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Abstract

Consider interval estimation of m small area proportions Pi (i = 1, · · · ,m), where we assume
a stratified random sampling design with equal number of observations n in each stratum, and where
the domains of interest are the strata. A 100(1 − α)% confidence interval for Pi that has appeared
repeatedly in the literature and is used in application is given by P̂EBi ± zα/2

√
msei, where P̂EBi

and msei are an empirical Bayes estimator of Pi and an associated second-order unbiased mean
squared error estimator (i = 1, · · · ,m). In the case where no covariates are available, the underlying
model is pi|Pi

ind.∼ N (Pi, ψi), Pi
ind.∼ N (µ,A), where pi is the sample proportion for domain

i (i = 1, . . . ,m); ψi are known sampling variances; and µ and A are unknown hyperparameters.
We refer to models that use the normality assumption on both levels of the hierarchy as “Normal-
Normal Models.” The well-documented problems of the normal approximation to the binomial raise
questions about the accuracy of confidence intervals based on the Normal-Normal model above
when the domain sample sizes are small or when the true domain proportions are close to 0 or 1.
We argue that a more reasonable model in this setting is a beta-binomial model in which the sampled
stratum counts have binomial distributions and the prior distribution of the true stratum proportions
follows a beta distribution. The Beta-Binomial Model has also previously appeared in the literature
as a candidate for modelling small area proportions. We examine a new empirical Bayes confidence
interval based on this model. We perform simulation studies under the Beta-Binomial Model that
compare the peformance of this CI and an alternative CI constructed using the Normal-Normal
Model.

Key Words: Complex Survey, Small Area Estimation, Proportions, Stratified Random Sampling,
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1. Introduction

Consider interval estimation for domain proportions from data collected from a stratified
random sampling survey, where the domains of interest are the strata and where the charac-
teristic underlying the proportions is a rare event, so that all stratum proportions are small.
The focus is on two-sided intervals. We assume a simple random sample is taken from each
domain of interest.

Stratified random sampling designs tend to be particularly efficient in situations where
the stratum means differ significantly from each other. Here we assume all stratum propor-
tions are small, but the strata are sampled separately to ensure that data is collected from
all domains of interest, so that the domains of interest are the strata. Such a situation may
arise, for instance, when studying the proportion of people with a rare disease in each of
several domains. For simplicity we assume equal stratum sample sizes (i.e., ni = n).
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Although small area models benefit greatly from the presence of relevant covariates,
here we will assume that covariates are not available but that we still wish to “borrow
strength” from different domains. For examples in the literature of such an approach, see
Efron and Morris (1975), and Carter and Rolph (1974).

A 100(1 − α)% confidence interval for the true proportion Pi of domain i that has
appeared in the literature is P̂EBi ± zα/2

√
msei, where P̂EBi and msei are an empirical

Bayes estimator of Pi and an associated second-order unbiased mean squared error estima-
tor (i = 1, . . . ,m). Many different choices of P̂EBi andmsei are discussed in the literature.
The specific estimators we will study here are described in Section 2. The underlying model
for this method uses normal approximations: pi|Pi

ind.∼ N(Pi, ψi), Pi
ind.∼ N(µ,A), where

pi is the sample proportion for domain i based on a sample of size ni, i = 1, . . . ,m, ψi are
known smoothed sampling variances, and µ and A are unknown hyperparameters.

The Normal-Normal Model discussed above appears in Carter and Rolph (1974), where
it is used to estimate the probability that an alarm signals a structural fire. A generalization
of the model is the famous Fay-Herriot model (1979), where the authors exploit the avail-
ability of covariates to “borrow strength” when estimating a domain’s proportion. Some of
the many other papers that use Normal-Normal models for proportions are Morris (1995),
Morris (1983), and Liu, Lahiri, and Kalton (2007). Moreover, a Normal-Normal model is
used to estimate poverty at the state level by the Census Bureau’s Small Area Income and
Poverty (SAIPE) program–a linear Gaussian Fay-Herriot Model is used (National Research
Council Report, 1997).

Underlying the Normal-Normal model discussed in this paper is the notion that the
normal distribution is effective for approximating the binomial. As is well-known to statis-
ticians, the normal approximation to the binomial distribution can be problematic when the
probability of success is in the extremes and the number of Bernoulli trials associated with
the binomial random variable is small. Brown et al. (2001, 2002) show that the actual
coverage of the Wald interval, given by Y/r ± zα/2

√
(Y/r)(1− Y/r)/n, may fall well

below the nominal coverage in several examples. These include cases where p is not close
to 0 or 1 and where rp and r(1 − p) are greater than 10, a rule of thumb sometimes given
in introductory statistics books. In fact, the coverage tends to oscillate both as r increases
with p being fixed and as p varies with r fixed, making the coverage for a particular prob-
lem difficult to predict. This phenomenon is due to the discreteness and skewness of the
binomial distribution. The erratic coverage properties of the Wald interval raises questions
about the performance of the Normal-Normal CI when the underlying true proportions are
small.

It should be noted that Brown et al. (2001) discuss several other methods of construct-
ing confidence intervals for proportions, all of which tend to perform better than the Wald
interval when considering the coverage probability over the range of p. One of note is
the Wilson interval, also based on a normal approximation. Like the Wald interval, the
Wilson interval is derived from an asymptotic pivot. For the Wald interval the pivot is
(p− p̂)/

√
p̂(1− p̂)/r and for the Wilson interval the pivot is (p− p̂)/

√
p(1− p)/r. The

Wilson interval also shows oscillation in the true coverage as p and r vary, but it is less
severe than that of the Wald interval. It is one of the two intervals recommended by Brown
et al. for small sample sizes. Although both intervals are based on a normal approximations
to the binomial, the Wald Interval bears a greater resemblance to the Normal-Normal CI,
which is of the form P̂EBi ± zα/2

√
msei.
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Furthermore, the support of the Normal distribution is the real line whereas a propor-
tion must be between 0 and 1. When the true proportions are small the distribution of pi|Pi
may assign significant probability to negative regions. The same is true of the distribution
of the Pi under the Normal-Normal Model. Some of the choices of hyperparameters in our
simulations in Section 4, which correspond to the scenarios of interest in this paper, could
lead to such problems.

Negative values of P̂EBi can be avoided through truncating the estimators for the hyper-
parameterA. Further truncation may be needed to ensure the lower bound of the confidence
interval is nonnegative. The need for truncation may have an impact on the coverages of
the confidence intervals.

In a stratified random sampling setting with small stratum sample sizes, it is more rea-
sonable to assume the sampled domain counts Yi, given Pi, follow a binomial distribution,
particularly when the sampling fraction is small or the sampling is with replacement, and
when the proportions are in the extremes.

To apply an empirical Bayes approach, we must specify the distribution of the true pro-
portions Pi. The beta distribution is a reasonable choice since its support is (0, 1) and since
its shape varies greatly with different choices of parameters, allowing some flexibility in
the model. In an empirical Bayes approach to confidence interval construction, the hyper-
parameters, and thus the shape of the distribution, are determined by the data.

Thus, a reasonable model in this setting is:

Yi|Pi
ind.∼ Bin(n, Pi), (1)

and
Pi

ind.∼ Beta(a, b). (2)

The purpose of this paper is to study the properties of a CI based on the Normal-Normal
model and of a CI based on the Beta-Binomial model under the assumption that the latter
model is the true model.

Many authors have considered beta-binomial models for inference on proportions in
small area estimation problems. Examples are Ghosh and Lahiri (1987), Ghosh and Maiti
(2004), Gilary et al. (2012), among others. Empirical and hierarchical Bayes small area
beta-binomial models for domain proportions are also considered in Rao (2003). The
method of estimating the hyperparameters studied here is new.

In Section 2 we give more details on the specific Normal-Normal CI studied in this
paper. In Section 3 we derive an empirical Bayes confidence interval based on the assumed
model given by (1) and (2), which we call the Beta-Binomial confidence interval. In Sec-
tion 4 we compare through simulation studies the Normal-Normal CI to the Beta-Binomial
CI, under the assumption that the true model is given by (1) and (2).

2. Normal-Normal Empirical Bayes CI

The Normal-Normal CI rests on the following assumptions:
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Level 1: pi|Pi
ind.∼ N(Pi, ψi), (3)

Level 2: Pi
ind.∼ N(µ,A). (4)

The model is a special case of the famous Fay-Herriot Model (1979) and is closely related
to the Efron-Morris model (1975), and to the models described in Carter and Rolph (1974).
In particular, the Normal-Normal is a special case of one of four models examined in the
paper by Carter and Rolph, which considers the case where the domain sample sizes are
not necessarily equal. The model is used to analyze a fire alarm dataset. Three other related
models are also discussed, including a two level model using an arcsine variance stabilizing
transformation. Variants of the Fay-Herriot model are frequently used in surveys in small
area estimation problems.

Level 1 in equation (3) is usually called the sampling model and level 2 in equation
(4) is usually referred to as the linking model (Jiang and Lahiri, 2006). The sampling vari-
abilities ψi are assumed to be known, although they typically need to be estimated. This
is a weakness of the Fay-Herriot model since it does not incorporate the uncertainty due to
estimation of ψi.

Returning to the empirical Bayes setup defined by (3) and (4), we note that because the
Normal distribution is its own conjugate prior, the posterior distribution of Pi|pi is normal
with mean

γipi + (1− γi)µ, (5)

where
γi =

A

A+ ψi
. (6)

The parameter γi is called the shrinkage factor. Note that γi determines weights applied to
the area-specific estimator and the prior mean µ. An estimator for Pi is given by

γ̂ipi + (1− γ̂i)p̄, (7)

where

p̄ =

∑m
i=1 pi
m

, (8)

and where an estimator for γi will be given subsequently.

A two-sided 100(1− α)% empirical Bayes CI is given by:

(P̂EBi ± zα/2
√
msei), (9)

where zα/2 represents the appropriate quantile of the standard normal distribution; see Rao
(2003). To estimate ψi we used

ψ̂i = (p̄)(1− p̄)/ni = (p̄)(1− p̄)/n = ψ̂. (10)

The sampling variances ψi, are treated as known and equal to ψ̂ in this paper. As in
Carter and Rolph (1974), and Morris (1983) we estimate the sampling variance by (10). In
this case because ni = n this results in equal estimators for the ψi. This approach is used
here because this estimator is more stable than estimators based on the data from only a
single domain, since pi(1− pi)/n should be highly variable when the domain sample sizes
are small. The variability of ψ̂ should be smaller although it should have a higher bias if

Section on Survey Research Methods – JSM 2012

4389



the ψi are not approximately equal. Estimating the ψi by formula (10) implicitly assumes
that ψi = µ(1− µ)/n.

Another approach would be to perform a variance stabilizing transformation. If covari-
ates were available, better approaches for estimating the ψi may be possible. For instance,
one may estimate the ψi using a generalized variance function (see Wolter 1985, Chapter 5).

The following estimators are used for A, γi, and the msei:

Â = max

{
0, (m− 1)−1

m∑
i=1

(pi − p̄)2 − ψ̂

}
, (11)

γ̂i = γ̂ =
Â

ψ̂ + Â
, (12)

mseEBi = g1(Â) + g2(Â) + 2g3(Â), (13)

where
g1(Â) = γ̂ψ̂, (14)

g2(Â) =

(
ψ̂

ψ̂ + Â

)2
 m∑
j=1

1

ψ̂ + Â

−1 =
ψ̂2

m(ψ̂ + Â)
, (15)

and

g3(Â) =

[
(1− γ̂)2

ψ̂ + Â

] ̂
V ar(Â) =

2(1− γ̂)2(ψ̂ + Â)

m
. (16)

Discussion of formulas (11-16) can be found in Rao (2003) or Jiang and Lahiri (2006).
The sum of (14) and (15) alone, as an estimator of msei, would be a naive estimator be-
cause it would not account for the uncertainty due to the estimation of A (Rao, 2003). If
one were to use the sum of these two terms alone the bias would be of order O(1/m).
The estimator (13) was proposed by Prasad and Rao (1990) and has bias of order o(1/m)
assuming ψ̂ = ψ is the true parameter.

The estimator forA given by (11) truncates the unbiased estimator (m−1)−1
∑m

i=1(pi−
p̄)2 − ψ̂ whenever it is negative. Such truncation guarantees that P̂EBi cannot be negative.
However, it does not guarantee that the lower bound of the interval is nonnegative, so that
the latter may need to be truncated as well.

3. Beta-Binomial Empirical Bayes CI

The Beta-Binomial confidence interval is built under the model given by (1) and (2). As
previously discussed, the underlying model assumptions are more reasonable than the nor-
mal distribution assumptions, particularly in the cases of interest where the normal approx-
imation to the binomial is inappropriate.
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Since the beta distribution is a conjugate prior for the binomial, the posterior distribu-
tion Pi|Yi follows a beta distribution. If a and b were known, a credible interval for Pi
would be

Li = B(α/2, yi + a, n− yi + b) (17)

Ui = B(1− α/2, yi + a, n− yi + b) (18)

Under our proposed method of estimation, to estimate the hyperparameters a and b we first
estimate δ, given by

δ =
1

a+ b+ 1
. (19)

The hyperparameter δ specifies a relationship between the prior mean µ and the prior vari-
ance σ2:

σ2 = µ(1− µ)δ. (20)

The hyperparameters µ and σ2 can be expressed in terms of a and b, where

µ =
a

a+ b
, σ2 =

a− 1

a+ b− 2
.

It is easy to see that δ has the property that 0 < δ < 1. Moreover, δ is directly proportional
to the prior variance, so the larger the δ the less confidence it reflects on the prior distribu-
tion, i.e., the less informative the prior.

We estimate δ through the following equation:

[
1− MSW

p̄(1− p̄)
− δ
]

+
C

δ
= 0 (21)

where

MSW =
n

m(n− 1)

m∑
i=1

pi(1− pi)

is the mean squared error within. The above equation can be solved in closed form, and it
has two solutions, one which is negative and the other one which is:

δ̂ =
K +

√
K2 + 4C

2
, (22)

where K = 1−MSW/(p̄(1− p̄)).

When n is fixed andm→∞, as is typically assumed in small area estimation problems
due to the fact that typically the domain sample size n is much smaller than the number
of domains m, MSW

p→ µ(1 − µ)(1 − δ) and thus K
p→ δ. This is easy to verify by

computing EM (MSW ). Note that δ̂ is consistent provided C = Cm = o(1).

Based on extensive empirical evidence gathered through a large number of simulations,
δ̂ appears to have the property that it is always in the desired range (i.e., 0 < δ̂ < 1) if C
is appropriately chosen (C is a small positive constant). A similar technique was used by
Gabler et al. (2011) in the estimation of intra-cluster correlation for the balanced one-way
random effects model.
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According to our simulation results, the values of C that give good coverage depend
on the true parameters and on n. In our simulation studies, different values of C were ex-
amined for each table displayed in Section 4 to obtain satisfactory results. Our simulation
studies suggest that in cases of interest it is possible to find a C that works well for a range
of prior means and variances in the sense that the coverages nearly meet or exceed the nom-
inal coverage. To find a C that works for a particular application, preliminary simulations
are needed. This issue requires further investigation.

We could also have estimated δ more simply by:

1−MSW/(p̄(1− p̄)).

This corresponds toC = 0. The problem with this method of estimation is that it frequently
yields values for δ that are outside the admissible range, particularly when µ, n, and m are
small. In fact, the frequency with which δ is out of the range increases when µ approaches
0 (or 1), as n decreases and as m decreases, as is illustrated by Figure 1, which is based
on simulations under the assumed model. Figure 1 shows the proportion of values of δ̂ that
were outside the range 0 < δ̂ < 1. Simulations not shown here also revealed that with
C = 0 there is significant undercoverage of the corresponding intervals.

It should be noted that by continuity of δ̂(C), there should be values of C that are small
enough so that there is a positive probability of δ̂ being outside the desired range. However,
this was not the case with the values which were used in our simulations in Section 4.

One could arbitrarily set δ̂ to be a particular constant, such as .5, whenever an inad-
missible value is obtained, but this method results in undercoverage of the corresponding
confidence intervals, according to our simulations.

Estimators for a and b are derived from the relations between a, b, µ and δ, as follows:

â = p̄

(
1

δ̂
− 1

)
(23)

and

b̂ = (1− p̄)
(

1

δ̂
− 1

)
. (24)

Care must be exercised to select a C that is appropriate for the cases of interest. A poor
choice of C may result in coverages that are far below the nominal.
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Figure 1: Relative frequency of δ̂ out of range for various parameters: Simulation results
for N = 10, 000 replications. (a) m = 100, n = 10, σ2 = .0099, (b) µ = .01, σ2 = .0099,
n = 10, (c) µ = .01, σ2 = .0099, m = 100. In each case C of (21) is set equal to zero.

4. Simulation Results

For each replication, we generated data using the Beta-Binomial model, with Yi|Pi ∼
Bin(n, Pi) and Pi ∼ Beta(a, b) for a variety of choices of m, n, µ, and σ2, focusing pri-
marily on small-area examples with small µ. We computed coverages (computed as the
proportion of replications that capture the true domain proportion) and average lengths for
the Beta-Binomial CI and for the Normal-Normal CI for one domain. Each simulation
was performed for N replications, where N is typically 1,000 or 10,000 depending on the
desired accuracy. All our CI’s have a nominal 95% coverage and are two-sided.

4.1 Robust C for Fixed n and for a Range of Small Prior Means and Variances

Table 1 displays the coverages and average lengths for the Beta-Binomial CI and for the
Normal-Normal CI for domain 1.
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As was previously mentioned, the optimal value of C for estimating δ depends on the
prior parameters, and in fact when C is inappropriately chosen the coverages of the Beta-
Binomial CI can be quite poor, according to our simulations. Table 1 suggests it is possible
to choose a C that provides coverage that always nearly meets or exceeds the nominal level
for a range of small prior means with small prior variances. However, we note that for very
small values of µ in this table (i.e., µ < .01), the Beta-Binomial CI can show significant
overcoverage and higher average lengths than the Normal-Normal CI with this value of C.
It should be possible to choose a C that provides lower coverages and average lengths for
µ < .01 for the Beta-Binomial CI, but this may result in undercoverage for µ > .01.

In many cells in Table 1, the Normal-Normal CI falls below 90% coverage, although
the nominal level is 95%. This table also suggests that the Normal-Normal coverage may
be oscillatory as µ increases. However, we note that the oscillation and undercoverage are
subtle compared to those observed for the Wald Interval in Brown et al. (2001).

Table 1: Two-sided coverages/average lengths for Beta-Binomial CI (top numbers in each
cell) and Normal-Normal CI (bottom numbers in each cell) for one domain for N = 1000
replications, m = 200, n = 20, c = .0001, α = 0.05.

µ
σ2

0.001 .00001 .00000001

0.002 0.998 / 0.014 0.997 / 0.013 0.993 / 0.013
0.939 / 0.008 0.926 / 0.009 0.927 / 0.0089

0.005 0.987 / 0.024 0.985 / 0.024 0.986 / 0.024
0.904 / 0.017 0.899 / 0.019 0.912 / 0.019

0.01 0.975 / 0.038 0.976 / 0.038 0.971 / 0.038
0.878 / 0.032 0.903 / 0.034 0.887 / 0.034

0.02 0.969 / 0.061 0.951 / 0.062 0.955 / 0.063
0.945 / 0.062 0.927 / 0.063 0.924 / 0.063

0.03 0.957 / 0.083 0.95 / 0.084 0.945 / 0.084
0.935 / 0.088 0.941 / 0.089 0.938 / 0.089

0.04 0.946 / 0.1 0.946 / 0.1 0.946 / 0.1
0.95 / 0.11 0.946 / 0.11 0.94 / 0.11

0.05 0.943 / 0.12 0.952 / 0.12 0.954 / 0.12
0.934 / 0.13 0.94 / 0.13 0.952 / 0.13

4.2 Variation in m and n

Table 2 illustrates the impact on the coverages as m increases with n is small, and µ = .01.
Very large values of m are included to study the behavior of the coverage as m increases
and n is fixed. In this situation, the Normal-Normal CI can exhibit undercoverage even
when m is very large. The coverage of the Normal-Normal CI as m increases seems to be
oscillatory when holding everything else fixed.

The Beta-Binomial CI performs well throughout Table 2 in terms of meeting or ex-
ceeding the nominal coverage, although again it shows significant overcoverage and high
average lengths with C = .001. It may be possible to choose a C that performs better,
but the purpose of this table was to study the performance of the Normal-Normal CI as m
varies.
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Table 2: Two-sided coverages/average lengths for Beta-Binomial CI (top numbers in each
cell) and Normal-Normal CI (bottom numbers in each cell) for one domain for N = 1000
replications, µ = 0.01, σ2 = .0001, c = 0.001, α = 0.05.

m
n 3 5 10 20

100 0.976 / 0.1 0.979 / 0.061 0.993 / 0.053 0.979 / 0.048
0.901 / 0.055 0.915 / 0.048 0.931 / 0.043 0.918 / 0.036

500 0.992 / 0.059 0.994 / 0.059 0.991 / 0.055 0.994 / 0.047
0.882 / 0.037 0.857 / 0.036 0.85 / 0.033 0.923 / 0.034

1000 0.996 / 0.061 0.996 / 0.059 0.993 / 0.055 0.988 / 0.047
0.776 / 0.033 0.792 / 0.033 0.886 / 0.033 0.95 / 0.034

5000 0.998 / 0.062 0.997 / 0.06 0.995 / 0.054 0.996 / 0.048
0.755 / 0.029 0.875 / 0.033 0.939 / 0.035 0.951 / 0.034

8000 0.994 / 0.062 1 / 0.06 0.996 / 0.056 0.991 / 0.047
0.785 / 0.029 0.892 / 0.032 0.934 / 0.035 0.947 / 0.034

10000 0.994 / 0.062 0.998 / 0.06 0.997 / 0.054 0.986 / 0.046
0.793 / 0.029 0.909 / 0.033 0.954 / 0.035 0.93 / 0.035

Table 3 provides a wider range of n. Column 3, in particular, suggests that the coverage
of the Normal-Normal may also be oscillatory as n increases. In these tables, however, the
oscillations are much less pronounced than that of the Wald Interval for the probability
of success of a single binomial random variable, most likely because the former interval
“borrows strength” from other domains when estimating a domain proportion. In Table 3
we can also see that the appropriate value for C for the Beta-Binomial CI can depend on n.
In this example, coverage for the Beta-Binomial CI seems to decrease as n increases, when
everything else is fixed.

Section on Survey Research Methods – JSM 2012

4395



Table 3: Two-sided coverages/average lengths for Beta-Binomial CI (top numbers in each
cell) and Normal-Normal CI (bottom numbers in each cell) for one domain for N = 1000
replications, µ = 0.01, σ2 = .0001, c = 0.001, α = 0.05.

n
m 100 300 500

3 0.983 / 0.11 0.992 / 0.058 0.994 / 0.061
0.905 / 0.053 0.9 / 0.038 0.895 / 0.037

5 0.984 / 0.059 0.997 / 0.058 0.991 / 0.058
0.913 / 0.048 0.914 / 0.039 0.875 / 0.036

10 0.991 / 0.053 0.992 / 0.054 0.996 / 0.054
0.926 / 0.041 0.877 / 0.036 0.859 / 0.034

20 0.985 / 0.046 0.991 / 0.046 0.987 / 0.047
0.919 / 0.036 0.905 / 0.034 0.924 / 0.034

30 0.982 / 0.042 0.98 / 0.042 0.972 / 0.042
0.915 / 0.033 0.915 / 0.033 0.93 / 0.033

40 0.982 / 0.038 0.971 / 0.039 0.983 / 0.038
0.924 / 0.032 0.928 / 0.032 0.948 / 0.032

50 0.963 / 0.035 0.972 / 0.036 0.956 / 0.036
0.925 / 0.031 0.951 / 0.031 0.928 / 0.031

100 0.962 / 0.028 0.958 / 0.028 0.958 / 0.029
0.941 / 0.027 0.949 / 0.027 0.948 / 0.027

500 0.947 / 0.015 0.939 / 0.014 0.954 / 0.015
0.937 / 0.016 0.944 / 0.016 0.936 / 0.016
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4.3 Unlucky n?

Brown et al. (2001) show that the Wald-interval for building a confidence interval for the
probability of success based on one binomial(r, p) observation can have poor coverage even
when rp is fairly large. We investigate whether this phenomenon extends to our scenario.
We select some of the “unlucky” pairings of (p, r) from Brown et al. and set our prior mean
µ to equal their p and our domain sample size n to be equal to the corresponding value of
r.

Table 4 shows the Normal-Normal CI can have undercoverage even when m and n are
both large. The values n = 592 and n = 954 correspond to an example given Brown et
al. (2001) to illustrate that the Wald interval can fail to yield the desired coverages even
when rp and rq are large (a value in between these two was also included). The binomial
probability of success in their example is p = .005, and we set our prior mean accordingly.
Although the undercoverage is slight, it may be surprising due to the large n. However,
this table also suggests that “borrowing strength” may improve coverage. For instance, the
coverage of the Wald interval with a 95% nominal level for n = 592 and p = .005, as
displayed in Brown et al. 2001, is below 80%. It should be noted that other direct intervals
should perform better than the Wald interval with these parameters, according to the find-
ings of Brown et al., such as the Wilson interval.

Another interesting observation is that in this Table the Beta-Binomial CI’s average
lengths seem to be slightly smaller than the Normal-Normal average lengths, despite the
fact that the coverages of the latter are inferior. For this particular simulation we increased
N to 10,000 to increase the accuracy, since the undercoverage is of a lesser magnitude.

Table 4: Two-sided coverages/average lengths for Beta-Binomial CI (top numbers in each
cell) and Normal-Normal CI (bottom numbers in each cell) for one domain for N = 10000
replications, µ = 0.005, σ2 = .00001, c = .00001, α = 0.05.

m
n 592 700 954

50 0.953 / 0.009 0.951 / 0.0083 0.952 / 0.0073
0.937 / 0.0098 0.936 / 0.0092 0.94 / 0.0081

100 0.953 / 0.009 0.952 / 0.0084 0.955 / 0.0073
0.936 / 0.0098 0.936 / 0.0092 0.938 / 0.0081

200 0.955 / 0.0089 0.954 / 0.0084 0.955 / 0.0073
0.939 / 0.0098 0.941 / 0.0092 0.94 / 0.0081

4.4 When the True Proportion is Not Close to the Extremes

The Normal-Normal CI does not show undercoverage in all cases. Table 5 examines the
situation where µ is not in the extremes, with µ = .4. In this table, the Normal-Normal
CI does not show undercoverage and in fact shows some overcoverage, and larger average
lengths than the Beta-Binomial CI. With this choice of C and of the hyperparameters, the
Beta-Binomial CI has coverages that are fairly close to the nominal.
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Table 5: Two-sided coverages/average lengths for Beta-Binomial CI (top numbers in each
cell) and Normal-Normal CI (bottom numbers in each cell) for one domain for N = 1000
replications, µ = 0.4, σ2 = 0.03, c = 0.035, α = 0.05.

n
m 50 100 1000

3 0.963 / 0.65 0.961 / 0.65 0.967 / 0.66
0.944 / 0.71 0.932 / 0.69 0.939 / 0.67

5 0.955 / 0.56 0.969 / 0.56 0.952 / 0.56
0.967 / 0.65 0.976 / 0.64 0.962 / 0.63

10 0.965 / 0.44 0.952 / 0.44 0.961 / 0.44
0.978 / 0.52 0.966 / 0.52 0.975 / 0.51

20 0.951 / 0.33 0.952 / 0.33 0.95 / 0.33
0.972 / 0.4 0.974 / 0.4 0.974 / 0.39

30 0.953 / 0.28 0.952 / 0.27 0.951 / 0.28
0.972 / 0.33 0.973 / 0.33 0.969 / 0.33

40 0.964 / 0.24 0.947 / 0.24 0.953 / 0.24
0.981 / 0.29 0.968 / 0.29 0.965 / 0.29

50 0.933 / 0.21 0.951 / 0.21 0.943 / 0.22
0.967 / 0.26 0.968 / 0.26 0.97 / 0.26

100 0.947 / 0.16 0.945 / 0.15 0.945 / 0.15
0.966 / 0.19 0.972 / 0.19 0.973 / 0.19

1000 0.944 / 0.05 0.948 / 0.05 0.954 / 0.05
0.968 / 0.06 0.972 / 0.061 0.977 / 0.061

5. Discussion

In this paper, we compared two models that have been used in the literature and in applica-
tion to deal with small area proportions, the Normal-Normal model and the Beta-Binomial
Model. Focusing on stratum proportion interval estimation for rare events from data col-
lected from stratified random sampling surveys, we argued that the Beta-Binomial model
is more reasonable in this situation, and we performed simulations based on this model to
compare the performance of hierarchical Bayes’ CI’s based on each of the two models. The
specific Normal-Normal CI uses estimators that have previously been used in the literature,
while we have introduced a new CI based on the Beta-Binomial model. Of course, because
the simulations were performed under the Beta-Binomial model, the conclusions hold if
the statistician believes this model is appropriate for the application of interest.

Some deficiencies in using the Normal-Normal model for the setup of interest are evi-
dent. The binomial approximation to the normal distribution may not be appropriate with
small domain sample sizes and/or small true proportions. Since the support of the Normal
distribution is the real line, the distributions of pi|Pi and Pi may assign significant proba-
bilities to negative regions, particularly when the true proportions are small. Due to these
issues, one should not expect this model and method of confidence interval construction to
perform particularly well when the true proportions are very small. Some of the undercov-
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erage displayed in the tables in Section 4 may be explained by these issues. Despite that,
the coverage problems of the Normal-Normal CI were much milder than those of the Wald
interval as displayed in Brown et al. (2001).

The Binomial-Beta CI has the weakness that the statistician must have an idea of the
true proportions and their variability in order to select the value of C that attains a good
coverage. We have shown a certain degree of robustness of the choice of C, although
to maintain the nominal coverage throughout a wide range of small proportions one must
choose aC that results in overcoverage for very small values of the prior mean µ, according
to our simulations. The appropriate value of C also depends on n. This value may be as-
certained through simulations for a specific application, and further investigation is needed
to provide guidelines on the choice of C.

Interesting areas for future research are to adapt the Binomial-Beta CI discussed here
to surveys with more complex designs, and to incorporate covariates into the model.
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