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Abstract   
Meta-analysis of randomized controlled clinical trials are often used to evaluate the effect 
of a new drug entity on rare adverse events as safety characterization plays an important 
role in the overall benefit risk assessment. In this case study, we apply commonly used 
meta-analysis techniques to our clinical trial data: combining summary statistics across 
trials via variance inflation or Newcombe method, Bayesian fixed/random effect model, 
generalized linear model, and generalized linear mixed model. We examine the impact of 
explicit and implicit assumptions in each technique and provide intuitive interpretation 
for some surprising results. Our choice of analysis method and metrics for the data are 
explained considering the issue of continuity correction, large sample approximation, bias, 
coverage probability and the maximum use of all available data. In this presentation, we 
limit our focus on the binomial outcomes without adjusting for the exposure. 
 
Key Words: Meta-analysis, Rare events, Case study, Continuity correction, Coverage 
probability, Binomial outcome 

1. Background 
 
Safety characterization plays an essential role in assessing the overall benefit risk of a 
new drug entity.  Increasingly, the scope of safety characterization includes evaluating 
risks for a series of  rare serious adverse events.  Meta-analyses techniques are useful in 
this setting to examine relevant data across the entire clinical program while adjusting for 
trial to trial variability. A wealth of publications has pointed out pitfalls in applying 
conventional meta-analysis techniques to a rare event setting -- the low coverage 
probability in normal approximation and the impact of continuity correction on the 
analysis result [1, 5, 7, 10]. Also controversial is an often-encountered practice of 
discarding trials with no observed events from meta-analyses [2, 10]. 
 
In this case study based on our clinical data, we quantify the risk for rare safety events 
associated with a new treatment compared with placebo by applying various meta-
analysis methods that were suggested as remedies for conventional methods. Our choice 
of summary metrics and the overall interpretation of various analysis results are guided in 
consideration of bias, coverage probability and the maximum use of all available data. 

2. Introduction  
 
The meta-analysis data set for this case study is presented in Table 1.  Number of subjects 
who experienced adverse events of interest is summarized by treatment group from the 
five randomized, double-blind, placebo-controlled, parallel-group studies in this clinical 
development program.   
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Table 1.  Meta-analysis data from 5 eligible clinical trials 
 

 
Study 
 

Treatment 
Duration 
(Week) 

# Subject  with Events/  
Safety Population 

(Rate per 1,000 Subjects) 
Active Treatment Placebo 

1 104 6/2547 (2.4) 0/427 
2 52 1/710 (1.4) 0/172 
3 12 0/255 0/63 
4 12 0/437 0/105 
5 52 1/919 (1.1) 0/474 

 
 
The following observations provide useful insights on the data.  First, the observed event 
rates  are indeed very low (<<1%) for both treatment arms across studies indicating that 
the summary based on the large sample theory would yield an inadequately low coverage 
probability [1, 5, 7, 10].  
 
Second, the event rate in Study 1, while still very low in absolute sense, is higher 
compared with those in other studies.  The analysis should therefore either be stratified 
by study or include this effect in the model [4]. 
 
Third, the number of subjects between the two arms is not balanced within each study, 
mainly due to more than 1 dose groups, with the most extreme ratio of about 6:1 for 
active treatment vs. placebo in Study 1.  Applying a constant continuity correction in this 
unbalanced and rare event setting results in bias penalizing the placebo group [10].  
 
Fourth, note the absence of any events in the placebo arm across all studies with Studies 
3 and 4 having no event in the active treatment arm, either.  Some authors exclude trials 
with zero events from analyses based on the fact that these do not provide any 
information on the risk ratio or the odds ratio.  On the other hand, Cai et al. [3] reported 
that this practice might lead to a bias. We choose the metric of rate differences instead of 
ratios for this case study.  The advantages include the following: utilization of all 
available data, not having to use continuity correction, and  its applicability in benefit/risk 
assessment [4]. 
 
Lastly but not least, also observed is the huge variation in the treatment duration across 
studies ranging from 12 weeks to 2 years.  While out of scope for this publication, 
exposure-adjusted methods complement shortcomings of analyzing binary outcomes.  
 

3. Methods Applied 
 
This section provides brief introduction of each meta-analyses method we applied to our 
case study data.  We applied two variations of methods that combine summary statistics 
from each study.  We applied the generalized linear models assuming both fixed and 
random treatment differences that were fit using SAS® PROC GENMOD or NLMIXED 
[8].  In addition to this frequentist approach, we also tried Bayesian fixed/random effect 
models that were fit via WinBUGS. 
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3.1 Combining Results Across Studies: Variance Inflation and Extended 
Newcombe Method 

 
In this section, we presents two methods that directly combine results from individual 
studies.  Both methods use the Mantel-Haenszel weight when combining studies to 
prevent studies with smaller point estimates from having undue larger weights.   
Both methods also estimate the rate difference within each study using the observed 
proportions without continuity correction.  The difference lies in the way the variance is 
calculated within each study.   
 
We first introduce the variance inflation method which is a simple modification of the 
Wald method.  Let πi1 and πi2 be the true event rate for active treatment and placebo, 
respectively, in study i. Let  ଵ and ଶ be the observed rates ݔଵ/݊ଵ and ݔଶ/݊ଶ where 
xij and nij represent the number of events and total for treatment j, respectively.  The Wald 
method utilizes the large sample theory to derive a confidence interval (CI) based on the 
following estimates for the rate difference and its variance in each study: 
 ݀ ൌ ଵ െ ଶ  and var ሺ݀ሻ ൌ ଵሺ1 െ ଵሻ/݊ଵ  ଶሺ1 െ  ଶሻ/݊ଶ …………………(1)
 
The most common meta-analysis based on Wald method combines the results across 
studies by weighing each study according to the inverse of its estimated variance in (1). 
 
Koch suggested the following modification.  The variance of di  is obtained after slightly   
over-estimating the variance for each proportion: var ൫൯ ൌ ೕ൫ଵିೕ൯ೕିଵ ,   where  ݍ ൌ ௫ೕା.ହೕାଵ   ….………………(2) 

 
Then, combine the results across studies using the Mantel-Haenszel weight:  ݓ ൌ ሺ1/݊ଵ  1/݊ଶሻିଵ……………………………….(3) 
 
The modification (2) circumvents the zero variance estimate for treatments with no event 
while alleviating the problem of low coverage probability of the Wald method.  Note that 
the rates are estimated without any continuity correction thus not penalizing the treatment 
with smaller n. Further, the modification (3) improves the overall estimates by preventing 
studies with low event rates from being heavily weighted.   
 
The second method is the extension of the Newcombe method.  Newcombe [7] extended 
Wilson score method for the interval estimation of  a single proportion into two sample 
cases. Wilson score method derives the CI for πij by solving the quadratic equation (4) 
instead of plugging in the observed proportion pij on the right hand side as in (1).  |ߨ െ |  ሺଵିగೕሻೕכටగೕݖ          ………………..……(4) 

 
 
Newcombe proposed the following CI of (Li, Ui) for the rate difference di  after obtaining 
each CIs of ሺ݈ଵ, ,ଵሻ and ሺ݈ଶݑ     .ଶሻ for πi1 and πi2 based on (4)ݑ
ܮ  ൌ ݀ െ int,,  ܷ ൌ ݀  int,௨,  

where   int, ൌ ඥሺଵ െ ݈ଵሻଶ  ሺݑଶ െ   ଶሻଶ, and
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int,௨ ൌ ඥሺݑଵ െ ଵሻଶ  ሺଶ െ ݈ଶሻଶ ..………………………….(5) 
 
The lower interval, int, combines the smallest possible departure from pi1 and the 
largest one from pi2.  The upper interval is similarly constructed.  This interval, along 
with the intuitive interpretation and other advantages, provides an improved coverage 
probability over the Wald method [5, 7].    
 
We further extend this method to a meta-analysis setting utilizing that both int, and int,௨ in (5) can be expressed as a separate multiple of the z score: for each study i, 
 int, ൌ ݖ כ pseudo standard error,, and  int,௨ ൌ ݖ כ pseudo standard error,௨…………………………(6) 
 
We combine results across studies using the Mantel-Hanszel weight in (3). The overall 
estimated difference D is obtained as ܦ ൌ Σݓ݀/Σݓ with the CI of ሺܦ െ ,ܮ ܦ  ܷሻ 
where  ܮ ൌ ݖ כ ଶݓሼΣൣ ݐݎݍݏ כ  ሺݏ ݀ݑ݁ݏ ݁,ሻሻଶ൧/ሺΣw୧ሻଶ ሽ and ܷ is similarly defined.   
 
3.2 Bayesian Fixed/Random Effect Model 
 
The two methods in Section 3.1 assume a fixed treatment difference δ between the active 
treatment and the placebo across all studies by setting  ߜ ൌ ଵߨ െ     ଶ ……………………………………(7)ߨ
 
Bayesian fixed effect model assumes that this δ has a statistical distribution. We adopt a 
model suggested by Warn et al. [11] where a non-informative prior distribution is 
assigned for δ as well as for the placebo rate of πi2:  

δ ~ Uniform (-1, 1) and πi2 ~ Uniform (0, 1) …………………(8)  
These result in the following rate for the active treatment: ߨଵ ൌ ଶߨ  min  ሺ max ሺߜ, െ ,ଶሻߨ 1 െ  ଶሻ   ……………....(9)ߨ
 
We also follow Warn et al. [11]’s suggestion for the Bayesian random effect model by 
setting the observed treatment difference ݀ in (1) as a realization of random variable ߜ: 

    ~ N(δ, τ2) ……………………………………….(10)ߜ 
The same priors in (8) for δ and πi2 are used; the resulting πi1 is similarly defined as in (9) 
with δ replaced by δi.  Further, the prior distribution for τ is set as Uniform (0, 2).  
 
3.3 Generalized Linear Fixed/Random Effect Model 
 
We also apply the generalized linear fixed/random effect model to our data.  For the 
generalized linear fixed effect model [6], we use the identity link to connect the binomial 
model parameter πij to each study and treatment as shown below. Note that this model 
results in the identical treatment difference across studies as in (7).  

xij ~ binomial (nij, πij) with πij = study i + treatment j ………………(11) 
 
For the generalized linear random effect model, we modified Stijnen’s approach. 
Stijnen [9] introduced random effects on the two rate parameters by assuming a bivariate 
normal distribution for a pair of (logit πi1 , logit πi2).  Given the rate parameter πij, the 
number of events xij| πij  follows an independent binomial distribution (nij, πij).  As our 
choice of metric is the rate difference, we assumed a bivariate normal distribution directly 
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for the rate parameters (πi1, πi2).  This leads to the same distributional assumption for the 
treatment difference as seen in (10). 
 
Note an inherent difficulty of fitting the rate difference within the generalized linear 
model framework due to a boundary condition in the rate difference. 

4. Analyses Results 
4.1 Combining Results Across Studies: Variance Inflation and Extended 

Newcombe Method  -- Results 
 
Table 2 presents the meta-analyses results of the two methods that combine each 
individual study result.  Both methods yield identical point estimates as both utilize 
Mantel-Haenszel weight without any continuity correction.  The CIs in both methods are 
larger compared with those in Wald method, therefore improving the coverage 
probability. The CIs in the Newcombe method are in general wider suggesting that the 
quick and easy adjustment in the variance inflation method may not be satisfactory; Dann 
and Koch [5] showed that Newcombe method yielded CIs with adequate coverage 
probability. Note that the asymmetric CIs around the point estimates in Newcombe 
method reflect higher uncertainty in the placebo rates due to smaller numbers of samples 
compared with those in active treatment.   
 
In addition to the meta-analyses of all five studies, we also conducted meta-analyses of 
studies with duration >=1 year that included studies 1, 2 and 5.  These three studies also 
happened to be the studies with larger sample sizes.  Within each method, the long term 
analysis slightly shifted the point estimate upward with a reduced length of CI interval, 
especially for the extended Newcombe method.  We consider this observation desirable 
given relatively small sample sizes especially in the placebo arm in studies with <1 year 
duration. 
 
Table 2. Meta-analysis using variance inflation method and extended Newcombe method 
 

 
Study 
 

# Subject  with Events/ 
Safety Population 

(Rate per 1,000 Subjects) 

Mean Excess Risk of Active 
Treatment  

per 1,000 Subjects  
over Placebo (90% CI) 

Active 
Treatment 

Placebo Variance 
Inflation 

Extended 
Newcombe 

1 6/2547 (2.4) 0/427  2.4 ( -0.8, 5.5) 2.4 (-4.0, 4.5) 
2 1/710 (1.4) 0/172  1.4 ( -5.9, 8.7) 1.4 (-14.1,  6.3) 
3 0/255  0/63  0.0 (-18.9, 18.9) 0.0 (-41.2, 10.5) 
4 0/437  0/105  0.0 (-11.4, 11.4) 0.0 (-25.1,  6.2) 
5 1/919 (1.1) 0/474  1.1 ( -2.2,  4.4) 1.1 ( -4.6,  4.9) 
All Studies -- -- 1.5 (-0.9, 3.9) 1.5 (-3.5, 3.3) 
>= 1 year Studies 
(1, 2, 5) 

-- -- 1.7 (-0.6, 4.0) 1.7 (-2.8, 3.6) 
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4.2 Bayesian Fixed/Random Effect Model -- Results 
 
Bayesian models introduced in Section 3.2 were fit in WinBUGS.  Continuity correction 
had to be applied for the Markov Chain Monte Carlo simulation to update the samples.  
Given the severe imbalance in sample sizes between the treatment, we followed Sweeting 
et al. [10]’s suggestion that the correction be proportional to the sample size totaling to 1 
within each study.  For illustration purpose, we start with the random effect model 
analysis result shown in Table 3.  
 
Table 3. Meta-analysis using Bayesian Random Effect Model 
 

 
Study 
 

# Subject  with Events/  
Safety Population 

(Rate per 1,000 Subjects) 

Median Excess Risk of Active 
Treatment  

per 1,000 Subjects  
over Placebo (90% CI) 

Active 
Treatment 

Placebo All 5 Studies >= 1 Year 
Studies 

1 6/2547 (2.4) 0/427  0.9 (-2.5, 3.1) 1.0 (-2.7, 3.4) 
2 1/710 (1.4) 0/172  0.5 (-3.6, 3.6) 0.6 (-5.2, 4.4) 
3 0/255  0/63  0.5 (-5.0, 5.0)  
4 0/437  0/105  0.3 (-5.1,3.3)  
5 1/919 (1.1) 0/474  0.7 (-2.5, 3.2) 0.6 (-3.3, 3.7) 
All 5 Studies -- -- 0.5 (-3.2, 3.2)  
>= 1 Year Studies 
(1, 2, 5) 

   0.7 (-8.5, 8.9) 

 
We first noticed that the estimated median excess risks were similar across all studies 
ranging from 0.3 to 0.9 per 1,000 subjects in the analysis of all studies, contrary to the 
wider range of observed excess risks that ranged from 0 to 2.4.  This similarity was not 
due to the continuity correction as Sweeting et al. [10]’s suggestion was adopted.  Rather, 
it was due to the benign non-informative prior distribution given to the rates. The uniform 
(0, 1) distribution assigned to the placebo rate ߨଶ in (8), together with the binomial 
distribution for the number of events in the placebo treatment [xi1|πi2 ~ bin(ni2, πi2)], 
results in the posterior distribution of πi2| xi2 with the mean as (xi2 + 1) / (ni2 + 2).  The 
impact of the prior distribution on the posterior mean for the rate for the active treatment 
rate, ߨଵ, was similar.  The severe imbalance in sample sizes between the two arms 
resulted in the placebo group being unduly penalized, thus pulling the excess risk toward 
null.   
 
As the uniform distribution belongs to the beta distribution family denoted as Beta (α, β), 
we varied prior distribution for ߨଶ with varying α while fixing β as 1. Table 4 shows that 
the point estimate for the median excess risk increases as α decreases with the model 
failing at α=0.05.   
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Table 4. Meta-analysis of All Studies with Varying Prior Distribution* for the Placebo 
Rate using Bayesian Random Effect Model 

 
Excess Risk of Active Treatment  per 1,000 Subjects over Placebo  

Median (90% CI) 
α=1 α=0.5 α=0.3 α=0.1 α=0.05 

0.5 (-3.1, 3.2) 1.6 (-1.5, 4.3) 2.0 (-1.0, 4.4) 2.3 (0.5, 4.3) Simulation 
fails 

*:  Beta (α, 1) distribution  
 

Also noted were similar lengths of credible intervals across studies despite huge 
differences in sample sizes.  This in trun results in a considerable difference in precision 
between the two meta-analyses of all studies vs. long studies.  This seems to be due to the 
random effect assumption (10) where the true treatment differences ߜ  share the same ݏ′
inherence variance τ2.  In other words, the variability expressed in the credible interval 
for each study has two sources: one from the random effect assumption, another, a 
sample variation in estimating ߜ.  The former forces the credible/confidence intervals to 
have similar lengths compared with those in the fixed effect model where only the latter 
is counted.  With the eligible case studies varying so much in study sizes, we would like 
to voice concern applying the random effect model in addition to the inherent difficulty 
of discerning variability across studies in the rare event setting. 
 
Table 5 presents the Bayesian random effect model and fixed effect model analysis side 
by side.  The impact of the prior distribution on event rates is still shown in the fixed 
model expressed as the median excess risk pulled toward null.  Note that, in the fixed 
effect model, the meta- analysis of all studies produced a similar length of credible 
interval compared with that for studies of >=1 year.  This supports our previous 
conjecture that the huge difference shown in the Bayesian random effect model analyses 
is likely from the random effect assumption, not from the Bayesian assumption per se. 
 
Table 5. Comparison of Bayesian Meta-analysis: Random versus Fixed Effect Model 
 

 
Meta-analysis 
 

Median Excess Risk of Active 
Treatment per 1,000 Subjects  

over Placebo (90% CI) 
Random Effect Fixed Effect 

All 5 Studies 0.5 (-3.2, 3.2) 0.7 (-1.8, 2.4) 
>= 1 Year Studies 0.7 (-8.5, 8.9) 0.9 (-1.7, 2.9) 

 
 
4.3 Generalized Linear Fixed/Random Effect Model -- Results 
 
The generalized linear fixed effect model in Section 3.3 was fit using PROC GENMOD 
in SAS® [8].  Sweeting et al. [10]’s continuity correction was also applied for model 
convergence.  The model with the identity link function converged with our data despite 
the boundary condition problem.  Table 6 presents the meta analyses results along with 
those in Section 4.1 to compare performances among the three fixed effect models based 
on frequentist approach we considered. 
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Table 6. Comparison of Fixed Effect Models based on Frequentist approach 
 

 
Meta-analysis 

Mean Excess Risk of Active Treatment per 1,000 Subjects  
over Placebo (90% CI) 

 Generalized 
Linear Model 

Variance 
Inflation 

Extended 
Newcombe 

All 5 Studies 1.6 (-0.8, 4.1) 1.5 (-0.9, 3.9) 1.5 (-3.5, 3.3) 
>= 1 Year 
Studies 1.9 (-0.6, 4.4) 1.7 (-0.6, 4.0) 1.7 (-2.8, 3.6) 

 
Note that the results are similar between the two meta-analyses within the 
generalized linear model, thus indicating that an appropriate weight is given to each 
study.  This comes from the fact that each event or no-event is treated with equal 
weight in model (11). In this model, the variance is estimated based on the large 
sample theory of maximum likelihood estimates and has slightly low coverage 
probability with smaller CI lengths compared with those in the extended Newcombe 
method.  
 
The point estimate from the generalized linear fixed effect model is similar to the 
ones from the other two methods suggesting that continuity correction in the former 
did not have a negative impact on the analysis. 
 
We tried to fit the generalized linear mixed effect model in Section 3.3 using PROC 
NLMIXED  in SAS® [8].  We were unable to start the NLMIXED fitting using the 
best fixed starting point with grid and boundary conditions. It seems that using 
WinBUGS under Bayesian approach is more advantageous as the random effect 
specification is far more flexible with Bayesian approach especially for non-
canonical links.  

 

5. Conclusion 
 

We considered several meta-analysis methodology with our case study.  These 
methods can be grouped into four using the criteria of “fixed versus random effect” 
as well as “frequentist versus Bayesian approach.”  With Bayesian approaches, we 
demonstrated the surprisingly negative impact of the prior distribution on the 
outcome when the sample sizes were not balanced between the treatment groups 
within a study.  We also noted that the random effect assumption tended to equalize 
the impact of studies that had vast differences in sample sizes.  In addition, we were 
unable to fit the random effect model in the frequentist setting that uses non-
canonical parameters.   
 
We therefore opted for the extended Newcombe method, a fixed effect model based 
on frequentist approach.  Additional advantage is found in that it is relatively straight 
forward to compare the extended Newcombe method results with each individual 
study result due to a restricted set of model assumptions. We emphasize that this 
choice is by no means a universal recommendation.  Our recommendation is to 
practice a similar process we presented; that is, to carefully evaluate several methods 
and choose the one that is most appropriate for the data.  
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