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Abstract 
 
In repeated measurements or RBD with correlated binary response data, power and 
sample size determination is of great practical interest. The main stumbling block to the 
solution: the test distribution involves hard to interpret multinomial parameters, not the 
desired marginal binomial parameters P1, P2, …, Pk.  Lennox and Sherman (2009) 
document the four decade-long endeavours to the solution  of the simplest case- the 
matched pairs design  or repeated measures with k=2 time points. Hwang and Lee(2009)   
reported that  the 2-dimentional  multinomial parameters Pij involved in the  Exact 
McNemar test  may be expressed as  a function of   the 1-dimentional or binomial 
parameters P1, P2 (hence odds ratio) and correlation.  This multinomial to Binomial 
transformation enables researchers to specify P1 and P2 of interest and compute the 
power and sample size for each specified value of correlation. When correlation is 0, the 
sample size obtained is reduced to that of Fisher’s exact test. Section I presents the power 
and sample size tables based on this transformation.  Section II extends the methodology 
to the k=3 treatments or time points case which is analyzed by Modified Cochran’s Q test 
(Hwang, Lee and Hsu (2004)). Here the 3 dimensional multinomial parameters Pijk of 
the test distribution are transformed first to 2-dim multinomial parameters and 
correlations, and then to 1-dim Binomial parameters P1, P2, P3 and correlations.  
 
Keywords: Multinomial to binomial transform, repeated measurements, RBD, correlated 
binary data, power and sample size, exact McNemar’s test, modified Cochran’s Q test.  
 
Section I. Matched Pair Design or Repeated Measure Design with k=2 Times 
 
 Let X1 and X2 be two correlated binomials with Xi ~ Bin (n, Pi), i= 1, 2. 
 Let Pij, i =0, 1; j=0, 1 be the corresponding 2-dimensional multinomial parameters with  
                     P00 + P01 + P10 + P11 = 1 
 
1. Brief Outline of Methodology 
 
 Hwang and Lee (2009) proposed a 3- step process:  
 
(i) Re-expressing H0 in terms of Multinomial parameters P01 / P10 = 1   
               
(ii) Show the existence and actual derivation of a distribution which depends on the new 
multinomial parameters. The distribution turns out to be a binomial with parameter P ≡ 
P01/ (P01 + P10) and sample size equal to the number of discordant pairs in the sample. 
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(iii) Transformation of the new multinomial parameters back to marginal binomial          
parameters. 
   
Although the null distribution in (ii) does not involve any nuisance parameter  and, in 
particular, is independent of correlation, the parameter under the non-null hypothesis, 
namely  P ≡ P01 / ( P10  + P01) can be expressed as or transformed to a close-end function 
of  marginal binomial parameters P1, P2 (and hence odds ratio φ) and correlation ρ.   
                 P =     (φ - ρ φ )   /   [1 + φ - 2 ρ φ  ]         …………………….  (1) 
 
                  Where  ρ = correlation between X1 and X2, 
                  φ = odds ratio of X2 over X1  = (  P2 / (1-P2)  )   /   (  P1 / (1-P1)  ),              
                  0 < φ,   -1 < ρ < 1,    and    ρ√φ  <  1.  
 
The transformation  enables one to explicitly specify P1, P2 of interest under non–null 
hypothesis, instead of specifying P01, P10 as many authors did. 
          
The relationship (1) also means different combinations of Odds ratio and correlation can 
lead to the same value of P (Hwang and Lee (2009).  Table 1, p. 4319). 
 
With the transformation (1), the conditional power for any fixed value of correlation ρ 
can be computed for any pair of P1, P2 (and hence odds ratio φ) under non-null 
hypothesis. 
 
The unconditional power is obtained by weighing the conditional power by a probability 
distribution which turns out to be binomial with the parameter P′′ = P01 + P10. Hwang and 
Lee (2009) proved that the parameter P′′ can also be transformed to a function of P1, P2 
and correlation ρ. P′′ was termed “nuisance parameter”  ( Lennox and Sherman (2009)). 
 
2. Presentation of Sample Size Tables for Use with the Exact McNemar Test 
for Matched Pairs Design or Repeated Measures Design 
  
The present paper computes and presents, for each pre-assigned value of correlation ρ, 
the sample size required to obtain a specified power when type one error α = 0.01 or 0.05 
(One sided). The sample size corresponding to 3 different specified power is provided: 
power = 0.90, 0.80, and 0.50. The values of P1 and P2 under the alternative hypothesis 
are: P1 = 0.1, 0.2, …, 0.9, 0.95; P2 = 0.05, 0.1, 0.2, 0.3, …, 0.8, 0.9. Note the sample size 
here is the number of pairs in a matched pair design, number of blocks in a randomized 
block design, and number of subjects or patients in a repeated measurement design. 
  
The above sample size table is generated separately for each selected correlation value, 
ρ=  0.1, 0.2, 0.3, …, 0.9. Also ρ= -0.1, -0.2, -0.3, …, -0.9.  
 
We purposely present the resultant tables in the same format as Haseman’s (1978) sample 
size tables for Fisher’s exact test. Of course his tables are for 2 independent binomial 
samples. In essence, for each of his table, we generate several tables, one for each pre-
specified value of correlation ρ. This may serve as an aid for practitioners to compare and 
select the most economical design in his /her situation. 
         
As in the estimation of sample size required  for 2 independent samples  to be analyzed  
by Fisher’s exact test, some preliminary information about a proposed study must be 
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obtained  .Besides  the likely size of P1 and P2, one should also have some idea about the 
magnitude of correlation, either from pertinent literatures or pilot study.  
 

(1)  Tables of  Power and Sample Size Computations 
 
Table 1: Number of Patients (Or Blocks) Required to Achieve a Specified Power   
        Where α = 0.05 (One Tailed) and Correlation ρ = 0.2   
 

 

 
 
 

P1    

Upper Figure   :  Power  =  0.9 
Middle Figure :  Power  =  0.8 
Lower Figure  :  Power  =  0.5 

   
P2 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.9 407                   
 303                   
 153                   

0.8 74 188                 
 58 141                 
 35 73                 

0.7 36 61 275               
 29 48 203               
 20 28 99               

0.6 23 33 79 330             
 19 27 60 245             
 14 17 33 117             

0.5 16 22 39 90 358           
 14 18 31 68 265           
 11 12 19 35 126           

0.4   15 25 43 94 358         
   13 20 33 70 265         
   10 13 20 36 126         

0.3   12 17 26 43 90 330       
   10 14 21 33 68 245       
   8 10 13 20 35 117       

0.2     12 17 25 39 79 275     
     10 14 20 31 60 203     
     8 10 13 19 33 99     

0.1       12 15 22 33 61 188   
       10 13 18 27 48 141   
       8 10 12 17 28 73   

0.05           16 23 36 74 407 
           14 19 29 58 303 
           11 14 20 35 153 
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Note: The sample sizes for some of the lower triangular cases are blank because ρ√φ > 1.  
For those cases, the sample sizes above the blank cases could be used to achieve greater 
than the specified power since φ is greater. 
 
 
Table 2: Number of Patients (Or Blocks) Required to Achieve a Specified Power   
        Where α = 0.05 (One Tailed) and Correlation ρ = 0.4   
 

 

 
 
 

P1    

Upper Figure   :  Power  =  0.9 
Middle Figure :  Power  =  0.8 
Lower Figure  :  Power  =  0.5 

   
P2 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.9 310                   
 234                   
 128                   

0.8 57 144                 
 47 109                 
 32 62                 

0.7   48 208               
   38 155               
   25 78               

0.6   25 60 252             
   22 47 186             
   16 28 92             

0.5     31 69 273           
     25 52 202           
     16 30 98           

0.4     19 33 71 273         
     16 27 54 202         
     12 17 31 98         

0.3       19 33 69 252       
       16 27 52 186       
       12 17 30 92       

0.2         19 31 60 208     
         16 25 47 155     
         12 16 28 78     

0.1             25 48 144   
             22 38 109   
             16 25 62   

0.05                 57 310 
                 47 234 
                 32 128 
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Table 3: Number of Patients (Or Blocks) Required to Achieve a Specified Power   
        Where α = 0.05 (One Tailed) and Correlation ρ = 0.6   
 

 

 
 
 

P1    

Upper Figure   :  Power  =  0.9 
Middle Figure :  Power  =  0.8 
Lower Figure  :  Power  =  0.5 

   
P2 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.9 210                   
 167                   
 102                   

0.8   97                 
   78                 
   50                 

0.7     140               
     106               
     61               

0.6     40 168             
     33 127             
     24 68             

0.5       46 183           
       37 138           
       24 71           

0.4         48 183         
         39 138         
         25 71         

0.3           46 168       
           37 127       
           24 68       

0.2             40 140     
             33 106     
             24 61     

0.1                 97   
                 78   
                 50   

0.05                   210 
                   167 
                   102 
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Table 4: Number of Patients (Or Blocks) Required to Achieve a Specified Power   
        Where α = 0.05 (One Tailed) and Correlation ρ = -0.2   
 

 

 
 
 

P1    

Upper Figure   :  Power  =  0.9 
Middle Figure :  Power  =  0.8 
Lower Figure  :  Power  =  0.5 

   
P2 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.9 597                   
 442                   
 211                   

0.8 104 277                 
 78 204                 
 43 99                 

0.7 49 87 402               
 38 66 297               
 23 35 141               

0.6 31 46 115 486             
 25 35 86 357             
 15 20 43 168             

0.5 22 29 56 133 528           
 18 23 43 98 387           
 11 14 23 48 181           

0.4 17 21 34 61 138 528         
 13 17 26 46 102 387         
 9 10 15 24 50 181         

0.3 13 16 23 36 61 133 486       
 11 13 18 27 46 98 357       
 7 8 11 16 24 48 168       

0.2 10 12 17 23 34 56 115 402     
 9 10 14 18 26 43 86 297     
 6 7 8 11 15 23 43 141     

0.1 8 9 12 16 21 29 46 87 277   
 7 8 10 13 17 23 35 66 204   
 6 6 7 8 10 14 20 35 99   

0.05 7 8 10 13 17 22 31 49 104 597 
 6 7 9 11 13 18 25 38 78 442 
 5 6 6 7 9 11 15 23 43 211 
 
 
 
 
 
 

Biopharmaceutical Section – JSM 2012

645



 
 
 
Table 5: Number of Patients (Or Blocks) Required to Achieve a Specified Power   
        Where α = 0.05 (One Tailed) and Correlation ρ = -0.4   
 

 

 
 
 

P1    

Upper Figure   :  Power  =  0.9 
Middle Figure :  Power  =  0.8 
Lower Figure  :  Power  =  0.5 

   
P2 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.9 687                   
 508                   
 242                   

0.8 118 318                 
 89 236                 
 46 113                 

0.7 55 100 466               
 42 74 342               
 24 38 162               

0.6 34 52 134 564             
 27 40 99 413             
 16 22 48 192             

0.5 24 33 65 152 612           
 19 25 48 113 448           
 12 15 25 54 207           

0.4 18 23 39 71 159 612         
 15 18 30 53 118 448         
 9 11 16 27 56 207         

0.3 14 17 26 41 71 152 564       
 11 14 20 31 53 113 413       
 7 9 12 17 27 54 192       

0.2 11 14 18 26 39 65 134 466     
 9 11 15 20 30 48 99 342     
 6 7 9 12 16 25 48 162     

0.1 9 10 14 17 23 33 52 100 318   
 8 9 11 14 18 25 40 74 236   
 6 6 7 9 11 15 22 38 113   

0.05 8 9 11 14 18 24 34 55 118 687 
 6 8 9 11 15 19 27 42 89 508 
 5 6 6 7 9 12 16 24 46 242 
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Table 6: Number of Patients (Or Blocks) Required to Achieve a Specified Power   
        Where α = 0.05 (One Tailed) and Correlation ρ = -0.6   
 

 

 
 
 

P1    

Upper Figure   :  Power  =  0.9 
Middle Figure :  Power  =  0.8 
Lower Figure  :  Power  =  0.5 

   
P2 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

0.9 777                   
 573                   
 271                   

0.8 132 360                 
 99 266                 
 50 127                 

0.7 62 112 530               
 47 84 388               
 26 42 181               

0.6 37 58 151 641             
 29 44 112 469             
 17 23 54 216             

0.5 26 37 73 173 696           
 20 28 54 128 508           
 12 16 27 62 234           

0.4 19 25 43 80 179 696         
 16 20 33 60 133 508         
 10 12 17 30 63 234         

0.3 15 19 29 45 80 173 641       
 12 15 22 34 60 128 469       
 8 9 13 18 30 62 216       

0.2 12 14 20 29 43 73 151 530     
 10 12 15 22 33 54 112 388     
 6 8 9 13 17 27 54 181     

0.1 9 11 14 19 25 37 58 112 360   
 8 9 12 15 20 28 44 84 266   
 6 6 8 9 12 16 23 42 127   

0.05 8 9 12 15 19 26 37 62 132 777 
 6 8 10 12 16 20 29 47 99 573 
 5 6 6 8 10 12 17 26 50 271 
 
 
 
Due to the limit of space available for this paper, the tables for other correlations and α = 
0.01 cannot be presented here.  These additional tables can be provided upon request.  
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Section II. Power and Sample Size Investigation for a RBD Design or 

Repeated Measures Design with k=3 Time Points 
 
When there are k = 3 treatments or time points, power and sample size determination 
depends on the study objectives. There are 2 major types of objectives in practice:  
 
1. Pairwise treatment comparison or pairwise time point comparison is the 
only interest. 
 

1.1 Example of  Focusing on Pairwise Comparisons Only 
 

In a new drug clinical trial, 3 treatments are involved: Active, Placebo, and the Reference 
drug from the competitor. The pairwise treatment comparisons are the only interest: 

(1) Active vs Placebo: FDA requirement for marketing approval of a new drug. 
(2) Reference vs Placebo: verify the study is valid. 
(3) Active vs Reference: Proving Active is better than competitor’s drug should 

contribute to market dominance. 
 
There is no interest in whether the 3 drugs are the same.  
 

1.2 Power and Sample Size Determination for the Pairwise Comparison Case 
 

In this case, one can estimate power and sample size for each pair of treatments using the 
methodology of Section I. Suppose the sample sizes are Na, Nb and Nc, respectively, then 
one can simply use the largest sample size of the three as the required sample size.   
 
2. Overall treatment comparison simultaneously or time point comparison 
simultaneously is of interest. 
 
For this objective, Cochran’s Q test (1950) was often employed to simultaneously 
compare the marginal binomial parameters P1, P2, …, Pk  among k correlated Bernoulli 
r.v.’s.  
 
2.1   Cochran’s Q test   -   A Randomization Test 
      
Since Cochran’s explanation of his nonparametric, randomization test under the null 
hypothesis only is rather brief, Plackett (1974), Patil (1975) tried to fill the gap of his 
theory and independently derived the same Exact Cochran’s Q test distribution under the 
null hypothesis, again using the randomization test approach. Patil then attempted to 
compute power of the test but as we’ll see later, apparently ran into the same problem of 
erroneously relating multinomial parameters to the desired marginal binomial parameters 
under investigation.      
   
2.2   Modified Q-Test - A Non-Randomization Test 
          
Hwang, Lee and Hsu (2004) abandoned the randomization test approach and proposed a 
Modified Cochran’s Q test based on the population model (Lehmann, 1998).  
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The approach yields a distribution which is exactly the same as Plackett and Patil under 
the null hypothesis but has a general distribution under the non-null hypothesis which 
involves multinomial parameters. As in Section I, power and sample size will be 
investigated thru this non-null distribution by transforming its multinomial parameters 
into the desired marginal binomial parameters P1, P2, P3 and correlations which can be 
used to specify treatment difference for power computation purpose. 
 
(a) Study Design and Related Probability Distributions 

 
 In a RBD design with 3 treatments or repeated measures design with k= 3 time points: 
 

 Time 1 Time 2 Time 3 
Subject #1 X1 

(P1) 
X2 

(P2) 
X3 

(P3 ) 
 
Where X1, X2, and X3 are three correlated Bernoulli random variables for the same 
Subject with   Xi ~ Bin (n=1, Pi), i = 1, 2, 3.  
                                                                                           
Suppose there are m patients in the sample. 
Let Sijk = Number of patients whose outcome is (i, j, k). Then the probability distribution 
of {Sijk, i=0,1; j=0,1; k=0,1} is Multinomial with 
  
  (S000, S001, S010, S100, S011, S101, S110, S111)   
  ~  M( n=m; P= (P000, P001, P010, P100, P011, P101, P110, P111)  ) 
 

Where    S000+ S001+ S010+ S100+ S011+ S101+ S110+ S111 = m, 
  And         P000+ P001+ P010+ P100+ P011+ P101+ P110+ P111    = 1. 
 
 (b) The 3-Step Process 
     (i)    H0: P1 = P2 = P3 is true if  
                                                 
     (1) H0

(1): θ1 ≡ P100 / P001 =1,  and   θ2  ≡ P010 /  P001   = 1          ………………(2.1) 
(2) H0

(2):  λ1 ≡ P110 / P011 =1,   and   λ2  ≡ P101 /  P011  = 1            ……………..(2.2) 
    
      Are both true. 
         
       (2.1) and (2.2) means: 
          

(1)        H0
(1):  P100 = P001 = P010    ………………(2.1’) 

          (2)         H0
(2):  P110 = P011 = P101  ………………..(2.2’) 

 
(ii) Existence and Actual Derivation of a (conditional) Distribution which Depends on the    
 New Multinomial Parameters Only  
 
   The distribution is found to be a conditional distribution: 
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  P{(S010,S100,S110,S101) = (s010,s100,s110,s101) | (S001+S010+S100)=k1, (S011+S110+S101)= k2,  
         S000= s000 } 

( ) ( ) 010010 )1()1( 211212
1

1000101,100,010

SS
SSkSS

k
θθθθθθ ++++








=

−−

( ) ( ) 101110 )1()1( 212211
2

1011102,101,110

SS
SSkSS

k
λλλλλλ ++++








•

−−

 . 

( ) ( ) )1()1(1)1(1 10111021000101
2121

SSkSSk −−−− ++++• λλθθ
 
Which depends on the parameters useful for testing H0 (i.e. (2.1) and (2.2)) only. All 
nuisance parameters are eliminated or conditioned out.  
 
Under the null hypothesis, the conditional distribution (1) becomes 
 
  P{(S010,S100,S110,S101) = (s010,s100,s110,s101) | (S001+S010+S100)=k1, (S011+S110+S101)= k2,  
         S000= s000 } 

( ) 131
1000101,100,010

1 k

SSkSS

k








=

−−
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2 k

SSkSS

k








•

−−
 

 
= product of 2 independent trinomial distributions  
 =   π1  π2 
Which is the same as Plackett (1974, p. 102) and Patil (1975, p. 187, (3.1)). 
 
The distribution (1) is multivariate in nature, we shall use Cochran’s Q (Cochran(1950)) 
as the testing statistic for (1) : 

( ) )3()1( 22

1








−−−= ∑∑∑

=
i

i
i

i
j

k

j
UUkTTkkQ  

    where k = number of treatments or time points.  
    Tj = Total number of successes for the j-th treatment or  time point across all subjects  
        Or         blocks, j=1, 2, …, k 
    _ 
    T   = Σ  Tj  / k 
    Ui = Number of success among the 3 time points X1, X2, X3 for the i-th subject.  
 
In our present case, k = 3 time points. Ui is to be obtained from each patient, i = 1, 2, …, 
m. Tj, j=1, 2, 3 is to be obtained from the multinomial observation S ≡ (S000, 
S001,S010,S100,S110,… ,S111) as outlined below: 
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Formula (3) transforms multivariate observations S to a univariate statistic Q. For any 
value of Q, its probability is the probability of the corresponding multinomial observation 
S. 
 
In this way the distribution of Q is obtained, both under H0 and under H1. Power and 
sample size will be based on the null and non-null distribution of Q.  
 

(iii)Transformation of New Multinomial Parameters Back to Binomial Parameters 
   

Although the null distribution (2) is free of any nuisance parameter and in particular, is 
independent of correlations, the non-null distributions (1) does depend on the hard to 
interpret functions of 3-dimensional multinomial parameters θ1, θ2, λ1 and λ2. As in 
Section I, it is found by tedious algebra that each of them can be transformed to P1, P2, P3 
and correlations.  We first transform a 3-dimensional multinomial parameter to a function 
of 2-dimensional multinomial parameters and correlations. After this, one is in the 
situation of Section I, and can further transform each of the 2-dimensional multinomial 
parameters to 1-dimensional or binomial parameters P1, P2, P3 and correlations.  As an 
example: 
 
θ1 ≡  P100 / P001  can be  transformed to  a function of  P1, P2, P3 and correlations  
ρ(X1,X2), ρ(X1,X3), ρ(X2,X3) and conditional correlation ρ = ρ(X2,X3| X1=0), ρ =   
ρ(X1,X3| X2=0). Specifically: 
 
 The numerator of θ1 is 
  P100/(Q2)   =  P100/(1 – P2) 
  = (P10• /Q2) (P00• / Q2) - ρ [(P10• / Q2) (P00• / Q2) (P•01/ Q2) (P•00 / Q2)] 0.5 
            Where ρ  =   ρ(X1,X3| X2=0), Q2 = 1- P2 
  
And where the 2-dim multinomial parameters P•01, P•00, P10•, P00• can be expressed as 
functions of  P1, P2, P3 and correlations as follows:  
 
    Lemma 1.3’      P•01 =  (1-P2) P3 -   ρ(X2,X3) [ P3( 1 – P3) P2 ( 1-P2) ] 0.5,   
  
    Lemma 1.4’      P•00 =  (1-P2) (1-P3) -   ρ(X2,X3) [ P3( 1 – P3) P2 ( 1-P2) ] 0.5,   
 
    Lemma 1.2*      P10• =  P1 (1-P2) -   ρ(X1,X2) [ P1( 1 – P1) P2 ( 1-P2) ] 0.5,   
 
    Lemma 1.4*      P00• =  (1-P1) (1-P2) -   ρ(X1,X2) [ P1( 1 – P1) P2 ( 1-P2) ] 0.5,   
 
Similarly, the Denominator of θ1 is 
  
 P001/(Q1)   =  (P0•1 /Q1) (P00• / Q1) - ρ [(P01• / Q1) (P00• / Q1) (P0•1/ Q1) (P0•0 / Q1)] 0.5 
            Where ρ  =   ρ(X2,X3| X1=0), Q1 = 1- P1 
                                                                                                                                                       
 And where the 2-dimensional multinomial parameters P0•0, P0•1, P00•, P01• can be further 
expressed as functions of 1-dim or binomial parameters P1, P2, P3 and correlations as 
follows:  
 
    Lemma 1.4+      P0•0 =  (1-P1) (1-P3) -   ρ(X1,X3) [ P1( 1 – P1) P3 ( 1-P3) ] 0.5,   
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    Lemma 1.3+      P0•1 =  (1-P1) P3 -   ρ(X1,X3) [ P1( 1 – P1) P3 ( 1-P3) ] 0.5,   
 
    Lemma 1.4*      P00• =  (1-P1) (1-P2) -   ρ(X1,X2) [ P1( 1 – P1) P2 ( 1-P2) ] 0.5,   
 
    Lemma 1.3*      P01• =  (1-P1) P2 -   ρ(X1,X2) [ P1( 1 – P1) P2 ( 1-P2) ] 0.5. 
 
    (iii.1) Comment on Patil’s “Power Evaluation” under Alternative Hypothesis 
 
            Under the non-null hypothesis: 
          π1    ~        M ( n=K1, P =  P1′, P2′, P3′ )  , 
    
        Where  P1′ =  θ1/(1+ θ1  +θ2),  P2′ = θ2/(1+ θ1  +θ2),  and P3′ = 1 /(1+ θ1  +θ2) 
         Note:   P1′+ P2′+ P3′ = 1, 
 
  And     π2  ~     M ( n=K2, P =  P1′′, P2′′, P3′′ )  , 
    
        Where P1′′ = λ1/(1 +λ1 +λ2),  P2′′ = λ2/(1 +λ1 +λ2),  and P3′′ = 1 /(1 +λ1 +λ2) 
         Note:   P1′′+ P2′′+ P3′′ = 1 
 
Patil (1975, p. 188-189, table 2a) attempts to compute the probability distribution of Q 
under non-null hypothesis in his randomization test approach. It is apparent that his 
parameters of p1, p2, p3 with p1 + p2 + p3 = 1 (p. 188) corresponds to our P1′, P2′, P3′ 
here, and his parameters q1, q2, q3 with q1 + q2 + q3 = 1 corresponds to our P1′′, P2′′, P3′′ 
here.  Hence the parameters p1, p2, p3 and q1, q2, q3 he employed in the computation of 
distribution of Q under the alternative hypothesis are a mixture of binomial parameters 
P1, P2, P3 and nuisance parameters, namely the correlations. They may not be used for 
power and sample size evaluation for the comparison of binomial parameters P1, P2, P3.  
 
(c) Conditional Test and Conditional Critical Region 
 
 Let  α = Type 1 error   (with  α = 0.01 or 0.05). 
 Under the interchangeability hypotheses of   
 
       H0

(1): θ1  ≡ P100 / P001 =1,  and   θ2  ≡ P010 /  P001   = 1             ……………(2.1) 
 
       H0

(2): λ1 ≡ P110 / P011 =1,   and  λ2  ≡ P101 /  P011  = 1          ………………..(2.2) 
 
Which guarantees the homogeneity hypothesis 
           H0: P1 = P2 = P3    to be true, 
    
We have the null distribution (2) where we replace the multinomial observation S by the 
univarite r.v. for Cochran’s Q of (3). From now on, we shall refer to this as the null 
distribution.  
 
The alternative hypothesis is      P1= P1*, P2= P2*, P3 = P3* 
Where P1*,  P2*,  P3* are arbitrary but fixed value between 0 and 1, and not all equal. 
The critical region is located on the right tail of the null (conditional) distribution (2). Let 
C be the (largest) number assumed by Cochran’s Q such that the cumulative distribution 
of Q under H0

(1), H0
(2) is ≤ α, i.e.  
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Σω  P{(S010,S100,S110,S101) = (s010,s100,s110,s101) | (S001+S010+S100)=k1, (S011+S110+S101)= k2,  
      S000= s000 , H0

(1), H0
(2) } 

≤  α 
           Where ω  =  {Q:  c < Q} is the critical region. 
 
(d) Conditional Power of the Test 
  
Suppose the alternative hypothesis is    P1= P1*, P2= P2*, P3 = P3* 
Where P1*,  P2*,  P3* are arbitrary but fixed value between 0 and 1, and not all equal. The 
conditional power for this specific alternative is the probability of the critical region ω 
under the non-null distribution (1), where the multinomial sample S has been replaced by 
Cochran’s Q, and the multinomial parameters there can be replaced by P1, P2, P3 and 
correlations.       
 
If we have some information or pilot study which gives us some idea about the 
magnitude of the correlations, then the non-null distribution will be function of P1, P2, P3 
only. In this way the conditional power for the specific alternative hypothesis P1= P1*, 
P2= P2*, P3 = P3* may be obtained. And sample size for the detection of the specific non-
null hypothesis P1= P1*, P2= P2*, P3 = P3* may be obtained.  
 
(e) Unconditional Power 
  
The weighted sum of the conditional power weighted by the distribution of the 
conditioning r.v.’s is then the unconditional power of testing: 
    
      H0: P1= P2 = P3  
vs. 
      H1: P1= P1*, P2= P2*, P3 = P3*  
 
From (1), the conditioning r.v. is (S000, S001+S010+S100, S011+S101+S110) whose distribution 
is again multinomial with 
       
(S000, S1≡ S001+S010+S100, S2 ≡ S011+S101+S110, S111) 
       ~ M (n=m,  P =  (P000, (P001 + P010+P100), (P011+P101 +P110), P111) 
 
Where the multinomial parameters may be re-expressed as a function of P1, P2, P3 and 
correlations as shown before. If the correlations are known or estimated, then the 
unconditional power for testing H0: P1= P2 = P3 vs. H1: P1= P1*, P2= P2*, P3 = P3* may be 
computed. 
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