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Abstract

The paper presents two useful results for planning of enrollment in a clinical trial while
accounting for site initiation times: one for when target recruitment occurs after all sites
have been initiated and another for when recruitment target may possibly complete before
all sites have been initiated. We summarize the development of the two sets of formulae
and provide an application to the planning of global, multi-center clinical trials.
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1 Introduction

Models for prediction of patient recruitment in global, multi-center clinical trials have been
considered in a number of papers including (Senn (1998), Carter et. al (2005), Anisimov
and Fedorov (2007), Gajewski et al. (2008) and Anisimov (2011)). The potential impact to
study timelines warrants sponsors of clinical trials to carefully consider enrollment rates as a
variable factor in planning of the trial. Further, it is also essential to consider models that
include site (clinical center) initiation times. Regulatory processes required to initiate a site,
such that it can enroll patients in a clinical trial, are variant amongst different countries and
regions. Therefore for multi-center, global trials an enrollment plan must include accounting
for variability in site initiation.

The following defines the notation used throughout the remainder of the paper. First we
define λi the enrollment rate and ti as the initiation time for the i-th site, n•(T ) =

∑N
i=1 ni(T )

as the total number of enrolled subjects at time T across N centers. The cumulative rate at
T is defined as

Λ•(T ) =
N∑
i=1

λi(T − ti) =
N∑
i=1

Λi(T ). (1.1)

The subscript • is used here and what follows to indicate summation with respect to
the corresponding underlying indices. It is assumed that in each center i enrollment follows a
Poisson process with rate λi.
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The legitimacy of the normal approximations used later in (2.13) and (3.12) is based on
the asymptotic normality of mixed Poisson distributions (Gurland (1958), Willmot (1986) and
Johnson et al. (1993), Chapter 8). For (3.12) we also employ asymptotic behavior of random
sums (Feller (1968), V.9 and VIII.5, Theorem 4).

The paper focuses on derivation of explicit formulae for two cases. In Section 2 the
formulae for prediction of enrollment, accounting for staggered site initiation, are presented
in the case where enrollment ends after all sites have been initiated. In Section 3, the results
are extended to the case where the enrollment target of interest occurs before all sites being
initiated.

2 Case 1: All sites initiated before target enrollment at moment T

We define the interval by which sites are expected to be initiated in by [a, b], where a is a pre-
determined lower bound for site initiation and b is the upper bound. Practically these bounds
are typically known by clinical operations and/or regulatory experts. For example, it may be
quite known that a certain country will not approve site initiation processes to begin before x
months. Therefore a lower bound a is created by the reality of regulatory submissions. Each
regulatory jurisdiction will have lower and upper bounds that can be estimated from historical
data and from study personnel who are updated on changing regulatory environments.

We define Case I as follows: a ≤ ti ≤ b, where T > b. The expected value and variance
of λi and ti are

E[λi] = λ̄, Var[λi] = σ2
λ (2.1)

E[ti] = t̄, Var[ti] = σ2
t (2.2)

We assume that {λi} and {ti} are mutually independent.
The expected value and variance of n•(T ), the number of total subjects enrolled at time

T are determined using the law of iterated expectations and variances

E[n•(T )] = E[Λ•(T )] (2.3)

Var[n•(T )] = E[Λ•(T )] +Var[Λ•(T )] (2.4)

Recall that Λ•(T ) is a sum of independent λi(T−ti). Therefore we need to find E[λi(T −
ti)] and Var[λi(T − ti)], then sum these up.

E[λi(T − ti)] = λ̄(T − t̄) (2.5)

Var[λi(T − ti)] = σ2
λσ

2
t + λ̄2σ2

t + σ2
λ(T − t̄)2 (2.6)

Combining 2.3-2.6, we obtain

E[n•(T )] = Nλ̄(T − t̄) (2.7)

Var[n•(T )] = N [λ̄(T − t̄) + σ2
λ(T − t̄)2 + σ2

t (σ
2
λ + λ2)] (2.8)
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These results are flexible to different assumptions about the distribution of λi and ti. For
example we may assume that λi are Gamma distributed, and also that ti are Beta distributed.
These two distributions are flexible to handle various historical data assumptions. For these
assumptions we simply equate the previous results with the mean and variance results for these
distributions.
If λi are Gamma (α, β) distributed then

λ̄ = αβ−1 (2.9)

σ2
λ = αβ−2 (2.10)

If ti are Beta (p, q, a, b) distributed then

t̄ = (1− w)a+ wb, where w = p(p+ q)−1 (2.11)

σ2
t = (b− a)2pq[(p+ q)−2(p+ q + 1)]. (2.12)

When p = q = 1/2 the Beta distribution is the Uniform and therefore (2.11) and (2.12) coincide
with the results in Anisimov (2009).

In practical application, the parameters in (2.9) - (2.12) are replaced by their estimators
based on historical data. Strictly speaking, one must incorporate their uncertainties but this
is beyond the scope of the paper. If prior data are of substantial volume those uncertainties
do not contribute much to the variance of n•(T ).

With the mean and variance now calculated it is possible to determine the probability
of n(T ) given T is a certain value pγ . Therefore the number of enrolled patients at a given
time with a lower bound of probability is

nγ(T ) = Nλ̄(T − t̄)− zγ

√
Var[n•(T )] (2.13)

where zγ is the value of the cumulative standard normal at a certain percentile pγ .
We now may extend the above to the slightly more complex case of an enrollment target of
interest before the end of the site initiation window.

3 Case 2: Not all sites initiated before enrollment target at moment T

The second case to consider is one where target enrollment is estimated before the end of
site initiation. In this case we may view target enrollment as some interim target that occurs
before the full enrollment target is met. In reality, it would be rare that study sites would be
initiated right up to the end of enrollment. However it may be the case that add-on sites have
the potential to be added to push enrollment to the final target.

Specifically the case under consideration is that where a ≤ T ≤ b, where the interval
[a, b] is large enough to have N centers open during the interval. In what follows we use the
following properties of the random sum (X• =

∑N
i=1Xi) of identically distributed, independent

random variables (Feller, 1968):
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E[X•] = E[N ]E[Xi] (3.1)

Var[X•] = E[N ]Var[Xi] + [E[Xi]]
2Var[N ] (3.2)

The expected value of n•(T ) is defined as

E[n•(T )] = E[N(T )]E[ni(T )] (3.3)

We then solve for each term separately. First, for E[N(T )], let φ(t) be a density function of
initiation times with the support set [a, b]. Then by definition of a density function

E[N(T )] = N

∫ T

a
φ(t)dt = NΦ(T ), (3.4)

where Φ is the cumulative distribution function. For a center that is opened before T ,

E[ni(T )] = E[λi(T − ti)] = E[λi]E[(T −E[ti])] = λ̄(T − t̄(T )), (3.5)

where the conditional expectation t̄(T ) is

t̄(T ) = E[ti|ti ≤ T ] = Φ−1(T )

∫ T

a
tφ(t)dt (3.6)

Combining (3.1)-(3.3)
E[n•(T )] == NΦ(T )λ̄(T − t̄(T )) (3.7)

Observing that

Var[N(T )] = NΦ(T )(1− Φ(T )) (3.8)

and ,

S2(T ) = Var[ni(T )]] = λ̄(T − t̄(T )) + σ2
λ(T − t̄(T )) + σ2

t (T )(σ
2
λ + λ̄2) (3.9)

where

Var[ti|ti ≤ T ] = σ2
t (T ) = Φ−1(T )

∫ T

a
(T − t̄(T ))2φ(t)dt, (3.10)

one can verify that (see (3.2))

Var[n•(T )] = NΦ(T )S2(T ) +NΦ(T )[1− Φ(T )]λ̄(T − t̄(T )). (3.11)

Finally, using the results (see Introduction) on asymptotic normality, similar to (2.13)
we have

nγ(T ) = Nλ̄(T − t̄)− zγ

√
Var[n•(T )] (3.12)

Note that t̄(T ) is always less than T , see (3.6).
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4 Conclusions

We have presented formulae for calculation of target number of enrolled subjects in a global,
multi-center clinical trial, while accounting for the uncertainty inherent in site initiation times
due to differing regulatory processes. The proposed formulae for the two cases are flexible to
distribution assumptions about enrollment rate and site initiation times.

The analyst must carefully consider the particular trial and perform sensitivity analyses
to examine alternative scenarios. These formulae provide for easy calculations using various
assumptions.
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