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Abstract
Stochastic processes have applications in many areas such as oceanography and engineering. Spe-
cial classes of such processes deal with time series of sparse data. Studies in such cases focus in the
analysis, construction and prediction in parametric models.

Here, we assume several non-linear time series with additive noise components, and the model
fitting is proposed in two stages. The first stage identifies the density using all the clusters infor-
mation, without specifying any prior knowledge of the underlying distribution function of the time
series. The effect of covariates is controlled by fitting the linear regression model with serially cor-
related errors. In the second stage, we partition the time series into consecutive non-overlapping
intervals of quasi stationary increments where the coefficients shift from one stable regression rela-
tionship to a different one using a breakpoints detection algorithm. These breakpoints are estimated
by minimizing the likelihood from the residuals. We approach time series prediction through the
mixture distribution of combined error components. Parameter estimation of mixture distribution
is done by using the EM algorithm. We apply the method to fish otolith data influenced by various
environmental conditions and get estimation of parameters for the model.

Key Words: Bayesian, Regression models, reference distribution, likelihood, change points algo-
rithm, mixture distribution.

1. Introduction

Stochastic processes for longitudinal data are fundamental in probability and statistics and
have applications in many areas such as oceanography and engineering. Special classes
of such processes deal with time series of sparse data. Studies in such cases focus on the
analysis, construction and prediction in parametric models.

In this article, the prediction of time series is revisited and an application based on real
data is given. The density uses all the clusters information, without specifying any prior
knowledge of the underlying distribution function of time series. The effect of covariates is
controlled by fitting the linear regression model with serially correlated errors. The change
in stability of regression coefficients during the time course can be accounted by creating
different breakpoints. We partition the time course into consecutive non-overlapping inter-
vals where the coefficients shift from one stable regression relationship to a different one.
These breakpoints are estimated by minimizing the residual sum of squares (RSS) using
the algorithm described by Bai and Peron (2003) [6]. The algorithm in selecting the num-
ber of change points is based on a simple iterative step in which the maximum difference
is less than a critical value of the difference of two consecutive values and is less than an
optimal threshold chosen in a Bayesian framework. The partition algorithm fits a different
probability model maximizing likelihood within each block interval.

Since different parts of data fit different models, forecasting depends not just on one
model, but on all the relevant models. We develop a method based on mixture of different
distributions to forecast in this type of models. The Expectation-Maximization (EM) algo-
rithm, with initial values obtained from the empirical estimates, give the estimates of the
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mixture distribution. Further improvement in the parameter estimation has been observed
by using bootstrap re-sampling combined with EM algorithm. For simplicity, we name this
method as Break Point Bootstrap Filtering (BPBF) method.
This paper is an extension of the ideas developed akin to the cited references and related
work. It presents a novel concept in time series prediction and some supporting empirical
evidence in terms of real data. The concept of using multiple break points based on min-
imum RSS or Bayesian Information Criteria (BIC) does not always create good intervals.
Sometimes there are very few observations in some intervals and the estimates based on
those observations are suspicious. In such cases, we improve the estimation of parameters
by using block bootstrap. The block bootstrap is the most general method to improve the
accuracy of bootstrap for time series data. By dividing the data into different blocks, it
can preserve the original time series structure within a block. However, the accuracy of
the block bootstrap is sensitive to the choice of block length, and the optimal block length
depends on the sample size, the data generating process and the statistic considered. In our
examples, we are using the approach proposed by Patton et al. (2009) [19] to identify the
optimal block size. Varying block lengths that follow the geometric distribution are con-
sidered, and thus we avoid the problem of non-stationary by its construction (Politis and
Romano (1994) [20]).

The paper is organized as follows. Section 2 presents the guidelines and theory of the
different procedures in model fitting. The distributions of the models are specified, and our
new method is provided. In Section 3, we apply our method to simulated and real data and
get estimation of parameters as well as model forecasting. We conclude in Section 4 with
some discussion.

2. Model Building

Partially observed time series models are studied under various conditions, e.g. State Space
Models (Durbin and Koopman, (2001) [11]), Dynamic Models (West and Harrison (1997)
[25]), and Hidden Markov Models (Cappe et al. (2005) [8]). All of these methods work
if we have regular time series data where the model structure does not change locally. In
other words, if the variance changes locally, then it is hard to build the model based on
regular time series approach. However, there are cases where structural changes or breaks
appear to affect models, for example in the evolution in key economic and financial time
series such as output growth, inflation, exchange rates, interest rates and stock returns.1 If
data are collected over a long period of time, we are more likely to observe the structural
change. This change could be the result of many possible factors such as institutional or
technological changes, environmental changes, shifts in economic policy, or could even
be due to large macroeconomic shocks such as the doubling or quadrupling of commodity
prices experienced over the past decades.

One main goal that arises in the context of time-series forecasting of such models is to
incorporate these different model structures to estimate the overall model parameters. We
assume that if breaks have occurred in the past, surely they are also likely to happen in the
future. Approaches that view breaks as being generated deterministically are not applicable
when forecasting future events unless, of course, future break dates as well as the size of
such breaks are known in advance. In most applications, this is not a plausible assumption
and modelling of the stochastic process underlying the breaks is needed.

1A small subset of the many papers that have reported evidence of breaks in economic and financial time
series includes Alogouskofis and Smith (1991) [1], Garcia and Perron (1996) [13], Koop and Potter (2001)
[17], and Pastor and Stambaugh (2001) [18].
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In this paper we provide a general framework for forecasting time series under struc-
tural breaks that is capable of handling the different above scenarios.

Regular time series linear model of responsesY based on predictorsX can be defined
as:

Y = Xβ + ζ,

where the errorsζ’s are not independent and assume stationarity process.
Also, the lagh autocovariance for theζ is given by:

Cov(ζt, ζt−h) = Cov(ζt, ζt+h) = γ(h) = σ2ρh,

and theζ follows an autoregressive moving average process of order(p, q), we denote as
ARMA(p, q) which is:

ζt − φ1ζt−1 − φ2ζt−2 − ...− φpζt−p = Zt + θ1Zt−1 + ... + θqZt−q,

with {Zt} being the white noise of theζ process andφ1, ..., φp andθ1, ..., θq are AR and
MA components, respectively.

Also, we can further extend the model to autoregressive integrated moving average,
ARIMA (p, d, q), where{ζt} satisfies a difference equation of the form

φ(B)(1−B)dζt = θ(B)Zt, {Zt} ∼ WN(0, σ2),

whereφ(z) andθ(z) are polynomials of degreesp andq, respectively,
φ(z) 6= 0 for |z| ≤ 1, d is the difference indicator andB is the backshift operator.

Ford = 0, an ARIMA(p, d, q) reduces to an ARMA(p, q) process.
If the structure of data is such that there is heterogeneous variance structure among

different intervals then parameter estimates based on a regular time series model is very
unrealistic. So we divide the data into different parts using multiple breakpoints. The foun-
dation for estimating breaks in time series regression models was given by Bai (1994) [2]
and was extended to multiple breaks by Bai ((1997a) [3] and (1997b) [4]) and Bai and Per-
ron ((1998) [5] and (2003) [6]). The distribution function used for the confidence intervals
for the breakpoints is given in Bai (1997b) [4]. The ideas behind this implementation are
described in Zeileis et al. (2003) [26]. The break points are obtained by testing or assessing
deviations from stability in the classical linear regression model

yj = xT
j β + uj ,

where at timej, yj is the observation of the dependent variable,xj = (1, xj1, ..., xjk)T is a
(k + 1)× 1 vector of observations of the independent variables, anduj areiid(0, σ2), and
β is the(k + 1)× 1 vector of regression coefficients.

In many applications, it is reasonable to assume that there arem breakpoints, where
the coefficients shift from one stable regression relationship to a different one. Thus, there
arem+1 segments,I1, · · · , Im+1 in which the regression coefficients are constant, and the
model can be rewritten as:

yj = xT
j βi + uj , (1)

whereβi, i = 1, 2, · · · ,m + 1 be the vector of regression coefficients within each seg-
ment,i denotes the segment index andj = ji−1 + 1, ..., ji. In practice, the breakpoints are
rarely given exogenously, but have to be estimated. They are estimated by minimizing the
residual sum of squares (RSS) from equation (1). The algorithm for computing the opti-
mal breakpoints given the number of breaks is based on a dynamic programming approach

Section on Risk Analysis – JSM 2012

2385



based on the Bellman principle (Bellman (1952) [9]). The main computational effort is to
compute a triangular RSS matrix, which gives the RSS for a segment starting at observation
indexedj and ending at indexedj

′
with j < j

′
. Also, the adjacent intervals separated by

break points are significantly different.
Let Ii denote theith interval with density functionfij(yij , θi) where i = 1, 2, ..., m+

1 represents the number of intervals andj = 1, ..., ni represents the number of val-
ues within that interval andθi is the vector of time series parameters within each interval.
Thus, we havem + 1 time series models and each model is based only on the data of
corresponding interval. So our main challenge is to combine all this model information to
create a common model that can be used for forecasting. Several studies have been done
in the past to combine the multiple time series regression models. Qin (1993) [21], Qin
and Lawless (1994) [22], Qin and Zhang (1997) [23], Gilbert (2000) [14], Zhang (2000)
[27] and Fokianos et al. (2001) [12] worked on some semi-parametric methods. Recently,
Kedem and Gagnon (2010) [16] further extended those ideas by showing the estimation of
the probability distribution of a “reference” time series and using them in conditional pre-
diction. All these aforementioned ideas use multiple time series regressions where different
time series structures are related to different covariates but the ideas do not extend into the
different time intervals.

2.1 Parameter estimation: EM algorithm and mixture of normal distributions

Let’s assume that there arembreak points, this gives usm+1 time series intervals. LetIi be
theith interval with density functionfi(yij ,θi) where i = 1, 2, ..., m+1 ; j = 1, · · · , ni

andθi is the vector of time series parameters within each interval.
Then,

y1,t1=f1(z1,t1−1)+ζ1,t1 , t1 = 1, 2, ..., n1 .
...

y(m+1),tm+1
=fm+1(zm+1,tm+1−1)+ζm+1,tm+1 ,

wheretm+1 = tm + 1, tm + 2, ..., nm+1 andzi,ti−1 contain past values of covariate time
series possibly including even past values ofy1,t1 , ...,ym,tm , ym+1,tm+1 .
The error sequence{ζi,ti} is the sequence ofiid random variables,ζi,ti ∼ gi(y), i =
1, ..., m,m + 1.
We approach time series prediction through the mixture distribution of these error compo-
nents. Noise from each of the intervals are combined to form combined noise:
ζ=(ζ1, ζ2, ..., ζn) ={(ζ1,1, ... ,ζ1,n1), ... ,(ζi,1 , ... ,ζi,ni), ... ,(ζm+1,1 , ... ,ζm+1,nm+1)},

n = n1 + ... + nm+1.
The joint density of finite mixtures is

g(y) =
m+1∑

i=1

pigi(y), pi ≥ 0, i = 1, ..., m,m + 1,

and
m+1∑

i=1

pi = 1.

Hence, the cumulative distribution function of combined data is

G(y) =
m+1∑

i=1

piGi(y),

Section on Risk Analysis – JSM 2012

2386



whereGi(y) is the cumulative distribution function of vectorsζi , i = 1, ..., m,m + 1.
Since,ym,t+1=fm(zm,t) +ζm,t+1 andζm,t+1 ∼ G , we have the future probability approxi-
mation att + 1 conditional onzm,t as:

P (ym,t+1 ≤ y|zm,t) = G(y − fm(zm,t)
≈ Ĝ(y − fm(zm,t)

=
n∑

i=1
p̂iI(ζi ≤ y − fm(zm,t)),

wherep̂i are the estimated weights using EM algorithm for each interval andI is the indi-

cator function such that̂G(ζ)=
n∑

i=1
p̂iI(ζi ≤ ζ).

For ARMA(p, q) models in each interval, this conditional probability reduces to

P (ym,t+1 ≤ y|zm,t) = Ĝ(
n∑

i=1
p̂i(y −

p∑
j=1

φ̂jym,t+1−j +
q∑

k=1
θ̂kZm,t+1−k)).

For each interval, without loss of generality,ζi ∼ N(0, σ2
i ).

For convenience, let’s assume thati=2. Then, the density for the mixture of two Gaussian
population is given as:

gζ(ς) = p
1
σ1

ϕ

(
ς − µ1

σ1

)
+ (1− p)

1
σ2

ϕ

(
ς − µ2

σ2

)
,

whereϕ is the cumulative distribution function of the standard normal distribution. We
set indicators of which mixture component each observation belongs to as missing data
and the EM algorithm will find the proportion of observations belonging to each normal
distribution along with other unknown parameters for means and variances.p, µ1, µ2, σ

2
1

andσ2
2 are the parameters to be estimated.

Let θ=(p, µ1, µ2, σ
2
1, σ

2
2).

The indicator variableWi can be treated as missing data such that:

Wi =

{
1, if ζi belongs to first interval
0, if ζi belongs to second interval,

whereWi is Bernoulli distributed with parameterp.
Therefore, the likelihood expression for complete data is given by:

Ln(θ|ζ, W ) =
n∏

i=1

pWi(1− p)1−Wi
1

σWi
1

ϕ

(
ζi − µ1

σ1

)Wi 1
σ1−Wi

2

ϕ

(
ζi − µ2

σ2

)1−Wi

.

And the corresponding log-likelihood function for the density becomes:

ln(θ|ζ, W ) =
n∑

i=1

Wilog(p) +
n∑

i=1

(1−Wi)log(1− p)− 1
2

n∑

i=1

Wilog(2πσ2
1)

− 1
2σ2

1

n∑

i=1

Wi(ζi − µ1)2 − 1
2

n∑

i=1

(1−Wi)log(2πσ2
2)

− 1
2σ2

2

n∑

i=1

(1−Wi)(ζi − µ2)2.

From here, we apply the EM algorithm and find the expectation ofWi. The conditional
distribution ofWi givenζ is:

Wi|ζi, θ
(k) ∼ Bin(1, p

(k)
i ),
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with

p
(k)
i =

p(k) 1

σ
(k)
1

ϕ( ςi−µ
(k)
1

σ
(k)
1

)

p(k) 1

σ
(k)
1

ϕ( ςi−µ
(k)
1

σ
(k)
1

) + (1− p(k)) 1

σ
(k)
2

ϕ( ςi−µ
(k)
2

σ
(k)
2

)
,

wherep(k) is a set of known or estimated parameters atkth step. The initial valuep(0)

can be obtained from the empirical distribution.
Hence, the conditional mean atkth step is:

E(Wi|ζi, θ
(k))=p

(k)
i .

By substitutingp(k)
i for Wi, we obtain the expectation function as:

Q(θ|θ(k)) =
n∑

i=1

p
(k)
i log(p) +

n∑

i=1

(1− p
(k)
i )log(1− p)− 1

2

n∑

i=1

p
(k)
i log(2πσ2

1)

− 1
2σ2

1

n∑

i=1

p
(k)
i (ζi − µ1)2 − 1

2

n∑

i=1

(1− p
(k)
i )log(2πσ2

2)

− 1
2σ2

2

n∑

i=1

(1− p
(k)
i )(ζi − µ2)2.

Now, we maximize the expectation obtained in previous step. In the maximization step, we
set the first derivative ofQ(θ|θ(k)) with respect to each parameter equal to zero and this
results in the following equations for each parameter at the(k + 1)th step:

p(k+1) =
1
n

n∑

i=1

p
(k)
i ,

µ
(k+1)
1 =

∑n
i=1 p

(k)
i ζi∑n

i=1 p
(k)
i

, µ
(k+1)
2 =

∑n
i=1(1− p

(k)
i )ζi∑n

i=1(1− p
(k)
i )

,

σ
(k+1)
1

2
=

∑n
i=1 p

(k)
i (ζi − µ

(k+1)
1 )

2

∑n
i=1 p

(k)
i

, and σ
(k+1)
2

2
=

∑n
i=1(1− p

(k)
i )(ζi − µ

(k+1)
2 )

2

∑n
i=1(1− p

(k)
i )

.

The initial values ofθ are again obtained from the empirical distribution.

2.2 Block Bootstrap

We use block bootstrap to generate bootstrap replicates of a statistic applied to time series.
By dividing the data into several blocks, The original time series structure as well as the
properties of original data generating process are preserved within a block.

Let {Yt : t = 1, ..., n} be time series data, then we construct bootstrap sample in the
following steps:

1. Pick the optimal block size,l. The block size is chosen according to Patton et al.
(Patton (2009) [19]).

2. Consider the overlapping blocks with varying block lengths. The optimal block size
l is the mean of geometric distribution used to generate the block length. This avoids
the problem of non-stationarity by construction (Politis and Romano (1994) [20]).
For the overlapping method, we divide the data inton− l + 1 blocks, which block1
being{Y1, · · · , Yl}, block2 being{Y2, · · · , Yl+1}, · · · , etc.
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3. Resample the blocks randomly with replacement and generate bootstrap sample{Y ∗
t :

t = 1, · · · , n} by gluing blocks together in the order that they were sampled.

4. Calculate the estimator.

For simplicity, this combination of identification of breakpoints together with bootstrap is
named as Breakpoints Bootstrap Filtering (BPBF) method.

3. Application and Estimation

We test the proposed methodology on simulated data and also apply it to actual data eval-
uated from fish otoliths. Otoliths are organs that detect sound and assist balance that are
found in the inner ear. They are composed of calcium carbonate(CaCO3) and trace el-
ements which reflect environmental conditions. Otoliths accrete daily bands for the first
year of life and yearly bands thereafter (Jones (2002) [15] Chapter 2). Each band contains
a fingerprint of the water chemistry to which the fish was exposed, and thus provides a
chronology of changing habitat (Campana (1999)[7] and Dorval (2007)[10]). Our otolith
data spans fish-birth years from 1967 to 2001. Otoliths were measured forδ18O (the ra-
tio of the stable isotopes18O:16O), a measure of the oxygen isotopes contained in their
CaCO3, that mirrors water temperatures and origin. In our example, we use fish-otolith
data collected from Lake Tasiat in eastern Canada, near the Arctic Circle. This region has
experienced changing temperatures and precipitation that may reflect climate change. Co-
variates used are average precipitation (snow and rain), average temperature and average
rainfall.

The simulation will allow us to justify our methodology. We simulate a combination of
different ARMA models and use our proposed method for forecasting to a part of simulated
data. Then, we validate our model by comparing the forecast result with remaining parts of
the data.

3.1 Simulated Data

We simulate a time series data with different covariance structures in two different intervals.
Combination of AR(1), and MA(2) is simulated. For the first interval we assume an AR(1)
model, and for the second interval, an MA(2). The two models are generated with equal
sample size,n1 = n2 = 100. For the AR(1) model, we use AR componentφ1 = 0.7, zero
mean with varianceσ2

1 = 9. The MA(2) components areθ1 = 0.5 andθ2 = 0.4, mean
value of 2 and varianceσ2

2 = 36. Based on regular time series models, the best reasonable
model with minimum AIC to fit the entire data is ARMA(1,2) with parameter estimates,
σ̂2 = 26.72, φ̂1 = 0.289, θ̂1 = 0.433 andθ̂2 = 0.398. The AIC, BIC and log-likelihood
for this model are1233.61, 1251.96, and−612.73, respectively.
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Table 1: AICs for different ARMA (p, q) models for simulated data

↓ AR|MA −→ 0 1 2 3 4 5
0 NA 1294.756 1239.677 1240.411 1240.734 1238.576
1 1243.064 1244.882 1233.609 1239.873 1235.608 1237.507
2 1244.825 1245.34 1239.117 1235.608 1237.577 1239.526
3 1244.797 1242.76 1236.875 1237.66 1239.281 1233.936
4 1238.18 1240.125 1237.62 1237.101 1239.033 1235.583
5 1240.13 1242.18 1236.326 1235.514 1240.856 1238.491

We note that the forecast based on a usual time series model with minimum AIC can be
improved. The model fit based on usual time series model in Figure 1 is unusually smooth
and far from our expectation. In fact, its forecast does not explain the overall seasonal
component.

We improve forecasting by identifying the break points where the data structures are
different. Then, we fit different time series models for each intervals. The residuals from
each intervals are combined and their joint density is estimated. For convenience, we as-
sumed that these residuals are normally distributed. The parameters of mixture distribution
are estimated by the EM algorithm. Further improvement in the parameter estimation is
done by using parametric bootstrapping on the estimates obtained through EM algorithm.
In our simulated data, the initial values for EM algorithm for mixture of two normal densi-
ties are taken as sample mean and variance of two error components. In our case, the two
error components have zero sample means and variances are13.73 and320.82 for the first
and second intervals, respectively. The estimated weights (proportion) using EM algorithm
are0.51 and0.49 instead of 0.5 each. Bootstrap combined with EM algorithm gives the
estimate of means and variances of the mixture distribution asµ̂1 = −0.11, µ̂1 = 0.11,
σ̂1

2 = 13.45 andσ̂2
2 = 324.73, respectively. These estimates are used to generate the mix-

ture distribution for forecasting. Model fit by using break points and forecasting is shown
in Figure 1.

Time
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fitted(BPBF)
fitted(TS)
forecast (mixture model)
forecast (regular TS)

Figure 1: Model fit for simulated data.

For the first 100 data, AR(1) model with intercept−0.379, θ̂ = 0.494, σ̂2 = 10.47, the
AIC, BIC and log likelihood are524.95, 532.76 and−259.47, respectively fit the data and
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for the remaining 100 data, ARMA(2,2) with model parameter estimates, intercept of5.46,
σ̂2 = 42.14, θ̂1 = 0.52, θ̂2 = 0.31, φ̂1 = 0.57, φ̂2 = 0.41, the AIC, BIC and log likelihood
of 672.32, 687.95 and−330.16 fit the data. Also, the root mean square errors for first 100
and last 100 observations are3.24 and6.49, respectively. Fitted model and forecasting
based on the mixture model is given in Figure 1. Forecasting based on the mixture model
with time and intercept adjustment looks much more reasonable compared to that based
on regular time series model in Figure 1. We compared the similarity of cumulative dis-
tribution function (CDF) of simulated data and our mixture model. Kolmogorov-Smirnov
tests shows that these two CDF are not significantly different (p=0.167) at5 percent level
of significance. Figure 2 compares the empirical CDF of simulated data with those from
classical time series model and proposed mixture model.

−10 0 10 20

0.0
0.2

0.4
0.6

0.8
1.0

x
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(x)

actual
fitted(mixture)
fitted(TS)

Figure 2: Comparison of empirical CDFs for simulated data.

3.2 Otolith Data

We implement our methodology using to Otolith data obtained from Lake Tasiat, Canada.
The study of O18 (Oxygen Isotopeδ18O) from fish otoliths is useful in estimating historical
water temperature and weather. Lake Tasiat has information from years 1967 to 2000. Our
main interest is to see the overall change of O18 over time and predict how it will behave
in future. Average precipitation, average temperature and average rain are the available
covariates which may cause changes in O18. Table 2, shows the summary of data from Lake
Tasiat. The effects of these covariates are not significant in the linear regression model. The
regression coefficients of average precipitation, average temperature and average rain are
0.0355,−0.00035 and0.021, respectively.

Table 2: Mean and standard deviation of covariates.

Avg. O18 Avg. Temp.(oC) Avg. Rain(mm) Avg. Prec.(mm)
Mean sd Mean sd Mean sd Mean sd
-12.62 0.33 -5.70 1.25 22.81 4.34 43.88 5.02

Figure 3 shows the original Lake data together with the best fitted model using regular
time series model and our proposed model. We see that the model based on the usual
time series does not fit the data very well so we use the breakpoints. The break points are
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Figure 3: Actual data and fitted model using classical time series model ARMA(3,2) and
proposed model, BPBF.

identified based on minimum BIC and RSS. Figure 4 shows the BIC and RSS for different
breakpoints for Lake Tasiat. Based on minimum BIC, we use one breakpoint for Lake
Tasiat. The data are divided into two groups: group 1 with first1 − 23 observations, and
group 2 with and24−34 observations. Such consecutive groups are significantly different.
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Figure 4: Breakpoint identification for lake Tasiat using minimum BIC criterion.

By using breakpoints, a MA(2) fits the first interval of Lake Tasiat data with parameters
φ̂1 = 0.251, φ̂2 = 0.519, σ̂2 = 0.045, AIC of 2.424 and log-likelihood of9.20. An
ARIMA (0, 1, 1) fits the remaining data of Lake Tasiat. The fitted model parameters are
θ̂1 = −0.281, σ̂2 = 0.013 and AIC of1.94 and log-likelihood of75.30.

Also, by using a classical time series model without the break points, ARMA(3, 2)
fitted model was found as the best where parameters areφ̂1 = −0.628, φ̂2 = −0.082,
φ̂3 = 0.319, θ̂1 = 1.178, θ̂2 = 1.000, σ̂2 = 0.078, AIC of 19.05 and log-likelihood of
−2.20.

For forecasting Lake Tasiat, the mixture of normal distribution has estimatesp̂ = 0.671,
µ̂1 = 0.004, µ̂2 = −0.01, σ̂1

2 = 0.053 andσ̂2
2 = 0.066. In Figure 3, we can see the fitted

model using break points and forecasting based on mixture model for Lake Tasiat. Figure 5
compares the empirical CDFs of Tasiat data with classical time series model and proposed
mixture model. Our fitted model is significantly closer to the true nature of the small data.
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Figure 5: Empirical cumulative distribution functions of Lake Tasiat together with classical
time series model and the proposed mixture model.

4. Conclusion

We have discussed methodology and analysis of time series data with locally changing
variance (structural change) using breakpoints and bootstrap approaches. Breakpoints par-
tition the time course into consecutive non-overlapping intervals where the coefficients shift
from one stable regression relationship to a different one. Also, because there are limited
observations in some intervals, we can use block bootstrapping to improve the parameter
estimates. The optimal size of the blocks needed is chosen such that the RSS will be mini-
mum. Once we fit the model for different intervals, such information is combined and used
in the forecasting.

Forecasting partitioned data which has different model structures at different partitions
is a challenging task. To our knowledge, there are no existing methods that discuss this
problem. Our proposed method is different from other existing methods that are based on
time series data where different covariates have different covariance structures. We have
developed a new approach which advances previous concepts with new ideas for forecast-
ing time series data that are subject to the structural breaks and non-equidistant time. Our
approach is based on the mixture distribution where the parameters are estimated by using
EM algorithm combined with bootstrapping. Our approach together with block bootstrap-
ping performs very well when faced with small and sparse data sets as we have shown in
our real example. Our approach is quite general and can be implemented in different ways
other than those documented.

Further questions are being explored. One of the questions is related to the identifica-
tion of optimal block size for block bootstrapping. Patton et al. (2009) [19] discussed the
identification of optimal block sizes, but their approach still has some limitations. Another
concern is related to finding a procedure of choosing initial value in EM algorithm for faster
convergence.
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[8] Cappè, O., Moulines, E. and Rydèn T. (2005),Inference in Hidden Markov Models, Springer, 2005.

[9] Bellman R. (1952), “ On the Theory of Dynamic Programming,”Proceedings of the National Academy
of Sciences, 1952.

[10] Dorval, E., Jones, C.M., Hannigan, R., and J. and Van, J.M. (2007), “Relating otolith chemistry to
surface water chemistry in a coastal plain estuary,”Canadian Journal of Fisheries Aquatic Sciences, 64,
1-14.

[11] Durbin, J. and Koopman, S.J. (2001),Time Series Analysis by State Space Methods, Oxford University
Press, 2001.

[12] Fokianos, K., Kedem, B., Qin, J. , and Short, D.A. (2001), “A Semiparametric Approach to the One-Way
Layout,” Technometrics, 43, 56-65.

[13] Garcia, R. and Perron, P. (1996), “An Analysis of the Real Interest Rate under Regime Shifts,”Review
of Economics and Statistics, 78, 111-125.

[14] Gilbert, P.B. (2000), “Large Sample Theory of Maximum Likelihood Estimation in Semiparametric
Biased Sampling Models,”Annals of Statistics, 28, 151-194.

[15] Jones, C.M. (2002),Age and Growth, , in Fisheries Science, [Editors] L.A. Fuiman and R.G. Werner,
Blackwell Scientific, 30-63.

[16] Kedem, B. and Gagnon, R. (2010), “Semiparametric Distribution Forecasting,”Journal of Statistical
Planning and Inference, 140(2010) pp. 3734-3741.

[17] Koop, G. and Potter, S. (2001), “Are Apparent Findings of Nonlinearity Due to Structural Instability in
Economic Time Series?,”Econometric Journal, 4, 37-55.

[18] Pastor, L. and Stambaugh, R.F. (2001), “The Equity Premium and Structural Breaks,”Journal of Fi-
nance, 56, 1207-1239.

[19] Patton, A. , Politis D. N., and White H. (2009), “ “CORRECTION TO ”Automatic block-length selection
for the dependent bootstrap by D. Politis and H. White,”Econometric Reviews28(4), 372-375.

[20] Politis, D.N. and Romano, J.P. (1994), “The stationary bootstrap,”Journal of American Statistical Asso-
ciation, 89: pp. 1303-1313.

[21] Qin, J. (1993), “Empirical Likelihood in Biased Sampling Problems,”Annals of Statistics, 21, 1182-
1186.

[22] Qin, J. and Lawless, J.F. (1994), “Empirical Likelihood and General Estimating Equations,”Annals of
Statistics, 22, 300-325.

[23] Qin, J. and Zhang, B. (1997), “A Goodness of Fit Test for Logistic Regression Models Based on Case-
Control Data,”Biometrica, 84, 609-618.

[24] Venkatraman and Olshen (2007), “ bcp: an R Package for Performing a Bayesian Analysis of Change
Point Problems,”Journal of Statistical Software, 23 (3), pp. 1-13.

[25] West, M. and Harrison, J. (1997),Bayesian Forecasting and Dynamic Models, Springer, 1997 (2nd Ed.).

[26] Zeileis, A., Leisch, F., Hornik, K., Kleiber, C. (2003), “strucchange: An R Package for Testing for
Structural Change in Linear Regression Models,”Journal of Statistical Software, 7(2), 1-38.

[27] Zhang, B. (2000), “M-Estimation Under a Two Sample Semiparametric Model,”Scandinavian Journal

of Statistics, 27, 263-280.

Section on Risk Analysis – JSM 2012

2394


