8 25 19.3 
E 120 14.8 214 20.8 175 21.9 

t0 = 13.3m PE 10 7.5 16 11.1 13 8.8 
E 58 11.6 136 15.1 100 15.3 

t0 = 16 m PE 6 3.9 12 8.7 10 7.1 
E 28 7.1 104 11.4 72 11.6 

Note: PE represents the results from the piecewise exponential model with 2 nodes, and E 
represents the results from the exponential model. 
 
Figure 4. Plot of Mean absolute difference between the observed event number in the 
complete data and the predicted event number for the future time T using the data at t0 by 
the PE model and the E model. 

Note: the unit for calendar time is month. 
 
Unlike the simulation results from the previous section, when both data of time to event 
and time to drop out are from the Weibull distribution, the prediction of the PE model is 
much better than the E model based on the results in Table 5. The mean absolute 
differences between the observed and predicted event numbers from the E model is about 
6 to 9 times as that from the PE model. In general, the PE model has smaller standard 
deviation than that from the E model. 
 
4.3 Conclusion from Simulations 
 
In summary, the simulations show that when data is from exponential distribution, the 
results from the PE model are very close to the results from E model; when data is from 
the Weibull distribution (non-exponential distribution), the predictions from PE model 
are much better than those from the E model. 
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5. Conclusion/Discussion 
 
PE model is quite flexible to predict number of events for data from unknown distribution. 
With maximum likelihood method to estimate parameters in PE model, the calculation 
has the close form, so it is also relative simple. 
 
One of the critical assumptions in this method is to assume future data to be similar to 
observed data. This means future data within the maximum length of follow up time in 
the observed data [max       0 , where ei is the interval 

length between origin and the enrollment time for ith subject] to be similar to the observed 
data. This also means that the longer follow up data [longer than the maximum length of 
follow up time in the observed data] to be similar to the last piece in the PE model. 
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