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Abstract 
 
Applied statisticians are often confronted with statistical inference problems dealing with 
situations in which there appear to be no data, or data of only limited usefulness.  For 
example, when attempting to find a confidence interval for a binomial proportion, the 
sample may contain no successes.  Such a scenario could be encountered when 
attempting to estimate the incidence of an extremely rare side effect associated with the 
administration of a newly developed drug.  Other statistical inference situations in which 
there may be no or only limited data include estimating an odds ratio when one of the 
cells in a 2x2 table is empty, estimating a risk ratio when one of the groups experiences 
none of the outcome of interest, and incorporating observations below the limit of 
detection into a statistical analysis. In this presentation, we illustrate each of these 
scenarios with real data and describe the preferred methods for handling them. 
 
Keywords: relative risk, exact methods, limit of detection, Spearman correlation, 
binomial distribution, odds ratio  
 

1. Introduction 
 
First of all, we must apologize to Dennis Helsel for "stealing" part of the title of our 
presentation from him.  He is the author of Nondetects and Data Analysis (Helsel 2005), 
which we consider to be the definitive text on the analysis of data that include 
observations below the limit of detection (LOD) of a measuring device. (We will refer to 
such observations as "nondetects," or ND's.)  In 2010, he published a commentary 
entitled "Much Ado About Next to Nothing: Incorporating Nondetects in Science" 
(Helsel 2010), which addresses many of the issues that we will discuss today.  (Of course, 
we also owe a debt of gratitude to the Bard of Avon for our title.) 
 
In today's presentation, we address an issue that applied statisticians are often confronted 
with; namely, statistical inference problems in which there appear to be no data, or data 
of only limited usefulness. We will illustrate the following scenarios with real data and 
describe methods for handling them: (1) Finding a confidence interval (C.I.) for a 
binomial proportion when the sample contains no successes (or failures), (2) Finding a 
C.I. for an odds ratio (OR) when one of the cells in the 2x2 table is empty, (3) Finding a 
C.I. for a risk ratio (RR) when one of the groups experiences none of the outcome of 
interest, and (4) Incorporating ND's into a correlation analysis. 
 

2. Binomial with No Successes 
 
This scenario could occur, for example, when we wish to estimate the incidence of an 
extremely rare side effect associated with the administration of a drug or use of a device.  
For example, one of the authors (SL) was involved in a clinical study in which a dentist 
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wanted to examine the effects of electromagnetic interference on a neurostimulator 
during the operation of three dental devices (electric pulp tester, apex locator, 
electrocautery unit). After n = 70 independent trials, there were no failures of the 
neurostimulators.  The researcher wanted to know: "What is a reasonable upper bound for 
the probability of failure of the neurostimulator?"  If one formulates this in the context of 
the binomial distribution, letting π = the probability of failure, then the problem becomes 
one of finding the upper limit of a 1-sided 95% C.I. for a binomial proportion: (0, πu).  
The most commonly used method, the Wald interval, yields uninformative results: 
 0, ( ) 0, 0uASE     .  
 
We evaluated 8 methods that can be used to find confidence limits for a binomial 
proportion: (1) the Mid-P interval (Agresti 2007, p. 16), (2) the Wilson (score) interval 
(Wilson 1927), (3) the SAIFS interval (Borkowf 2006), (4) the Bayes-Laplace HPD 
(Tuyl, Gerlach, and Mengerson 2008), (5) the Clopper-Pearson (C-P) exact interval 
(Clopper and Pearson 1934), (6) the Poisson interval (Leemis and Trivedi 1996), (7) the 
continuity-corrected Wilson interval (Casella 2001), and (8) the Agresti-Coull interval 
(Agresti and Coull 1998). 
 
The upper 95% C.I. for the observed sample of n = 70, x = 0, yielded the following 
results for each of these methods:  
 

   
Method 

 
πu = Upper Limit 
of 95% C.I. (π) 

 
 
Mid-P 

 
0.032 

 
Wilson (Score) 

 
0.037 

 
SAIFS 

 
0.038 

 
Bayes-Laplace HPD 

 
0.041 

 
C-P Exact 

 
0.042 

 
Poisson 

 
0.043 

 
Continuity-Corrected 
Wilson 

 
0.050 

 
Agresti-Coull 

 
0.058 

 
Compared to the other methods we evaluated, C.I.'s based on the Clopper-Pearson 
method are preferred when x = 0 for the following reasons: (1) they are moderate in 
length, (2)  the required sample size is comparable to other methods, (3) they are easy to 
compute, (4) there are closed-form expressions for πu and the sample size required to 
yield 1-sided C.I. of any length, (5) they are equivalent to a Bayesian prediction interval 
based on the Jeffreys prior, and (6) they always have p-confidence (Vos and Hudson 
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2005) equal to the nominal confidence coefficient.  See McCracken and Looney (2011) 
for full details. 
 

3. Odds Ratio with Empty Cells 
 

If any of the cells of a 2x2 table are 0, then either  0OR  or OR   , depending on 
whether the 0 cell occurs in the main diagonal or the off-diagonal, respectively. 

Furthermore, ASE[log( )]OR    if any of the cells in the 2x2 table are zero, where 
"ASE(·)" will denote "approximate standard error" throughout the remainder of this 
manuscript. For a 2x2 table with a zero in one of the cells, Agresti (2007, p. 31) 
recommends the use of the slightly amended  estimator of the OR: 
 

 11 22

12 21

( .5)( .5)
.

( .5)( .5)

n n
OR

n n

 


 
 

The ASE[log( )]OR is then calculated "in the usual way" after adding .5 to each cell count.  
In a study of the association between positive toxicology screens and clinical outcome 
among patients hospitalized with traumatic injuries (Blondell et al. 2005), the following 
2x2 table was obtained. 
 
Table 1. 2x2 Table Showing Association Between Positive Screen for Cocaine and 
Risk of Death Following Traumatic Injury 
 
   

Death 
 
No Death 

 
Positive 

 
0 

 
110 

 
Cocaine 

 
Negative 

 
30 

 
739 

 

For the data in Table 1,  0OR  and ASE[log( )]OR   . The "Agresti method" is based on 
the following amended table: 
 
Table 2.  Amended Table Corresponding to Table 1 
 
   

Death 
 
No Death 

 
Positive 

 
0.5 

 
110.5 

 
Cocaine 

 
Negative 

 
30.5 

 
739.5 

 

Using the data in Table 2, we obtain:  0.11OR  , with an approximate 95% CI(OR) of 
(0.01, 1.81). Exact methods are also available for estimating the true OR when there are 

empty cells. For the data in Table 1, StatXact yields  0OR  , with an exact 95% CI(OR ) 
of (0.00, 0.72). Note that the conclusions differ for the 2 intervals in terms of the test of 
H0: OR = 1, where OR denotes the true value of the odds ratio. 
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4. Risk Ratio with No Events 
 
In a study of the effectiveness of a behavioral intervention for depression in nursing 
homes (Meeks et al. 2008), the following 2x2 table was obtained: 
 
Table 3. Table Showing Association Between Risk of Fall and Intervention for 
Depression 
 
  

1 or More Falls 
 

No Falls 
 

Total 
 
Intervention 

 
5 

 
24 

 
29 

 
Control 

 
0 

 
24 

 
24 

 

For the data in Table 3,RR   and ASE[log( )] .RR    The method of Agresti & Caffo 
(2000) that can be used for statistical inference for the risk difference when zero events 
are observed in one of the groups can be adapted to inference for the RR. This method is 

based on applying the "usual" formula for calculating ASE[log( )]RR  to the data in the 
following "amended" table, obtained by adding 1 to each cell: 
 
Table 4.  Amended Table Corresponding to Table 3 
 
  

1 or More Falls 
 

No Falls 
 

Total 
 
Intervention 

 
6 

 
25 

 
31 

 
Control 

 
1 

 
25 

 
26 

 

Using the data in Table 4, we obtain: 5.3RR  , with an approximate 95% CI(RR) of (0.65, 

39.16).  Using StatXact, the following results are obtained: RR   , with an exact 95% 
CI(RR) of (1.14, ∞). In a recent article, Carter et al. (2010) proposed using the ratio of the 
median unbiased estimates (MUE) of the proportions in each treatment group to obtain 
the point estimate of the risk ratio and the deterministic bootstrap to find an approximate 

C.I.(RR). For the data in Table 4,  12.38RR  , with an approx. 95% CI(RR ) of (1.52, 
23.44). Note that the conclusions differ for the 3 intervals in terms of the test of H0: RR = 
1, where RR denotes the true value of the risk ratio: 
 

 
Method 

 
Point Estimate 

 
95% C.I. (RR) 

 
Conclusion 

 
Amended 

 
5.3 

 
(0.65 – 39.16) 

 
Fail to reject 

 
Exact 

 
∞ 

 
(1.14, ∞) 

 
Reject 

 
Carter et al. 

 
12.38 

 
(1.52, 23.44) 

 
Reject 
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5. Non-Detects 
 

Looney and Hagan (2005) considered the correlation between hippuric acid (Y) and 
ortho-Cresol (X) concentrations in urine samples of 54 individuals exposed to toluene 
using data taken from Amorim and Alvarez-Leite (1997). Both X and Y were subject to 
ND's; out of the n = 54 pairs of (X,Y) observations, there were 15 subjects with X  ≥ 
LODx  and  Y  ≥ LODy, 35 subjects with X  < LODx  and  Y  ≥ LODy, and 4 subjects with 
X  < LODx  and Y  < LODy. In their analysis of the data, Amorim and Alvarez-Leite 
replaced the 39 ND’s with the LOD’s for X  and Y, and then performed inference for the 
Pearson correlation in the usual way. 
 
In most statistical analyses of data subject to a limit of detection, the ND’s are treated as 
left-censored at the LOD. If both X and Y are subject to left-censoring, the general 
maximum likelihood (ML) approach due to Lyles et al. (2001) can be used. Other 
approaches that have been used include: (1) simple substitution, in which each ND is 
replaced by zero, the LOD, or some simple function of the LOD, such at LOD/2; (2) 
assuming that the ND's are tied at the LOD, and then calculating Spearman's or Kendall's 
correlation coefficient adjusted for ties; or (3) analyzing only the complete cases (i.e., 
only those pairs for which both X  ≥ LODx  and  Y  ≥ LODy. It is important to note that 
ND’s cannot be assumed to be missing at random; thus, missing-data methods available 
in PROC MIXED, for example, do not apply. 
 
Figure 1 contains a scatterplot of the Amorim and Alvarez-Leite data, and Table 5 
contains a summary of the results of various methods that were used to estimate the 
correlation between the hippuric acid and ortho-Cresol concentrations. 
 
 

 
Figure 1. Scatterplot of ortho-Cresol vs. hippuric acid concentrations in urine 
samples of 54 individuals exposed to toluene in shoe factories, painting sectors of 
metal industries, and printing shops. Observations below the detectable limit of 
either assay are plotted as zero for purposes of illustration. 
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Table 5. Comparison of Estimation Results Based the Data of Amorim and Alvarez-
Leite 
 

 
Method 

 
n 

 
  

 
95% C.I. 

 
Width 

 
Impute zero  

 
54 

 
0.79 

 
(0.67, 0.88) 

 
0.21 

Impute LOD/2  54 0.79 (0.65, 0.87) 0.22 

Impute LOD 54 0.79 (0.63, 0.86) 0.23 

Lyles et al. (2001) 54 0.79 (0.62, 0.88) 0.26 

Spearman 54 0.58 (0.36, 0.74) 0.38 

Complete cases 15 
 

0.76 (0.40, 0.92) 0.52 

Kendall 54 0.49 (0.12, 0.74) 0.62 

 
 
In her PhD dissertation research, the 2nd author (C. McCracken) is performing a 
comprehensive comparison of various methods for dealing with ND’s when estimating a 
correlation. The methods she is comparing include (but are not limited to) (1) Pearson’s 
correlation with non-detects set equal to LOD, / 2LOD or / 2LOD , (2) other imputation 
methods proposed in the literature; (3) Pearson’s correlation estimated using the ML 
method described by Lyles et al. (2001); (4) Spearman’s correlation with non-detects 
assumed to be tied at LOD; and (5) Kendall’s tau with non-detects assumed to be tied at 
LOD. She is comparing these estimation methods under conditions of large censoring 
proportions, unbalanced censoring proportions, small to moderate n, and non-BVN data.  
 
As of the date of this presentation (July 29, 2012), Ms. McCracken had obtained results 
for two sample sizes (n = 100 and 200); two true values of the correlation (ρ = 0.25 and 
0.50); the following censoring proportions in (X,Y): (20, 20), (40, 20), (40, 40), (60, 40), 
(60, 60), and (80, 20); and three distributions [bivariate normal (BVN), bivariate gamma 
(BVG), bivariate beta (BVB)]. These particular non-bivariate normal distributions were 
chosen to represent a wide range of departures from BVN, as measured by multivariate 
skewness (β1p) and multivariate kurtosis (β2p).  For the BVN, (β1p, β2p)  = (0, 8). For the 
BVG alternative, (β1p, β2p) = (1, 9) and, for the BVB, the two versions included in the 
simulation have (β1p, β2p)=(3, 10) and (4, 12), respectively. A sample of Ms. McCracken's 
simulation results for the ML method is summarized in Table 6. 
 
The results in Table 6 indicate that the ML method performs well for moderate to large 
censoring proportions and moderate departures from BVN.  However, with more severe 
departures from BVN, as in the case of the BVB distribution, no method (including ML) 
performed acceptably. None of the simple substitution methods (LOD/2, etc.) ever 
reached coverage probability above 92% for a 95% confidence interval. 
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Table 6. Empirical Coverage Probabilities of 95% Confidence Intervals Based on 
the Maximum Likelihood Method 
 
 
Distribution 

 
Censoring Proportion 

 
Coverage Probability 

 
 
Bivariate Normal 

 
(80, 20) 

 
95.1 

  
(40, 40) 

 
94.9 

  
(60, 60) 

 
94.5 

 
Bivariate Gamma 

 
(80, 20) 

 
94.9 

  
(40, 40) 

 
94.5 

  
(60, 60) 

 
94.4 

 
Bivariate Beta 

 
(80, 20) 

 
87.8 

  
(40, 40) 

 
89.4 

  
(60, 60) 

 
75.4 

 
 

6. Conclusion 
 
Even if there are "no" data or extremely limited data, valid methods are available, even 
when the sample size is quite small. These methods may require specialized software. 
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