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Abstract 
Some longitudinal trials require subjects to submit to frequent blood draws on visits over 
time. Often the primary endpoint does not require the observations from every visit. This 
is true, for example, in vaccine immunogenicity trials and in diabetes trials. Taking 
samples at every visit can be burdensome to both the subject and the sponsor. Subjects 
often do not like many blood draws. The cost of assays of every sample can be high. 
These facts contribute to increased cost and increased subject drop out. In this paper we 
investigate the idea of bleeding random subsamples at each visit but using the (frequent) 
high correlation within subjects between visits to build imputation models to implement 
an MI approach to analyzing the data. We use the observations present as well as other 
pertinent continuous and categorical variables to build the models. We do the estimation 
of the imputation models using a method of Raghunathan, Lepkowski et.al. which is very 
general and can handle many types variables. We give examples using data from some 
recent vaccine trials. We show how various patterns can reduce cost and possibly drop 
outs. 
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1. Introduction 
 
Frequent blood draws in some clinical trials can be burdensome to the subjects and to the 
sponsors. They are associated with an increased cost based on the blood sample handling, 
transferring, and testing. For example, assaying a blood sample in a vaccine (1) trial can 
cost from $50 to $200 depending on the test. In addition, too many blood draw visits can 
simply cause subjects to drop out of trials, especially in the pediatric and elderly 
populations. If only a random subset of the subjects could be bled at each physical site 
visit, this could possibly reduce cost and the drop-out rate.  
 
With this approach, the statistician can still use the high/frequent correlations between 
visits to build imputation models to implement a multiple imputation approach to analyze 
the data. In this paper, we use the sequential regression multivariate imputation (SRMI) 
of Raghunathan, Lepkowski, et.al. (2) to perform the imputation. In addition standard 
multiple imputation (MI) is used as a comparison.  
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With this approach, for the final analysis, the imputed results would be considered as the 
primary results. This concept in a way prevents missing data due to drop-outs and still 
gives a way to analyze the data in a statistically meaningful way. 
 
In this paper, in section 2 the study design is presented and the two methods: sequential 
regression multivariate imputation (SRMI) and multiple imputation (MI) are described. 
In Section 3 the details of the two examples are presented along with the results. Section 
4 is a short discussion.   
 

2. Study Design and Methods 
 
2.1 Study Design 
 
This was a Phase II, randomized, mono-center vaccine trial in 2 to 11 year old children in 
Peru.  Each subject was to receive 3 vaccinations of either the active or the control group 
at Days 0, 180, and 365. The planned sample size was 200 and 100 for the active group 
and the control group, respectively. The aim of the trial was to describe the serological 
immune response to the disease virus before and after each vaccination, 28 days post-
dose 3 being our primary time point. Additionally, presence of viremia, the level of 
disease vaccine virus, was to be assessed. Since viremia was expected to occur at low 
levels, it was chosen to be assessed twice, 8 and 15 days after the first and the second 
vaccination. Since in this trial, viremia presence was very low after the second 
vaccination for the active group and 0% for the control group, we only considered the 
presence of viremia at either Day 8 or Day 15 after the first vaccination for the active 
group. In order to limit the blood volume taken from the children, the viremia assessment 
was made only in a random subgroup of subjects (active group=97, control group=30 
subjects).  
 
Table 1 shows the vaccination schedule, the viremia and the serology blood draw visits. 
 
Table 1: Trial flow charta  

Visit V01 V02 V03 V04 V06 V07 V08 V09 V11 V12 

Days D0 D8 D15 D28 D180 D180 
+8 

D180 
+15 

D180 
+28 

D365 D365
+28 

Viremia   BL2 BL3     BL6 BL7       

Serology BL1     BL4 BL5     BL8 BL9 BL10
Vaccine Vax 1       Vax 2       Vax 3   
 
In this vaccine trial, a laboratory tested the serology blood samples taken from each 
subject at pre-vaccination bleeds 1, 5, and 9, and post-vaccination bleeds 4, 8, and 10 
using a microneutralization assay. The antibody response was reported in titers. In this 
paper, we are only interested in a single serotype, but the correlations between serotypes 
can also be investigated to come up with an imputation approach.  
 
 

                                                 
a  V=Visit, D= Day, BL=Bleed, Vax=Vaccination 
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2.2 Methods 
In this paper, we use the sequential regression multivariate imputation (SRMI) method of 
Raghunathan, Lepkowski, et.al.(2) to impute missing values. This is a very general 
imputation method which can handle many different variable types, in our case 
categorical and continuous. In addition, it can handle restrictions like the fact that when 
the log10 (titer) is imputed, it has to be above 0. A SAS based application is readily 
available by the authors on the web from the University of Michigan. In addition, we use 
standard multiple imputation to compare the results. Once the imputed datasets (m=50 
datasets) are obtained by each technique, each dataset is analyzed separately, and the 
estimates and the standard deviations are combined (Rubin, 2002, [3]) to obtain the final 
results. 
The logarithm (in base 10) of the titer is the variable included in the models and the 
imputations, and when the analysis is complete, the anti-logs were taken and the 
geometric mean titers (GMTs) were reported. In this paper, we reported the individual 
group GMTs and the GMT ratios of active versus control group comparisons. 
 
2.2.1 Sequential Regression Multivariate Imputation (SRMI) 
Sequential regression multivariate imputation is an imputation procedure that can handle 
complex data structures by combining regression and Bayesian ideas. Basically, it obtains 
imputations by fitting a sequence of regression models and drawing values from the 
corresponding predictive distributions. It has an ability to accommodate complex data 
structures using normal linear regression, logistic regression, generalized logistic 
regression, Poisson regression, and two stage models based on zero-non zero status. 
 
Suppose U is the set of the completely observed variables that are a mixture of 
continuous, binary, count or mixed variables in your imputation model. Y=Y1 ,…,Yp 
denotes the p variables with missing values, ordered assuming Y1 has the least number of 
missing values and Yp has the most number of missing values. The first iteration starts by 
regressing Y1 on U, imputing the missing values given the regression model and 
obtaining a posterior predictive distribution of Y1 given U.   Then Y2 is regressed on (U, 
Y1), which gives the posterior predictive distribution of Y2 given U and Y1. The cycle 
continues through these series of regression models until the last Y variable is imputed. 
Once Yp is imputed the first iteration is complete. The imputations continue as Y1,…,Yp  
are alternately regressed  on all the other variables, i.e. regress Y1 on (U, Y2 ,…Yp); 
regress Y2 on (U, Y1 , Y3,…,Yp); etc., and impute draws from posterior prediction 
distributions thus updating the imputed values. The imputations continue in a cyclic 
manner, each time overwriting the previously drawn values, until convergence is reached.  
SRMI is a very flexible method in the sense that it can accommodate complex data 
features using different regression methods. Moreover, the data does not need to have an 
explicit joint multivariate distribution of all the variables. This algorithm can be 
computationally intense when large and complex data sets are of interest. However, the 
algorithm can be modified to apply a variable selection method for each regression in 
each round.  
 
The authors have developed a SAS based application called Imputation and Variance 
Estimation Software (IVEware) to implement this approach, which is available from a 
website (www.isr.umicj.edu/src/smp/ive). 
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2.2.2 Multiple Imputation (MI) 
MI is a technique where each missing value is replaced with a set of values that 
represents the uncertainty about the right value to impute. The basic idea of MI in a 
regression setting is to use a complete dataset as linear regression predictors to estimate 
the distributions of the regression coefficients and then use these regression coefficients 
to predict and impute the missing values.  
We have used SAS (4) proc MI and proc MIANALYZE to do our imputations. Because 
proc MI requires a monotone missing pattern (i.e. when Yj  is missing for an individual, 
then it is assumed that all subsequent variables Yk, k>j are missing for that individual) 
and in vaccine trials most often there is a small amount of missing data at the pre-blood 
draws, we first imputed enough number of missing values using a Markov chain Monte 
Carlo (MCMC) method to make the imputed datasets have a monotone missing pattern.  

 
 

3. Examples and Results 
3.1 Example 1 
 
In this first example, our primary point of interest was the presence of viremia in the 
active group, a categorical variable. Table 2 shows the different imputation models and 
methods that were used. In the observed complete data, the presence of viremia was 
44.3% (43/97 subjects).  We used 2 different regression models: 
 
1.    Presence of viremia (Yes/No) = Bleed 1+Bleed 4+Bleed 5+Bleed 8  
to investigate the relationship between viremia and the serological immune response 
 
2.    Presence of viremia (Yes/No) = Age+BMI+YF+Bleed 1+Bleed 4+Bleed 5+ Bleed 8      
to investigate the relationship between viremia and the serological immune response 
along with some covariates. 
 
Table 2: Models used in the viremia example 
N Modelb Model # Method Minrsq 
97 Observed viremia rate (43 out of 97 subjects: 

44.3%) 
0 Observed N/A 

199 Detectable viremia (Yes/no)= BL1+BL4+BL5+BL8 1 IVE None 
199 Detectable viremia (yes/no)= 

Age+BMI+Sex+YF+BL1+BL4+BL5+BL8 
2 IVE None  

199 Detectable viremia (Yes/no)= BL1+BL4+BL5+BL8 1 IVE 0.01 
199 Detectable viremia (yes/no)= 

Age+BMI+Sex+YF+BL1+BL4+BL5+BL8 
2 IVE 0.01 

199 Detectable viremia (Yes/no)= BL1+BL4+BL5+BL8 1 IVE 0.25 
199 Detectable viremia (yes/no)= 

Age+BMI+Sex+YF+BL1+BL4+BL5+BL8 
2 IVE 0.25 

199 Detectable viremia (Yes/no)= BL1+BL4+BL5+BL8 1 MI N/A 

                                                 
b BMI=Body mass index, YF= Yellow fever serological status, BL=Bleed 
BL1, BL5 = Pre-dose 1 and pre-dose 2 serology bleeds, respectively 
BL4, BL8= 28 days post-dose 1 and post-dose 2 serology bleeds, respectively 
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199 Detectable viremia (yes/no)= 
Age+BMI+Sex+YF+BL1+BL4+BL5+BL8 

2 MI N/A 

 
For both models, in addition a stepwise selection procedure was used to select the best 
predictors with the IVE software by setting a minimum marginal R-squared (min R-
squared=0.01 and 0.25). Once the imputed datasets were obtained, the viremia percentage 
was obtained from a single binomial proportion. 
 
Figure 1 shows the viremia percentages, along with the 95% CIs based on the different 
approaches. The 95% CI for the Observed viremia percentage based on the subset of 97 
subjects is calculated using the exact binomial method (5). In addition, the numbers seen 
in the figure are the ratio of the CI widths with respect to the width of the Observed CI. 
As seen from the figure, the ratios of the CI widths are within decimals of each other for 
most cases. IVE-model 2 with the demographic covariates and no selection mechanism 
has the point estimate furthest from the observed, followed by the MI-model 2 estimate. 
As seen, it may make a difference what imputation model is used. 
 

 
Figure 1: Active group: Viremia %s and 95% CIs (with ratio of CI widths with respect to 
“Observed” CI) 
 
In addition, we looked at the post-dose individual GMTs of the active group. Figure 2 
shows the 28 days post-dose 2 GMTs, along with the 95% CIs based on the different 
approaches similar to Figure 1. The Observed GMT in this figure is based on 188 
subjects data as 11 subjects had a missing post-dose 2 visit out of the 199 subjects. As 
seen from the figure, for all the different models, the GMT point estimates were close to 
the observed GMT, within a -1.2 to 5.5% range. The CI widths were all within a -2.3% of 
the observed CI’s widths. In addition, the IVE model with either no stepwise selection or 
min R-squared =0.1 and MI perform very similarly as well. 
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Figure 2:  Active group: Post-dose 2 GMTs and 95% CIs (with ratio of CI widths with 
respect to “Observed” CI) 
 
3.2 Example 2 
 
In this second example, we apply SRMI and MI to the same vaccine trial in example 1 to 
compare the investigational vaccine to the control using the 28 days post-dose 3 GMT 
ratios. The post-dose 3 GMT ratio being our primary point of interest, gives the clinical 
team an opportunity to perhaps not collect blood samples from all the subjects at all their 
other previous time points.  
 
In this example, the imputation model was Bleed 10 = Bleed 1+Bleed 4+Bleed 5+Bleed 
8+Bleed 9 to investigate the relationship between the 28 days post-dose 3 and the other 
serology time points. We used the t-test based on the unequal variance assumption once 
the imputed datasets were created to obtain the estimates and the standard errors to 
merge. 
 
Table 3 shows the variances and the Pearson correlation coefficient between the six 
serology visits’ titers. 
 
Table 3: Variances and Pearson correlation coefficients between serology visitc titers 
Vaccine   Pre-dose 1 Post-dose 1 Pre-dose 2 Post-dose 2 Pre-dose 3 Post-dose 3
Active Pre-dose 1 0.916 0.901  0.909  0.744  0.715  0.596  
  Post-dose 1 0.901  1.175  0.939  0.792  0.741  0.566  

                                                 
c Pre-dose 1=BL1, 28 days post-dose 1=BL4, pre-dose 2= BL5, 28 days post-dose 2=BL8,  
pre-dose 3=BL9, 28 days post-dose 3=BL10 
 

Biopharmaceutical Section – JSM 2012

674



  Pre-dose 2 0.909  0.939  1.067 0.793  0.736  0.564  
  Post-dose 2 0.744  0.792  0.793  0.419  0.735  0.660 
  Pre-dose 3 0.715  0.741  0.736  0.735   0.962  0.784  
  Post-dose 3 0.596  0.566  0.564  0.660  0.784  0.441 
                
Control Pre-dose 1 0.922  0.994  0.956  0.959  0.948  0.848  
  Post-dose 1 0.994  0.922  0.959  0.962  0.948  0.846  
  Pre-dose 2 0.956  0.959  0.970  0.997  0.978  0.874  
  Post-dose 2 0.959  0.962  0.997  0.986  0.976   0.873  
  Pre-dose 3 0.948  0.948  0.978  0.976  1.119 0.909  
  Post-dose 3 0.848  0.846  0.874  0.873   0.909  1.184  
 
As seen from Table 3, the correlations in the control group are all above 0.90 between the 
first five visits and still very high (>0.84) between the last visit and the previous visits. 
Because of the high correlations between visits, the loss of an observation at a single visit 
would result in only a small loss of information. For the active group, the correlations 
between the initial visits are very high and you can see a slight decrease after dose 2. 
However, even correlations around 0.5-0.6 at post-dose 3 with the previous visits are 
good enough if used properly.  
 
Figure 3 shows the boxplots for both treatment groups at each serology time point. As 
expected for the active group, the individual GMTs increase after the first vaccination, 
decrease before the second vaccination, increase further after the second vaccination, and 
peek 30 days after the third vaccination. They are almost constant for the control group as 
expected. The slight increase at the third dose could be linked to disease exposure. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

N a c tiv e= 150 /v is it

N c o ntro l= 72 /v is it

N a c tiv e= 150 /v is it

N c o ntro l= 72 /v is it

 
Figure 3: Serology time point boxplots for each treatment group 
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We took the complete dataset of 222 subjects with six serology visit titers and removed 
some of the subject visits’ data using 3 different patterns. In the first two patterns, we 
removed titers in a systematic way. In pattern 1, one visit out of six for each subject was 
removed. In the second pattern, two visits were removed from each subject. For the third 
pattern, more observations were removed from the initial three visits (30% of titers/time 
point), slight less from visits 4 and 5 (25% of titers/time point), and the least (10% of 
titers/time point) was removed from the last visit, the 28 days post-dose 3 visit based on 
the correlations observed between visits as seen in Table 3. Figure 4 shows the display of 
the three patterns. 
 

 

O denotes missing data 

OO15

OO13
OO14

OO12
OO11

OO10
OO9

OO8
OO7

OO6
OO5

OO4
OO3

OO2
OO1

….

Post-dose 3Pre-dose 3Post-dose 2Pre-dose 2Post-dose 1Pre-dose 1Subject

OO15

OO13
OO14

OO12
OO11

OO10
OO9

OO8
OO7

OO6
OO5

OO4
OO3

OO2
OO1

….

Post-dose 3Pre-dose 3Post-dose 2Pre-dose 2Post-dose 1Pre-dose 1Subject

….
….

Remove
10%

….
….

…

…

Remove
25%

…

… Remove
25%

…

…

…

…
Remove 

30%

…

…

…
Remove 

30%

…

…

002
Remove 

30%

001

Post-dose 3Pre-dose 3Post-dose 2Pre-dose 2Post-dose 1Pre-dose 1Subject

….
….

Remove
10%

….
….

…

…

Remove
25%

…

… Remove
25%

…

…

…

…
Remove 

30%

…

…

…
Remove 

30%

…

…

002
Remove 

30%

001

Post-dose 3Pre-dose 3Post-dose 2Pre-dose 2Post-dose 1Pre-dose 1Subject

Pattern 1 Pattern 2 

Pattern 3 

O12
O11

O10
O9

O8
O7

O6
O5

O4
O3

O2
O1

….

Post-dose 3Pre-dose 3Post-dose 2Pre-dose 2Post-dose 1Pre-dose 1Subject

O12
O11

O10
O9

O8
O7

O6
O5

O4
O3

O2
O1

….

Post-dose 3Pre-dose 3Post-dose 2Pre-dose 2Post-dose 1Pre-dose 1Subject

 
Figure 4: Missing data patterns  
 
Overall, 16.7%, 33.3%, and 24.9% of the total 1332 observations were removed for each 
pattern, respectively.  More important than the amount of observations removed is the 
amount of information removed. You will see indications of how much information was 
lost when the confidence intervals are compared below. 
 
Figure 5 shows the 28 days post-dose 2 and post-dose 3 GMT ratios, along with their 
95% CIs. The numbers seen in the figure are the ratio of the CI widths with respect to the 
width of the observed CI (“Observed” corresponds to the complete data before the titers 
were removed). 
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Figure 5: 28 days post-dose 2 and 3 GMT ratios and 95% CIs (with ratio of CI widths 
with respect to “Observed” CI) 
 
As seen from Figure 5, for post dose 3, the CI widths are within 17% to 24% of the 
Observed CIs using SRMI. Pattern 2 has the widest CIs and pattern 1 has the narrowest 
CIs. Similar patterns were observed using MI. This may be due to the fact that for SRMI 
an imputation model with no stepwise selection approach was chosen. For post dose 2, 
pattern 3 has the narrowest CI widths followed by pattern 1 and pattern 2, ranging from 
15% to 23% wider than observed for any method.    
 
The point is, depending on the pattern one chooses to randomly remove the data, the 
optimum confidence intervals could be obtained. This idea could be used to design a 
clinical trial during the planning stages with the right assumptions. 
 

4. Summary 
 
In clinical trials that require frequent blood draws, such as vaccine and diabetes, it is 
possible to reduce the burden by decreasing the number of bleed visits based on the visit 
correlations during the planning stage. There should be an optimal way to obtain the best 
estimates based on a possible optimization algorithm. This way, we can still obtain 
estimates that are close to the actual estimate and CIs that are reasonable. As seen 
different patterns will produce different results based on the amount of information lost. 
When trying to decide how to do the removal process, the clinical trial team needs to 
carefully consider the assumptions. IVEware and MI are statistical tools to help us 
achieve this goal.  
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