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Introduction 

 When considering a predictive model, it is important to evaluate the goodness of 

fit. Goodness of fit refers to how well the independent variables in a model predict the 

outcome. More specifically, it indicates how far the actual data deviates from the 

prediction. This measure is particularly valuable in logistic regression when a set of 

independent variables is used to predict a binary outcome. Logistic regression is widely 

used in public health studies. Available in most software packages, it is easy to estimate a 

subject’s probability of the outcome and determine odd ratios from the estimated 

coefficients. (Hosmer, Lemeshow, & Taber, 1991) It is important to test the fit of a model 

using a reliable and powerful method in order to draw correct inferences from the model.  

The Hosmer-Lemeshow goodness of fit (HLGoF) statistic is one such statistic 

that is useful in assessing the quality of a model’s fit. It is calculated by grouping the 

predicted probabilities into deciles then examining the difference between the observed 

and expected frequencies of the outcome. (Shah & Barnwell, 2003) There has been some 

question regarding the statistical accuracy of the grouping method used to calculate the 

statistic. Recent speculation has implied an alternative grouping method may yield a 

different result. This study proposes calculation of the statistic using an alternative 

method that will sort the predicted probabilities into ten groups at random. By conducting 

several simulations, we will fit a logistic model and alter some parameters that deviate 

the fit. This, in turn, can be used to output a goodness of fit statistic calculated using both 

methods. The goal is to examine the similarities or differences between the resulting 

HLGoF statistics while testing the performance of both methods to detect departures from 

the prediction equation. 

Background 

 Building a good model is essential before assessing goodness of fit measures. A 

model may be thought of in two principle components: a systematic and error component. 

(Hosmer, Lemeshow, & Taber, 1991) The systematic component is y as a function of the 

independent variables in the model. The values that comprise this group of covariates 

yield an associated y value. The error component is representative of the difference 

between the observed value of y and the expected value given by the values of the 

covariates. In public health research, models are created using variables of both 

biological and statistical importance. (Hosmer, Lemeshow, & Taber, 1991) Although it is 

sometimes necessary to include a variable not necessarily significant to control for 

confounding. (Hosmer, Lemeshow, & Taber, 1991) One issue that may occur when 

constructing a model is the covariate pattern. This term refers to the set of values for the 

covariates in the model.  Goodness of fit is evaluated by the fitted values of these 

patterns. The difference between the observed and fitted values will be referred to as the 

summary measures.  

 The summary measures can be thought of as the difference between the y-fitted 

and y-observed. A small value does not necessarily indicate a gross lack of fit; however, 

exceedingly large values indicate a fundamental error in the model’s construction. 

(Hosmer, 2007) In logistic regression, each covariate pattern has some fitted y-value 

associated with it and an estimated probability. The residuals give way to calculating the 
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Pearson Chi-Square statistic. The disadvantage with this method is that when the 

covariate pattern increases as the sample size increases, therefore so do the number of 

parameters. In this case, the calculated p-values may be incorrect. It is for this reason that 

Hosmer proposed grouping by deciles. This method is preferred over the fixed grouping 

method because it follows a X
2

df=8 distribution more closely. 

 Regression diagnostics are often employed to ensure the residual variation in a 

model is small. The Hosmer-Lemeshow decile grouping method is unique in that it 

examines the differences of observed and expected values within these groups based on 

the estimated probabilities. Despite its utility, the HLGoF statistic is prone to miss 

deviation from perfect fit due to a small number of datapoints. (Hosmer & Lemeshow, 

1989) A study conducted by Hosmer, Hosmer, Le Cessie, & Lemeshow (1997) on 

various goodness of fit measures asserted that since the grouping is based on estimated 

probabilities, y as a function of x, it may lack power to detect departures in x.  

This same study evaluated the Hosmer-Lemeshow decile grouping method with 

the method using fixed cutoff points. The two methods were used to evaluate the same 

fitted model at a sample size of 100, the two statistics produced widely different values. 

However as the sample size increased to 500, the two statistics produced nearly the same 

results. The power to detect deviations increased with sample size. 

 The fundamental test of the Hosmer-Lemeshow statistic is the null hypothesis 

that the model fits the data, and the alternative is the model does not fit the data. The 

statistic for this test is given by examining the differences between the observed and 

expected frequencies within the deciles where the observed and expected frequencies can 

be given by the set of equations below.   

 

 

 

The summation of the differences across the deciles yields a single summary measure. 

That can be given by this equation: 

 

 

In which, the value of C is expected to be small if the differences between the observed 

and fitted values are small. Hosmer, Hosmer, Le Cessie, & Lemeshow (1997) noted the 

variation between HLGoF statistics produced in different software packages. The 

differences were based on variations in the algorithms used to define the groups 

suggesting that the statistic may be sensitive to the groupings. Since it has a X
2 

distribution, it is also sensitive to small expected values. Thus a visual inspection of the 

deciles, in combination with other regression diagnostic tests, is the best way to fully 

evaluate the fit of a model.  

Methods 

For this study, we used a statistical software package, R, to conduct a simulation 

study that would allow us to calculate the HLGoF statistic originally as Hosmer proposed 
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and again using our proposed alternative random grouping method (HLRG). First we 

needed to construct a model where the fit would be nearly perfect and then alter the 

parameters of that model to alter the fit. We used R to fit a model, where the 

logit=β0+0.08x+β2 x
2
, and where x was a uniformly distributed continuous value with a 

range from -6 to 6. Therefore, each value in the range had an equal chance of being 

selected.  The model was fit where the true model under the null was   G(x) = β0+0.08x. 

This model represents nearly perfect fit. Altering the value of the quadratic term allowed 

us to change the fit and consequently test to see if the goodness of fit statistic would 

detect these deviations. The model allowed for simulations with various sample sizes and 

values of β2 (non-centrality index) coefficients.  

First we performed several simulations to fit the null based on 5 different sample 

sizes 50, 100, 200, 400, and 800.  At each level of sample size, we increased the value of 

the non-centrality index in order to introduce some deviation from the null. The non-

centrality index was increased from 0 to 0.08 by increments of 0.01 units. In this way, we 

can identify the proportion of times the HLGoF test rejects as the fit becomes worse. The 

more the true logit conforms to a parabola, the greater the proportion of rejection. These 

combinations yielded 30 unique simulated datasets comprised of the HLGoF X
2
 values, 

their respective p-values, HLRG X
2
 values, and their respective p-values. To visualize the 

data, we used ggplot2, a package in R, to create figures that would allow us to visually 

inspect the results of the simulation.   

Results 

To compare the performance of both methods, we used R to plot a facet graph of 

the HL X
2
 values along the y-axis and the HLRG X

2
 values along the x-axis. Each facet 

represents a different simulation scenario. The X
2 

values produced for both methods in 

each simulation scenario are plotted against each one-to-one. The blue line is a loess 

model fit of the values. If our hypothesis is true, that there is no difference in the statistics 

calculated by the two methods, then you should expect to see the loess trend line follow 

the small grey line, meaning both methods are producing similar values. With the 

exception of the scenario where the sample size equals 400 and the non-centrality index 

equals 0.00, the blue loess line favors the X
2
 values generated using the decile grouping 

method. That is, for larger X
2
 values produced by the original method, there are smaller 

X
2
 values being produced by the alternative method (Figure 1). 
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Figure 1 shows the X

2 
values plotted against each other calculated using both methods 

for various scenarios. 

 

Next we examine how the tests agree for each sample size as the deviation from 

the null increases. This comparison illustrates the proportion of times the two tests make 

the same decision. That is, the two statistics agree whether to reject or not reject the null, 

regardless if that decision is correct. For all the sample sizes where the non-centrality 

index is equal to 0, the proportion of agreement is around 0.85. Stated another way, the 

two methods have the same conclusion about 85% of the time. At a non-centrality index 

of 0.01, the two tests agree for all sample sizes. For a non-centrality index of 0.02, the 

agreement starts to vary by sample size with the tests agreeing the least at 0.80 for a 

sample size of 800. The two methods agree the most at 0.85 for a sample size of 100. As 

the non-centrality index increases, the agreement between the two methods varies 

significantly by sample sizes. This can especially be observed when the non-centrality 

index equals 0.08. Here for a sample size of 800, the two methods agree 100% of the 

time. When the sample size is 100, the agreement between the two tests is 0.60 (Figure 

2). 
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Figure 2 shows the proportion of agreement between both tests. 

To compare the performance of the two methods, we constructed two graphs that 

would allow us to see the proportion of rejection for each method at each sample size and 

each level of the non –centrality index. Figure 3 depicts the proportion of rejection for 

those X
2
 values generated by the original grouping method. At each sample size, when 

the non-centrality index is equal to 0, the proportion of rejection is around 0.10. For a 

0.05 significance level test, we expect 5% rejection. Therefore our type I error should be 

around 0.05. With this method, the test rejects the null hypothesis that the model fits the 

data well about 10% of the time when the model is perfect. Therefore, the empirical type 

I error rate for this test is about 10%. The proportion of rejection stays fairly similar for 

all sample sizes when the non-centrality index equals 0.01. At a non-centrality index of 

0.02 the proportion of rejection begins to increase rapidly for larger sample sizes as 

compared to smaller sample sizes. For a sample size of 800, the proportion of rejection 

starts to plateau as it reaches 1.00. The other samples follow the same pattern but at a 

much slower rate. When the non-centrality index is equal to 0.08, the proportion of 

rejection is 1.00. 
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Figure 3 shows the proportion of rejection for the X
2 

 calculated using the original 

method of calculation. 

Figure 4 depicts the proportion of rejection for the HLRG method. When the 

non-centrality index is equal to 0, for each sample size the proportion of rejection is 

around 0.10, much like the original grouping method. The greater the sample size the 

greater rate of increase in the proportion of rejection. Therefore, at a non-centrality index 

of 0.06 for sample size of 800, the proportion of rejection is 0.98 and is subsequently 

smaller for each decrease in sample size. At a non-centrality index of 0.08, when the 

sample size 800 the proportion of rejection is the highest at 1.00 and is the lowest when 

the sample size is 100 at 0.38. The contrast between the two graphs shows that the 

original grouping method rejects at a higher proportion and a faster rate when the non-

centrality index and sample size increases. 

 

Figure 4 shows the proportion of rejection for the X
2 

calculated using the alternative 

method of calculation. 
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Discussion 

 Upon inspection of our graphs, you see both statistics are very aggressive in 

evaluating the model. When the model is nearly perfect, both tests reject about 10%. For 

a 0.05 significance level test, we expect the proportion of rejection to be around 0.05. 

However, this was not observed and therefore our observed type I error rate is 

approximately 10%. As the non-centrality index increases so does the proportion of 

rejection, as expected. However the original grouping method is more sensitive to this 

increase, and the proportion of rejection increases at a faster rate as compared to the 

alternative method. In addition the power to detect deviations from the null increases as 

the sample size increases.  

The alternative method is more conservative than the original method. A 

comparison of both methods, where the points where the sample size is equal to 100 and 

the non-centrality index equals 0.08, shows that the original method rejects 62% and the 

alternative method rejects 38%. Considering these two points gives us some insight to the 

decline in agreement between the two tests as shown by graph 2. Shown in graph 1, the 

original method is producing larger values and is therefore rejecting the goodness of fit 

test more often.  Although the two tests are more aggressive when the model is nearly 

perfect, the original grouping method is far more sensitive and powerful to detect 

departures from the null. Therefore we can conclude that the original grouping method is 

far more superior to detecting deviations from good fit.  
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