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Abstract
Traditional multivariate tests, Hotelling’s test or Wilk test, are designed for a test of the mean vector under the

assumption that the number of observations is larger than the number of variables. For high dimensional data, where
the number of features is nearly as large as or larger than the number of observations, existing tests do not provide
a satisfactory solution because the estimated covariance matrix is singular. In this paper, we consider a test for the
mean vector of independent and identically distributed multivariate normal random vectors where the dimension is
larger than or equal to the number of observations. To solve this problem, we propose a modified Hotelling statistic.
Simulation results show that the proposed test is superior to other tests available in the literature. However, since we
do not know the theoretical distribution of this modified statistic, Monte Carlo methods were used to reach a decision.
Instead of using the conventional Monte Carlo methods, which perform a fixed-number of simulations, we suggest
using the sequential Monte Carlo test in order to decrease the number of simulations needed to reach a decision.
Simulation results show that the sequential Monte Carlo test is always preferable to a fixed-sample test, especially
when using computationally intensive statistical methods.
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1. Introduction

The area of high-dimensional statistics deals with estimation in the “large P , small N” setting, where P is
the number of variables and N the number of observations. It is rare to find a dataset large enough to com-
pute a non-singular covariance matrix. Advances in computing have made high-dimensional data analysis
possible in a number of important applications, including gene arrays, climate studies, spectroscopy, func-
tional magnetic resonance imaging, and data mining. For this setting, traditional statistical techniques based
on small or medium sample sizes may not be applicable because of the ‘curse of dimensionality’. It is well
known that the empirical covariance matrix for samples of size N from a P -variate Gaussian distribution
is not a good estimator of the population covariance matrix if P is larger than N . Such high-dimensional
scaling can lead to dramatic breakdowns in many classical procedures. In the absence of additional model
assumptions, it is often impossible to obtain consistent procedures whenN < P . The methods that deal with
high dimensional data sets are usually based on a set of regularizing assumptions to reduce the complexity
of the problem.
Assume that we observe a set of N vectors xi, i = 1, 2, . . . , N , where each vector, xi is P dimensional. Let
x1,x2, . . . ,xN be independent and identically distributed random vectors with mean vector µ and positive
definite covariance matrix Σ. Suppose we would like to determine whether the population mean µ is sig-
nificantly different from a hypothesized mean vector µ0. Without loss of generalities, we will assume that
µ0 = 0. This problem can be formulated as the following hypothesis test:

H0 : µ = 0 vs Ha : µ 6= 0
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2. Covariance estimation for data with fewer observations than the dimension

In the general case, assume that we observe a set of N vectors xi, i = 1, 2, . . . , N , where each vector, xi is
P dimensional. Without loss of generality, assume that xi has zero mean. If the vectors xi are identically
distributed, then the sample covariance matrix is given by

S =
1

N

N∑
i=1

xix
′
i

and S is an unbiased estimator of the true covariance matrix Σ = E(S). While S is an unbiased estimate of
the true covariance matrix, it is also singular when N < P. In practice, N may be much smaller than P and
so most of the eigenvalues of Σ are incorrectly estimated as zero. Several methods have been proposed to
regularize the estimate of Σ so that it is not singular. Shrinkage estimators are a class of estimators which
regularize the covariance matrix by shrinking it toward some target structure. They generally have the form
Σ̂ = αD+(1−α)S where D is some positive definite matrix. Some popular choices for D are the identity
matrix or its scaled version. The shrinkage estimate α is estimated by cross-validation or bootstrap methods.
The concept of robust estimation of an inverse covariance matrix was first introduced by Dempster, 1972
who suggested that the number of parameters to be estimated be reduced by setting some elements of the
precision matrix or inverse covariance matrix Ω = Σ−1 to zero. A number of methods have been proposed
for regularizing the estimate by making either the covariance or its inverse sparse. In the absence of model
assumptions when P > N , an active line of statistical research is based on imposing various restrictions on
the model – for instance, sparsity. In this article, we will use a technique called ‘slicing’ that is suitable for
obtaining nonsingular estimates of the covariance matrix of high dimensional data in the ”large P , smallN”
setting. Slicing was first introduced in Akdemir, 2011.

2.1 Matrix-Variate Normal Distribution

The matrix variate random variable with Kronecker delta covariance structure has been studied intensively
in Gupta and Nagar (2000) and by many others. Several authors have used this kind of model for analyzing
matrix variate data. Naik and Rao (2001) used the structure Σ = Ω ⊗Ψ for the analysis of the data using
a MANOVA model, Roy and Khattree (2003) used the same structure in discriminant analysis of repeated
measures data. Lu and Zimmerman (2005) have also considered this structure in their work. Krzysko and
Skorzybut (2009) have also used this structure to establish discriminant analysis of multivariate repeated
measures data. In this section, we will review some useful properties of this distribution. Here, the random
matrix is the fundamental element instead of the random vector. Our discussion of this distribution follows
from Gupta and Nagar (2000).

Definition 2.1. The “vec” operator transforms a p× q matrix into a vector of length pq.

Definition 2.2. (unstructured) The random matrix X(p× q) is said to have a matrix variate normal distri-
bution with mean matrix M(p× q) and covariance matrix Σ where Σ is a pq × pq positive definite matrix,
if vec(X′) ∼ Np×q(vec(M

′),Σ)

Definition 2.3. (structured) The random matrix X(p×q) is said to have a matrix variate normal distribution
with mean matrix M(p× q) and Kronecker delta structured covariance matrix Ω⊗Ψ where Ω is a p× p
positive definite matrix, Ψ is a q × q positive definite matrix, if vec(X′) ∼ Np×q(vec(M

′),Ω⊗Ψ)
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The matrix variate normal distribution with Kronecker delta covariance structure is denoted by X ∼ Np×q(M,Ω,Ψ).
M is the mean matrix, Ω is sometime called the row covariance matrix, and Ψ is known as the column co-
variance matrix. The density, f(M,Ω,Ψ)), of this distribution is

f(M,Ω,Ψ) = (2π)−
pq
2 |Ω|−

q
2 |Ψ|−

p
2 etr

(
−1

2
Ω−1(X−M)Ψ−1(X−M)′

)
, (1)

where etr is the exponential of the trace function.
Let X1,X2, . . . ,XN be iid Np×q(M,Ω,Ψ), N > max(p, q), then the likelihood of X1,X2, . . . ,XN is

L(X,M,Ω,Ψ) = (2π)−
pqN
2 |Ω|−

qN
2 |Ψ|−

pN
2 etr

(
−1

2

N∑
i=1

Ω−1(Xi −M)Ψ−1(Xi −M)′

)
(2)

The Maximum likelihood estimator (MLE) of M is X̄ where X̄ = 1
N

∑N
j=1Xj . Assume that ψqq = 1 and

let Xic = Xi − X̄, the MLE of Ψ is

Ψ̂ =
1

Np

N∑
i=1

X′
icΩ̂

−1Xic (3)

Similarly, the MLE of Ω is

Ω̂ =
1

Nq

N∑
i=1

XicΨ̂
−1

X′
ic (4)

With the following condition
N∑
i=1

X′
icqΩ

−1Xicq = Np (5)

where Xic = (Xic1 : Xicq) and Xicq is p× 1, The maximum likelihood estimates of Ω and Ψ are obtained
by solving simultaneously and alternatively the equations (2.3) and (2.4) subject to the condition (2.5). This
is the so called “flip-flop” algorithm. We can summarize the results above in the following theorem.

Theorem 2.1. (Srivastava et al. (2008)) Assume that X1,X2, . . . ,XN are iid Np×q(M,Ω,Ψ) with ψqq =
1. If N > max(p, q), then the maximum likelihood estimation equations given by equations (2.3) and (2.4)
subject to the condition (2.5) will always converge to the unique maximum.

When a structured covariance matrix (Definition 2.3) is available, the covariance matrix is estimated using
the results of Srivastava et al. (2008). On the other hand, when the covariance matrix is unstructured, our
simulations have shown that the estimates suggested by Srivastava et al. (2008) can also be used. Also, the
main advantage in using a Kronecker structure is the decrease in the number of parameters.

2.2 Slicing and covariance estimation

Suppose that we have P component vectors xi, i = 1, 2, . . . , N that are independent multivariate normal
random vectors with mean vector µ0 and covariance matrix Σ.

Definition 2.4. A P vector x is said to be sliced into a p and q matrix X when x is written as a matrix
X with p rows and q columns (we assume that there exist two integers p and q with P = p × q). The
p dimensional columns of X are obtained by slicing the vector x into q vectors. Then, by stacking these
column vectors, the p and q matrix X is obtained.

3
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According to the definition above, the ”slicing” operator transforms a vector of length pq into a p×q matrix.
The vec operator applied to any slicing of x gives x.
Given x1,x2, . . . ,xN following a multivariate normal distribution NP (µ,Σ), by slicing the x into a matrix
and by assuming that the model in Definition 2.3 holds this random matrix, a nonsingular covariance matrix
of x can be obtained even when N < P . Also, we suggest that the condition for slicing to produce
nonsingular estimates of the covariance matrix is Np > q. We additionally assume that p < q.

3. One-sample testing for high-dimensional data

Let x1,x2, . . . ,xN be independent and identically distributed random vectors with mean vector µ and pos-
itive definite covariance matrix Σ. We are interested in the hypothesis testing problem of the form

H0 : µ = 0 vs Ha : µ 6= 0

when the sample size N is smaller than or equal to the dimension P , that is N ≤ P .
The traditional Hotelling T 2 test used the test statistics

T 2 = N x̄′S−1x̄

where the sample mean vector x̄ and the sample covariance matrix are defined, respectively by

x̄ =
1

N

N∑
i=1

xi, and S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)′.

For these settings, the covariance matrix S is singular and S−1 does not exist. So, the Hotelling test cannot
be used. We therefore look for another estimate of the covariance matrix that is nonsingular and use that
estimate instead of the empirical covariance matrix. One such estimate is the one proposed by Akdemir,
2011 and discussed above. So, a nonsingular estimate of Σ is Σ̂ = Ψ̂ ⊗ Ω̂ and the modified Hotelling
statistic is defined as

T 2
N = N x̄′(Ψ̂

−1 ⊗ Ω̂−1)x̄ (6)

where Ω̂ is p× p and Ψ̂ is q × q.
To be able to use the proposed modified statistic in practice, one needs to know the distribution of this
statistic under the null hypothesis before computing either a p-value or a critical value. Obtaining the exact
or asymptotic null distribution is not an easy task, so the null distribution is obtained by simulation. One
technique that can be easily used is the Monte Carlo method. Recall that the key to use Monte Carlo is to be
able to simulate the desired statistic under the null hypothesis. In our case, the modified Hotelling statistic
can be easily simulated under H0 as follows. When H0 is true, then x1,x2, . . . ,xN following a multivariate
normal distribution NP (µ0,Σ), where µ0 is a P-dimensional vector with entries equal to 0. A simulated
T 2
N under H0 is the result of applying a given simulated observation from x1,x2, . . . ,xN under the null to

the expression (6). Let T0 be the observed value of the test statistic T 2
N based on the available sample of N

observations and P variables. The Monte Carlo test is based on compare T0 with an empirical distribution
constructed with (m− 1) simulated statistics under H0. A more detailed description about the Monte Carlo
p-value and its properties will be seen in Section 4.
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3.1 Other tests

Several tests have been proposed to solve the problem

H0 : µ = 0 vs Ha : µ 6= 0

when N ≤ P . Some authors developed tests which do not require the nonsingularity of the sample covari-
ance matrix S.
Assume that n = N − 1, Dempster, 1958 proposed a test based on the statistic

TD =
nx̄′x̄

trS
(7)

Bai and Saranadasa (1996) proposed another test statistic for testing the hypothesis (1.1), which is given by

TBS =
nx̄′x̄− trS[

2n(n+1)
(n−1)(n+2)

(
trS2 − (trS)2

n

)] 1
2

(8)

Srivastava and Du (2008) proposed another test statistic for testing the hypothesis (1.1). The test is based on
the test statistic

TSD =
N x̄′D−1

S x̄− nP
n−1√

2
(
trR2 − P 2

n

)
cP,n

(9)

where the diagonal matrix of sample variances is defined by DS = diag(s11, . . . , sPP ),where s11, . . . , sPP

are the diagonal elements of S. The sample correlation matrix R is defined by R = D
− 1

2
S SD

− 1
2

S = (rij),
where rij is the sample correlation between the ith and jth components of the random vector based on N
observations and rij = 1, i = 1, . . . , P . The adjustment coefficient cP,n → 1 in probability as (n, P ) → ∞.
The one particular choice of cP,n that we use in this paper is the choice that is provided by Srivastava and Du
(2008) and is given by cP,n = 1 + trR2

P
3
2

. Srivastava and Du (2008) showed that their proposed test statistic
has better powers than Dempster’s T and Bai-Saranadasa’s T.

4. Monte Carlo tests

To decide whether H0 should be rejected or not, we must know the distribution of our test statistic under
H0 to obtain the exact p-value, which is used to perform the exact hypothesis test. Since we are using the
estimate of the covariance matrix proposed by Akdemir and Gupta (2011), the modified Hotelling’s statistic
we propose here does not have the same distribution as Hotelling’s T 2, and it is too cumbersome to obtain
the analytical distribution of T 2

N . However, it is simple to simulate T 2
N under the null hypothesis, hence, the

Monte Carlo (MC) test can be used as an alternative way to perform the test.

4.1 Conventional Monte Carlo tests

Let U be a test statistic that can be simulated underH0. The fixed-size or conventional Monte Carlo test first
calculates the observed value of U , u0, using the available sample. Then, a sample of (m− 1) test statistics
is generated from U under the null hypothesis. Denote each simulated value by ui, i = 1, . . . , (m− 1). The
conventional Monte Carlo p-value is

Pmc =
1 +

∑m−1
i=1 I(ui ≥ u0)

m
(10)
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The test criterion is based on rejecting the null hypothesis if Pmc ≤ α, where α is the significance level.
Denote the conventional Monte Carlo test procedure by MCm. An important property is that MCm has
significance level equal to α. When U has a continuous distribution, and m is a multiple of b1/αc, the
probability of type I error is equal to α, and if the distribution of U is discrete, then the size of the MC test is
at most α (Silva et al., 2009). Additionally, Jockel (1984) has proved for a large class of test statistics that,
if we choose m large enough, as m = 10000, for example, the power loss of the MC test, with respect to
the exact test, is smaller than 2%.

4.2 Sequential Monte Carlo tests

A weakness of the conventional Monte Carlo test is that the number of simulations (m − 1) is fixed. Typ-
ically, we set m = 10000 or m = 1000. Recall that the method proposed in this paper uses two levels of
simulation. This means that there is a first Monte Carlo simulation, which is the estimation of the covariance
matrix, nested inside a second Monte Carlo simulation, which is the estimation of the distribution of the test
statistic underH0. So, the simulation of each independent copy of the test statistic can take a long time when
dealing with high dimensional data and computationally intensive statistical methods needed to estimate the
covariance matrix.
Therefore, it would be beneficial if we could shorten the number of simulations required to make a decision
concerning the null hypothesis, while having the same power as a test that run all (m− 1) simulations.
Besag & Clifford (1991) developed a sequential Monte Carlo test to obtain p-values without fixing the num-
ber of simulations. The sequential Monte Carlo test is based on the idea that if there is little evidence against
the null hypothesis early in the Monte Carlo procedure, then it is wasteful to run all (m − 1) simulations.
It keeps simulating by Monte Carlo from the null hypothesis distribution until h of the simulated values are
larger than the observed value u0. There is also an upper limit (w − 1) for the total number of simulations.
The p-value is based on the proportion of simulated values larger than or equal to u0 at the stopping time.
In other words, simulate independently and sequentially the random values U1, U2, . . . , UL from the same
distribution as U under the null hypothesis. The random variable L has possible values h, h+ 1, . . . , w − 1
and its value is determined in the following way: L is the first time when there are h simulated values larger
than u0. If this has not occurred at step w − 1, then let L = w − 1.
Let g be the number of simulated test statistics, ui, larger than the observed value of the test statistic, u0 at
termination. Let l be the number of Monte Carlo simulations performed and w − 1 be the upper limit for
the total number of Monte Carlo simulations to be performed during the entire procedure. The sequential
Monte Carlo test first calculates the observed value of the test statistic, u0, using the available sample of
N observations and P dimensions. Then, it keeps simulating by Monte Carlo from the null hypothesis
distribution until

l = w − 1 and g < h

The sequential Monte Carlo p-value is

ps =

{
h/l if g = l;
(g + 1)/w if g < l .

(11)

The null hypothesis is rejected with α level if ps ≤ α. Denote this sequential procedure by MCh. Silva et
al. (2009) demonstrated that MCm and MCh has same power if we take h = bαmc, where bxc is the floor
of x, the largest integer smaller than x. Also, Silva et al. (2009) proved that, for w ≥ h/α + 1, the power
of MCh is constant. Then, in order to save execution time, it is convenient to use w = bh/αc + 1. By
combining these two rules, we need to have w = m+1 in order to have the same power between MCm and
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MCh and therefore, minimizing the choice of w. In other words, they showed that, given a conventional
Monte Carlo test based on (m− 1) simulations, there is always a sequential Monte Carlo test with the same
power but typically requiring a smaller number of simulations.

5. The power of T 2
N

In this section, we compare the power of our proposed test statistic with the powers from the main im-
portant statistics in the literature described in this paper. To compare the four tests based on the statistics
(T 2

N , TBS , TD, TSD), we define the attained significance levels and empirical powers similar to how Srivas-
tava and Du (2008) defined them and let µ0 = 0. We compare the four tests on the same scale, i.e., we use
the conventional MC test instead of the asymptotic distributions, as described by Srivastava and Du (2008),
to compare them.

5.1 Simulation Design

To calculate the attained significance levels and powers we first simulatem replications of the data set under
the null hypothesis. Then, we select the (mα)th largest value of the test statistic as the empirical critical
point, denoted t̂1−α. With K replications of the data set under the null hypothesis, we compute the attained
significance level as

α̂ =
1

K

K∑
i=1

I(t0i ≥ t̂1−α) (12)

where t0i is the value of the test statistic based on the data sets simulated from the null hypothesis. We have
chosen K as 5000 and α equal to 0.05. Note that the comparison t0i ≥ t̂1−α is essentialy the conventional
Monte Carlo test. Therefore, as the test statistics treated here have continuous distributions, the probability
of type I error is proved to be equal to α, and so it is not really necessary to verify if α̂ is close to α, because
this is a theoretical result valid for any test statistic.
Next, we have simulated another K replications of the data set under the alternative hypothesis to calculate
the empirical power by:

β̂ =
1

K

K∑
i=1

I(tAi ≥ t̂1−α) (13)

where tAi is the value of the test statistic based on the data sets simulated from the alternative hypothesis.
Again, K has been chosen as 5000 in our simulations. Also, the parameter selection is done as described by
Srivastava and Du (2008). Recall that the covariance can be defined by Σ = D− 1

2RD− 1
2 . We will consider

six different covariance structures in our simulation. Covariance structures 1, 2, and 3 are constructed from
an independent correlation structure

R = Ip = diag(1, 1, . . . , 1),

while covariance structures 4, 5, and 6 are obtained from an equal correlation structure

R = R1 = (ρij) : ρij = 0.25, i 6= j.

Covariance structures 1 and 4 will also be constructed from a diagonal matrix of variances

D = Ip.
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Covariance structures 2 and 5 will be constructed by letting

D = D1 = diag(σ11, . . . , σPP )

where σ
1
2
11, . . . , σ

1
2
PP ∼ Unif(2, 3).

Covariance structures 3 and 6 will be constructed by letting

D = D2 = diag(σ11, . . . , σPP )

where σ11, . . . , σPP ∼ χ2
3. For the alternative hypothesis, we choose µ = ν = (ν1, . . . , νP )

′ : ν2k−1 = 0
and ν2k ∼ Unif(−1/2, 1/2), k = 1, . . . , p/2
To construct the ROC Curves, we used the setting corresponding for N = 40, P = 100 and computed the
empirical powers at different significance levels α.

5.2 Simulation Results

The attained significance levels of the tests T 2
N , TBS , TD, and TSD approximate the nominal level α =

0.05 reasonably well in all cases. When R = Ip, the powers of all the tests are very close to each other, as
shown in Figures 1, 2, and 3 (tables of empirical powers, left, and ROC curves, right). When R = R1 and
D = D2, the powers of T 2

N and TSD are close to each other but better than TBS and TD, as shown in Figure
6 (table of empirical powers, left, and ROC curve, right). However, when R = R1 and D = D1, the powers
of T 2

N are substantially better than those of the other tests, as shown in Figure 5 (table of empirical powers,
left, and ROC curve, right).

5.3 Comparing Monte Carlo Tests

In our simulations we would like to compare the p-values for the conventional and the sequential Monte
Carlo tests under different simulated samples. As mentioned before, the literature has proved analitically
that MCm and MCh have same power by choosing h = bαmc. Then, we can use our simulation results
to check if the assumptions, calculations and computational model have accuracy with the results expected
theoretically. We basically would like to verify if the decision made by the conventional Monte Carlo test
is the same as the decision made by the sequential Monte Carlo test for our simulations. The simulated
samples were generated from a multivariate normal distribution under different covariance structures and
mean vectors. We set α to 0.01 and m = 1000. This yields h = 10.
As shown in Table 1, for every example, the conventional and sequential Monte Carlo tests reached the
same decision as expected theoretically. The p-values of the two Monte Carlo tests are very close to each
other.
We emphasize that, if there is little evidence against the null hypothesis early in the Monte Carlo procedure,
the sequential Monte Carlo test requires a small number of simulations to reach the same decision than
MCm. But this execution time reduction is not expressive when the null hypothesis is false.

6. Example

In this section, we apply the conventional and sequential Monte Carlo tests using modified Hotelling’s T 2 to
a DNA microarray data set. We will use Alon’s Colon Cancer Dataset, Alon et al. (1999) (http://genomics-
pubs.princeton.edu/oncology/ ). The dataset consists of 2000 genes measured on 62 patients: 40 diagnosed
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with colon cancer and 22 healthy patients. We would like to see if the population mean vector µ for only
the colon cancer patients is significantly different from some µ0. We let m = 1000 and α = 0.01.
In a first scenario, the four tests are giving a p-value of 0 giving evidence that the mean vector is not µ0.
In a second scenario, we compare the conventional Monte Carlo to the sequential Monte Carlo. The results
are shown in Table 2. The p-value of the conventional Monte Carlo test is 0.854 and the p-value of the
sequential Monte Carlo test is 0.821. Therefore, the estimated p-values are fairly close to each other. Since
the p-values for both tests are greater than = 0.05, we cannot reject the null hypothesis. Therefore, both tests
conclude that µ is not significantly different from µ0. Thus, whether using conventional or sequential Monte
Carlo tests, we made the same decision. However, it took less simulations to reach the decision when using
sequential Monte Carlo. It took 28 simulations to reach the decision using sequential Monte Carlo, while
it took 1000 simulations to reach the same decision using conventional Monte Carlo. Therefore, in order
to save time, especially when dealing with high dimensional data or computationally intensive statistical
methods, sequential Monte Carlo should be adopted.

7. Conclusion

In this paper, we have proposed a new approach to test the mean vector of a population when the number
of variables is larger than the number of observations. The statistic proposed in this paper is based on a
modification of the well known Hotelling’s T 2 by replacing the singular empirical covariance matrix by a
nonsingular estimate of the covariance matrix. This estimator is based on the work of Akdemir and Gupta
(2011) and is used here because of certain desirable properties of that estimator such as being positive
definite and full rank even when the empirical covariance is singular. Even though this nonsingular estimate
used the assumption that the covariance matrix has a Kronecker structure, the statistic proposed seems to be
performing well. The performance of this test was discussed and compared to some existing tests, for high
dimensional data, like Srivastava test, Dempster test, and Bai test. The simulations show that the proposed
test has good performances, not always the best but very close to the best, compared to the existing tests
considered in this current paper. The results obtained indicate that the overall performance of this statistic
makes it a new appealing tool for testing the mean vector of a population in high dimensional problems.
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Appendix

N = 20, P = 500 N = 30, P = 1000 N = 40, P = 2000
p-value using Conventional MC 0.015 0.239 0.12
p-value using Sequential MC 0.01592 0.2173 0.1086
Number of Sequential MC 314 23 46

Table 1: Comparing the p-values of the Conventional and Sequential Monte Carlo tests using the modified
Hotelling’s T 2.

T 2
N using Conventional MC T 2

N using Sequential MC
p-value 0.854 0.821
Number of Simulations 1000 28

Table 2: Observed p-values for colon cancer data.
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P N T 2
N TSD TD TBD

60 30 0.975 0.978 0.987 0.988

100
40 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

150
40 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

200
40 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

400
40 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0
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Figure 1: Empirical powers under the alternative hypothesis, when the diagonal matrix of variances is the
identity matrix and the population correlation matrix is the identity matrix
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P N T 2
N TSD TD TBD

60 30 0.211 0.261 0.251 0.245

100
40 0.432 0.542 0.459 0.461
60 0.742 0.8 0.760 0.762
80 0.938 0.942 0.937 0.936

150
40 0.608 0.659 0.668 0.662
60 0.858 0.886 0.848 0.842
80 0.996 0.999 0.995 0.995

200
40 0.7 0.781 0.735 0.734
60 0.969 0.980 0.969 0.968
80 0.996 0.999 0.994 0.994

400
40 0.912 0.948 0.940 0.939
60 0.997 0.998 0.997 0.997
80 1.0 1.0 1.0 1.0
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Figure 2: Empirical powers under the alternative hypothesis, when the correlation matrix has indepen-
dent correlation structure and the square root of the variances are independently and identically Unif(2,3)
distributed
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P N T 2
N TSD TD TBD

60 30 0.436 0.813 0.366 0.373

100
40 0.973 1.0 0.877 0.877
60 1.0 1.0 1.0 1.0
80 0.999 1.0 0.995 0.995

150
40 0.995 1.0 0.979 0.974
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

200
40 0.996 1.0 0.980 0.978
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

400
40 1.0 1.0 1.0 1.0
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0
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Figure 3: Empirical powers under the alternative hypothesis, when the correlation matrix has independent
correlation structure and the variances are independently and identically χ2

3 distributed.
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P N T 2
N TSD TD TBD

60 30 0.999 0.660 0.736 0.658

100
40 1.0 0.881 0.961 0.915
60 1.0 1.0 1.0 1.0
80 0.999 1.0 0.995 0.995

150
40 1.0 0.965 1.0 0.990
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

200
40 1.0 0.943 1.0 0.971
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0

400
40 1.0 0.954 1.0 0.994
60 1.0 1.0 1.0 1.0
80 1.0 1.0 1.0 1.0
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Figure 4: Empirical powers under the alternative hypothesis, when the diagonal matrix of variances is the
identity matrix and the population correlation matrix has an equal correlation structure such that ρij = 0.25,
when i 6= j and ρij = 1, otherwise.

14

Section on Statistical Learning and Data Mining – JSM 2012

2975



P N T 2
N TSD TD TBD

60 30 0.260 0.082 0.094 0.087

100
40 0.571 0.081 0.071 0.077
60 0.814 0.139 0.132 0.131
80 0.966 0.236 0.194 0.219

150
40 0.663 0.096 0.101 0.102
60 0.949 0.161 0.144 0.144
80 0.995 0.232 0.193 0.198

200
40 0.793 0.107 0.084 0.095
60 0.971 0.165 0.144 0.132
80 0.996 0.195 0.176 0.205

400
40 0.968 0.087 0.064 0.080
60 1.0 0.120 0.135 0.117
80 1.0 0.304 0.276 0.263
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Figure 5: Empirical powers under the alternative hypothesis, when the square root of the variances are iden-
tically and independently Unif(2,3) distributed and the population correlation matrix has an equal correlation
structure such that ρij = 0.25, when i 6= j and ρij = 1, otherwise.
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P N T 2
N TSD TD TBD

60 30 0.926 0.772 0.267 0.287

100
40 0.825 0.429 0.112 0.121
60 0.993 0.983 0.430 0.388
80 0.995 0.885 0.532 0.545

150
40 0.996 0.664 0.275 0.297
60 1.0 1.0 0.668 0.624
80 1.0 0.996 0.665 0.632

200
40 1.0 0.991 0.235 0.246
60 1.0 1.0 0.305 0.282
80 1.0 1.0 0.578 0.593

400
40 0.999 0.923 0.247 0.272
60 1.0 1.0 0.354 0.364
80 1.0 1.0 0.828 0.724
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Figure 6: Empirical powers under the alternative hypothesis, when the variances are identically and inde-
pendently χ2

3 distributed and the population correlation matrix has an equal correlation structure such that
ρij = 0.25, when i 6= j and ρij = 1, otherwise.
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