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Abstract 

 

There are numerous ways to address nonresponse bias adjustment in surveys; two such 

methods are calibration weighting and propensity score models. Calibration is a viable 

technique when good external benchmarks exist; however, good external benchmarks are 

not always available.  An alternative method to calibration is to use propensity scores to 

adjust for nonresponse.  There are at least three main modeling techniques used to create 

propensity scores, but little if any research has focused on which methods provide the 

best propensity scores in terms of nonresponse adjustment.  This paper compares 

calibration weights with three propensity score adjustment methods.  One propensity 

weight is based on logistic regression models; the other two are based on classification 

trees (using either a single or an ensemble tree approach).   

 

This research focused on the Agricultural Resource Management Survey Phase III 

(ARMS III), which adjusts for potential bias resulting from unit nonresponse by 

calibrating weights so that estimates equal published benchmarks from other sources. 

Using Census of Agriculture (COA) data, we were able to compare the effectiveness of 

using calibration weights versus propensity score weights to reduce (unit) nonresponse 

bias.  Bias comparisons were done by using COA data as proxy data for the 2000-2008 

ARMS III samples, since the COA includes items surveyed on ARMS III as well as a 

number of items pertaining to operational characteristics. Nonresponse bias of the mean 

was compared across 30 production and demographic type items.  The results indicate 

that tree weights outperform logistic regression weights, and that calibration weighting 

reduces nonresponse bias of the mean to the lowest levels.  The results also suggest that 

tree weighting is the next best option when calibration targets are not available. 

 

Key Words: Nonresponse Adjustment; Nonresponse Weighting; Nonresponse Bias; 

Propensity Scores; Calibration; Classification Trees; Ensemble Trees; Logistic 

Regression
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1. Introduction 

 

Survey nonresponse is concerning to both statisticians and survey methodologists; 

however, each has a different perspective on how to address nonresponse bias.  

According to Singer (2006), statisticians mainly focus on adjusting for nonresponse, 

where survey methodologists are more interested in understanding reasons for 

nonresponse and increasing response rates.  

 

We will concentrate here on unit (whole-record) nonresponse.  Both statisticians and 

survey methodologists use propensity scores to manage unit nonresponse.  Traditionally, 

propensity scores are developed using logistic regression (Little and Vartivarian, 2005; 

Little, 1986; Rosenbaum and Rubin, 1983); however, in cases where there are large 

amounts of auxiliary data, using logistic regression is not the best approach for two main 

reasons: 1) due to the fact that we have to hypothesize specific variables up front, we are 

forced to assume that these are the only causes of nonresponse; and 2) the more auxiliary 

variables we include in our model the more problematic it will be to specify interaction 

terms, account for missing data, avoid issues of multicollinearity, and interpret the results 

(Phipps and Toth, 2012).  Alternatively, if we use a data mining approach such as 

classification trees, we are able to include a large number of auxiliary variables, 

automatically detect significant interaction effects worth exploring, automatically include 

item missingness as an indicator of nonresponse, and use multicollinearity to our benefit 

by allowing variables that are highly correlated to work as surrogates when other 

variables are missing.   

 

Like household surveys, establishment surveys have (unit) nonresponse, but with 

establishment surveys nonresponse bias can be a more serious threat to estimates since 

individual establishments can have a large effect on the final estimates even after larger 

establishments are given higher probabilities of selection.   According to the 2007 Census 

of Agriculture (COA), 0.3 percent of farms with total annual sales of five million dollars 

or more accounted for 27.9 percent of total sales in the US; thus, the impact of 

nonresponse on the estimate of total sales is much greater for these operations than for 

other operations (US. Department of Agriculture, 2007, Table 2). To adjust for possible 

nonresponse bias, NASS weights the Agricultural Resource Management Survey Phase 

III (ARMS III) respondent sample so that estimated variable totals for a large set of items 

match “target” figures from other sources. This is done through a weighting process 

called “calibration” (Deville and Sarndal, 1992; Kott and Chang, 2010). Calibration 

weighting adjusts the survey weights so that certain targets, typically estimates from 

sources outside the survey, are met. NASS uses official estimates as calibration targets 

since  they are correlated with the economic activity of farm operations; calibration 

targets include estimates of total number of farms, total number of farms by state and by 

economic class; corn, soybeans, wheat, cotton, hay, rice, peanuts, sugar (sugarcane/sugar 

beets), tobacco, fruits, and vegetable acreage; egg and milk production; cattle, hog, 

broiler, and turkey inventories; and nursery and floriculture     Using some form of 

calibration weighting assures that the calibration-weighted sum of the survey data will 

equal the NASS official estimate produced using sources other than ARMS.  NASS uses 

a truncated linear version of calibration (Kott 2009, p 74, 75).  In this version no adjusted 

weight is allowed to fall below one Sometimes, however, calibration targets cannot be 

reached and need to be dropped.  

 

In addition to reducing the confusion in the user community that might result if NASS 

released alternative estimates for the same totals, calibration weighting produces ARMS 
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Phase III estimates that generally have less bias than the unadjusted estimates; however, 

in 2008 a third of the 30 variables assessed still exhibited nonresponse bias levels that 

were significantly different from zero even after calibration; thus, leading in part to the 

research of alternative weighting methods discussed in this paper (Earp, McCarthy, 

Porter, & Kott, 2010). 

 

Nonresponse bias is very difficult to evaluate directly, since data are lacking for the 

nonrespondents.  Fortunately, data similar to those collected in ARMS III are available 

from the Census of Agriculture (COA).  We can measure the difference between the 

average ARMS III respondent and the average of the full sample without any 

nonresponse adjustment, after calibration weighting, and after propensity score 

adjustments using logistic regression and classification tree procedures.    

 

Propensity methods have been developed to reduce a large set of covariates to one single 

variable with which adjustment is done (Rosenbaum and Rubin, 1983).   A propensity 

score is the fitted probability that a given case will become a survey respondent.  Both 

logistic regression and classification tree models can be used to create the propensity 

scores.  However, given the lack of knowledge about the nonresponse mechanism in 

ARMS III in particular and establishment surveys more generally, data-driven methods 

like classification trees might be more suitable.  Classification trees offer a number of 

advantages over logistic regression: 1) classification trees automatically detect significant 

relationships and interaction effects without pre-specification, reducing the risk of 

selecting the wrong variables or other model specification errors; 2) the classification tree 

models identify both the variables that are correlated with the target variable, but also the 

optimal breakpoints within these variables for maximizing their correlation; 3) they 

identify hierarchical interaction effects across numerous variables and summarize them 

using a series of simple rules; 4) they incorporate missing data into the model and assess 

whether missingness on a given variable is related to the target; 5) they create a series of 

simple rules that are easy to interpret and use for identifying subgroups with higher 

propensities; and 6) they reduce the subjectivity of selecting variables to include in the 

model.  This paper will compare nonresponse adjustment as currently done using 

calibration, with four sets of propensity score adjustments, one derived directly from a 

logistic regression, one using the logistic regression to adjust the base weights within 10 

classes (n/r), one using a classification single-tree, and one using an ensemble of trees. 

 

Other nonresponse models have been developed using auxiliary data, but most begin with 

hypotheses about a small set of relevant predictor variables and have generated response 

propensity scores based on logistic regression or similar models (Abraham, Maitland, and 

Bianchi, 2006; Johansson and Klevmarken, 2008; Johnson, Cho, Campbell, and 

Holbrook, 2006; Lepkowski and Couper, 2002; Nicoletti and Peracchi, 2005).  These 

types of models may accurately predict which cases become nonrespondents, but they do 

not typically include large sets of auxiliary variables.  Furthermore, as Groves (2006) 

states, this approach assumes that these “…variables are the only possible „common 

causes‟ of response propensity and survey variables.” (p. 654) 

 

While other propensity score models have been built using decision trees, most typically 

use a single tree to predict nonresponse (Phipps and Toth, 2012).  According to Phipps 

and Toth (2012), by taking a more conservative approach and only modeling the 

variables that are strongly associated with response, they are able to avoid over fitting 

and thus produce more stable estimates; however, by limiting the analysis to only the 

variables with strong associations to nonresponse, they also admit possibly limiting the 
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accuracy of their estimates.  According to Dietterich (1999), bagging can be used to 

exploit model instability and improve classification accuracy.  Bagging involves creating 

multiple trees with varying criteria and then taking the average propensity score across all 

of the trees (Brieman, 1998).  This approach results in an ensemble of classification trees, 

which is more stable and powerful than a single classification tree (Brieman, 1998).   

 

Models can be combined in various ways.  In the current study, we calculated the average 

of the propensity scores produced across all of our classification trees, which, according 

to Bauer and Kohavi (1999), performs better than the other methods used to combine 

trees.  

 

Although the 2007 COA data do not perfectly match the 2008 ARMS III data, they are 

moderately to highly correlated (Earp, McCarthy, Porter, & Kott, 2010). This paper will 

compare 2008 ARMS III survey respondents to nonrespondents using their 2007 COA 

data.  One of the weaknesses of this approach according to Groves is that not all of the 

variables of interest have auxiliary data available (2006).  While it is true that not 

everything collected on ARMS is available on the COA, we were able to assess bias 

across 30 estimates including both household and establishment type items that are of 

particular interest to both NASS and the Economic Research Service (ERS). 

 

2. Method 

 

The ARMS III is an annual survey conducted by NASS and ERS.  ARMS III is one of 

the most complex and detailed sample survey data collections conducted by NASS.  It 

collects calendar year economic data from agricultural producers nationwide.  The 

ARMS is conducted in three phases. Phase I screens for potential samples for Phases II 

and III. Phase II collects data on cropping practices and agricultural chemical usage, and 

Phase III collects detailed economic information about the agricultural operation, as well 

as the operator‟s household. Phase III is the only phase of the ARMS with unit  response 

rates lower than 80 percent, which falls below the Office of Management and Budget 

requirement.  Surveys with less than an 80 percent unit level response rate are required to 

complete an analysis of nonresponse bias (United States, 2006).  This paper focuses on 

unit nonresponse and in part addresses a recommendation made by the Committee on 

National Statistics report (2007) to identify characteristics of ARMS nonrespondents.  

This paper focuses on unit nonresponse and in part addresses the recommendation to 

identify characteristics of ARMS nonrespondents.  This paper also considers how this 

information could be used to create adjustment weights. 

 

The COA is a mandatory collection of data from all known agricultural operations.  

NASS has data from the COA on items of interest for many of the ARMS 

nonrespondents; however, the COA itself is incomplete. An estimated 16.2 percent of all 

farms were missing from the 2007 COA Mailing List, and 14.6 percent of farms on the 

Mailing List failed to respond to the COA (USDA, 2007, Table A).  Moreover, 5.7 

percent of the operations sampled for ARMS III could not be matched to 2007 COA 

records. Nevertheless, by comparing the 2007 COA values of the ARMS III respondents 

to the full sample of ARMS III cases (including nonrespondents), data from the COA 

were matched to both respondents and nonrespondents in the ARMS III 2000-2008 

samples to create response propensities, as was done by Groves and Couper (1998).  

Matching 2007 COA data were available for 71.3 percent of the ARMS III 2000-2008 

sample.  Nonresponse bias was assessed using just the 2008 sample; for that year 

matching 2007 COA data were available for 94.3 percent of the records.  The match rates 
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for the 2008 ARMS III respondents (94.5 percent) and nonrespondents (94.1 percent) 

were approximately equal.  Our analysis is based just on these matching cases. 

 

Sixty-nine COA variables were used to model ARMS III nonresponse using logistic 

regression and classification trees (Earp, Mitchell, McCarthy, & Frauke, 2012, Table 2).  

For both models, we used variables thought to be related to unit nonresponse as 

predictors.  These variables include operator demographics, farm type, size, commodities 

raised, expenses, and location.  Our analysis of nonresponse bias focuses on 30 specific 

production and demographic variables collected on both the ARMS and the COA.  These 

variables were selected by NASS and ERS subject area experts as the variables that are 

common to both ARMs and COA.  Nineteen of these 30 variables were included in the 

logistic regression and tree models.  The majority of the variables not included as 

predictors are not collected during data collection, but are calculated after data collection. 

 

The logistic regression and tree approaches are quite different from calibration.   

Calibration does not include any household attributes as targets, since they are not 

considered to be related to physical farm attributes as much as business economic 

information.  The logistic regression and tree models do include both business unit and 

household attributes as predictors of unit nonresponse. 

Unit nonresponse propensity scores were created using logistic regression and 

classification trees.  Both the logistic regression and the classification tree models were 

set to predict the probability that operations were unit respondents.   

The logistic probability of response,    
   , has the form    

                             
        

  
  

    
                         , 

where the subscript i  denotes a farm, xik the k
th
 (k = 1, …, K) explanatory variable 

associated with farm i, and    is the k
th
 logistic regression coefficient.  The response 

probability is estimated using a logistic regression routine by  

   
    

                          

                             
   

where  bk is a large-sample estimator for   .  This leads to initial nonresponse weights of  

                                                               

     
     

  

     
                                                                        

where   
  was the base weight for farm i.  The base weights are each farm‟s ARMS III 

sample weight before calibration multiplied by its COA sample weight (the latter to 

account for the COA‟s undercoverage).   

In addition to using the    
    we also followed the advice of Eltinge and Yansaneh (1997) 

and sorted the sample by the farms‟    
   values.  Farm classes were created based on 

sorted quintiles (C = 5) and deciles (C = 10).  A pooled inverse probability of response 

was estimated within each class c (c = 1, …, C; C = 5 or 10) as  
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                                                          ac = ncs/ncr,                                                          (2) 

 

where ncs is the sample size of class c, and ncr the respondent size.  

 

The alternative logistic regression weight for a respondent in c was then 

                          
      

                                                     
(3) 

 

Eltinge and Yansaneh argued that the final weights from equation (3) are often less 

variable than those from  equation (1), which in turn leads to more stable estimates.  

Nevertheless, the use of equation (3) should still remove much of the nonresponse bias.  

Moreover, by employing the estimates of the actual (weighted) response rates within 

classes (the 1/ac) in equation (2),   
    may be more reflective of the true shape of the 

nonresponse function than    
  .   

The logistic regression model was used to predict likely nonrespondents, where the 

classification trees were used to model characteristics of likely nonrespondents. 

Therefore, while the logistic regression analysis included all operations sampled for 

ARMS III between 2000 and 2008 with matching 2007 Census of Agriculture Data, the 

classification trees were created using only a randomly selected subset of the data to 

avoid over-fitting.  We randomly partitioned the data using simple random sampling into 

subsets to be used for training (40%), validation (30%), and testing (30%).  The training 

dataset was used to construct tree models that identified subsets of records that responded 

at lower rates than the overall sample.  This model was then applied to the validation and 

the test datasets, and the average squared error was compared across results from all three 

datasets; this procedure helps prevent generating a model that would not fit other data or 

that would be unreliable (i.e., overfitted).   

The classification tree nonresponse propensities were calculated using a single tree and 

an ensemble of classification trees.  A classification tree model is constructed by 

segmenting the data using the application of a series of simple rules (SAS, 2009).  Each 

rule assigns an observation to a subgroup, or “segment,” based on the value of one 

predictor variable.  The rules are applied sequentially, resulting in a hierarchy of 

segments within segments.  The rules are chosen to subdivide cases into segments that 

have the largest difference with respect to the target variable, in this case, nonresponse 

rates.  Thus, the rule selects both the variable and the best breakpoint to separate the 

resulting subgroups maximally. Variables can be used more than once to further segment 

groups, and thus may appear multiple times throughout a tree.  

The hierarchy of segments is called a tree, and each segment in it is called a node.  The 

original segment contains the entire set of cases and is called the root node of the tree.  A 

node with all its successors is termed a branch of the node that created it.  The final nodes 

are called leaves.  In our analysis, we are ultimately interested in the leaves that contain a 

higher proportion of nonrespondent cases. 

The optimal splits of cases are found using significance testing or reduction in variance 

criteria.  Significance tests (based on F or chi square tests) use the p value as the stopping 

rule.  Interval variables were assessed using an F test criteria, and nominal level variables 
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were assessed using a chi square test, where the best split is the one with the smallest p 

value (Enterprise Miner, 2009).  Bonferroni adjustments were applied to the p value 

before the split was selected to “…mitigate the bias towards inputs with many values.” 

(Neville, 1999, p. 18)  Ordinal variables were assessed using entropy.  Splitting rules 

were selected by measuring the reduction in entropy, after adjusting for ordinal 

differences. 

                    

            

 

where, 

   = proportion of observations in the node assigned to branch b  

Like other data mining techniques, classification trees describe subsets of data and are 

constructed without any theoretical guidance.  Variables are chosen to create maximally 

different segments, so if variables are correlated, only one or a few of these (which 

individually might be related to the target) may appear in the tree.   

There are multiple stopping criteria that can be used to decide how large to grow a 

classification tree.  After the initial split, the resulting nodes are considered for splitting 

using a recursive process that ends when no nodes can be split further (SAS, 2009).  A 

node can no longer be split when there are too few observations, the maximum depth 

(hierarchy of the tree) has been reached, or no significant split can be identified.  For 

purposes of our research, the minimum number of observations for a node was set to five, 

the maximum depth was set to six, and the significance level was set to 0.20.  

The characteristics associated with nonrespondents were first identified using the training 

data set (with n = 72,954 records). This model was then validated using 30 percent of the 

data (n = 54,446), and finally tested using final 30 percent of the data (n = 54,447).  We 

compared the average squared error to determine that the model performed nearly as well 

in all three data sets.   

A decision tree split can be selected automatically to maximize the dichotomy or it can be 

forced.  When variables are automatically selected to maximize the dichotomy of the 

outcome, the selection is done looking at a single level of the tree, automatic selections 

do not consider the effect of subsequent splits.  Due to the sheer number of nodes 

involved in the single tree (116), it would be impractical to try to display them.  This 

approach was used to create the single-tree propensity scores.  As a result, while a 

variable may initially provide the most optimal split for maximizing the dichotomy of the 

target, it may not ultimately result in the best model after subsequent splits are applied.  

For example, a model using the worst initial split for maximizing the dichotomy may in 

fact identify more of the target with less misclassification error than the model using the 

best initial split due to the effect of subsequent splits. In our case we had 69 COA 

variables we were using to model characteristics of nonrespondents, and thus we created 

69 separate trees, with each tree using one of the 69 classification tree predictor variables 

for the initial split.  This allowed us to identify more nonrespondents by forcing the trees 

to consider all 69 predictor variables in relation to nonresponse.  After the initial split was 

forced, the following splits were selected using the automated methods described above.   

Separate propensity scores were created for each tree.  Within each tree, propensity 
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scores were calculated first using the training data and then using the validation data. The 

propensity score for the entire tree was calculated by taking the mean of the training and 

validation propensity scores.  Propensity scores are not calculated for the test data set to 

avoid over-fitting the models.  The overall nonresponse propensity score for the ensemble 

of decision trees was calculated by averaging all 69 tree propensity scores.  The single-

tree propensity scores were derived from the first tree, which started with the most 

optimal split. 

The ensemble tree nonresponse propensities were calculated as 

   
     

   
     

    
      

  

  

   

    

This leads to the following nonresponse weights for the ensemble classification tree 

model. They were calculated using: 

  
     

  

     
     

Here, t denotes the tree,     
     

 the tree-t nonresponse propensity score of farm i using the 

training data, and    
      

 is the tree-t nonresponse propensity score of farm i using the 

validation data. 

 

 

Calibration weights,    
     were created by taking the base weights for the subset of 

farms responding to the ARMS III and calibrating them using a truncated linear routine 

so that no final weight ever fell below one and  the calibration equation held.  This means 

that final weighted totals from the 2008 respondents equaled the weighted total computed 

from the entire 2008 matched sample for the following list of calibration variables: 

acreages for corn, soybean, wheat, cotton, hay, rice, peanuts, sugar , tobacco, fruits, and 

vegetables; production of egg and milk;  inventories of cattle, hogs, broilers, and turkeys; 

indicators for nursery and floriculture; number of farms by economic classes; number of 

farms by non-estimated states; and total number of farms.   Each of these target variables 

were used operationally to calibrate the ARMS III data.  Targets initially selected for 

calibration, but not used operationally were excluded from the list.  

 

  Mathematically, in linear calibration:  

 

                                           
      

                                                        
(4) 

 

where the zip (p = 1, …, P) are the calibration variables, and the gp are chosen so that  the 

calibration equation holds.   In truncated linear calibration, when the right-hand side of 

equation (4) is outside the permissible range (e.g., below 1) ,    
     is set at the boundary 

of the range (e.g., 1).  The gp are recalculated (if possible) so that even with some 

  
    set at boundary values, the calibration equation holds.   

 

Calibration weighting is unbiased in some sense for the estimated mean of a survey 

variable if it behaves like a linear function of the calibration variables whether or not the 
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farm responds (Kott 2006).  Linear calibration will also return large-sample, unbiased 

estimators in some sense if a farm‟s probability of  response, which is implicitly 

estimated by   
    

     is the inverse of a linear function of the calibration varibles 

(Fuller et al. 1994).   Truncated linear calibration will share this property when the only 

weight restriction is that no   
     be lower than one. 

 

As in the operational program, the ARMS III respondent subset was calibrated 

independently in 20 regions.  These included the 15 leading cash receipts states 

(Arkansas, California, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Minnesota, 

Missouri, Nebraska, North Carolina, Texas, Washington, and Wisconsin).  The remaining 

35 states (Alaska and Hawaii are not sampled for ARMS) were grouped using the five 

production regions: 1) Atlantic, 2) South, 3) Midwest, 4) Plains, and 5) West. 

  

Using the base weights in combination with either logistic regression weights, the 

classification tree weights, or the calibration weights, we calculated the nonresponse bias 

of 30 estimates collected on both the ARMS III and the COA.  We then compared the 

amount of the remaining nonresponse bias under each of the weighting schemes.  We 

compared the weighted estimates for the ARMS III responding operations with the 

weighted estimates for the entire ARMS III sample; we used COA data, which were 

available for both the ARMS III respondents and the ARMS III nonrespondents.  The 

inverse of the fitted propensities from the logistic regression model and from the 

classification tree model were multiplied by the base weights to give the final weight for 

these estimates.   We computed estimates of the relative nonresponse bias for means 

under each weighting scheme.   Because it treats upward and downward biases 

symmetrically, we used the log scale to compare average nonresponse biases across 

production and demographic type items (i.e., log(a/A)  100% was our measure for the 

relative bias of a as an estimate of A). 

 

3. Results 

Nonresponse bias was assessed under the base weights and under a variety of adjustment 

schemes.  These included the methods described earlier in the text: using fitted logistic 

probabilities of response directly, creating five weight-adjustment classes based on the 

sorted logistic fit, 10 reweighted-adjustment classes based on the sorted logistic fit, using 

a single classification tree, using an ensemble tree, and (truncated linear) calibration 

weighting.   We also created and employed alternative single and ensemble tree 

probabilities based on sorting the initial tree probabilities into five and 10 classes as we 

did the fitted logistic probabilities (see equations 2 and 3).  

Before we could compare the weighting methods against each other, we had to assess 

which adjustment method involving logistic regression (and the base weights) worked 

best on our data. We also had to compare the single tree weighting methods and the three 

ensemble tree weighting methods.  Through these analyses we found that the logistic 

regression weighting using 10 classes appeared to result in the least amount of bias across 

the production type items while all weights do well when adjusting for bias of 

demographic type items with the exception of race. Moving forward, we will only 

examine the logistic regression weighting method using 10 classes, since that method 

results in the least amount of bias for both production and demographic items. The single 

tree method using a direct approach appears to result in the least amount of bias across 

the production type items while all weights do well when adjusting for bias of 
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demographic type items with the exception of race. Again, moving forward, we will only 

examine the single tree direct method because that method results in the least amount of 

bias for both production and demographic items. Finally, examining the ensemble tree 

method, we found the same results as for the single tree weight method. Therefore, we 

will only examine the ensemble tree direct method since that method results in the least 

amount of bias for both production and demographic items. For more in-depth 

information, including figures that display these findings, contact the first author. 

After we identified the best overall weighting method using the logistic regression, single 

tree, and ensemble tree models, we then compared the best weighting methods from each 

model with calibration weighting.  According to Figure 1, it appears that the best 

weighting method varies across the production items.  Both of the best tree methods and 

calibration outperform the best logistic regression weighting method for all of the 

production variables.  According to Figure 2, the weights perform relatively the same for 

the demographic variables, except for race.  According to Figure 3, the single tree 

resulted in the least amount of bias on average for the production type items, and 

calibration resulted in the least amount of bias on average for the demographic type 

items.  Overall, according to Figure 4, when we looked across all of the items including 

both production and demographic, calibration resulted in the least amount of bias on 

average. 

In conclusion, we found that overall logistic regression weights perform better using 

classes, tree weights perform better when used directly, and that tree weights performed 

better than logistic regression weights.  When we looked specifically at production versus 

demographic type variables, we found that while the 10 class approach was the best 

method regardless of variable type when using a logistic regression model; the best 

method varied depending on the type of item for both the tree type models.  With both of 

the tree models, it appeared that the direct method worked best for the production type 

items, and the five class approach worked best for the demographic type items.   

When we looked across all 30 variables, without distinguishing between production 

versus demographic type items, we found that the direct method resulted in the least 

amount of bias on average for both of the tree methods.  Single tree weights created 

directly performed slightly better in terms of average bias than the ensemble tree weights; 

however, ensemble tree weights provided a better estimate for more variables than the 

single tree method.  If classes are used, ensemble tree weights provide better estimates 

than single tree or logistic regression models.  All of the weighting methods performed 

essentially the same in terms of demographic type items.  Calibration did the best job of 

adjusting for nonresponse bias overall, but trees performed slightly better for production 

type items.  Weights created using tree models could provide a good alternative to 

calibration when external benchmarks are not available, but rich auxiliary data are.   
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Figure 1:  Comparison of Best Weighting Methods Using Production Items 

 

Figure 2:  Comparison of Best Weighting Methods Using Demographic Items 
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Figure 3:  Comparison of Average Nonresponse Bias (Absolute Values) Across 

Production and Demographic Type Items Using Best Weighting Methods 

   

Figure 4:  Comparison of Average Nonresponse Bias (Absolute Values) Across 

All Items Using Best Weighting Methods 
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All of the models had difficulty adjusting for race of the operator.  All of the weighting 

methods underestimated the number of Native American operators and over estimated the 

number of Asian and Pacific Islander operators.  The logistic regression weights 

underestimated the number of Black operators, where the other weighting methods 

overestimated the number of Black operators.  Calibration underestimated the number of 

Spanish operators, where the other weighting methods resulted in relatively zero bias.  

Calibration did a considerably better job than the other weighting methods at adjusting 

for the number of operators that are Pacific Islander. 

Variance estimation was outside the scope of this analysis.  The ARMS III presently uses 

a replication approach to variance estimation, which seems well suited for handling 

nonresponse adjustment for tree methods.   

The results of our study were limited in that our logistic regression model only looked at 

main effects, where the trees looked at interaction effects.  The logistic regression model 

would likely perform better if: 1) indicators of item missingness were developed for all 

69 variables; and 2) all six way interaction effects were explored across the 69 variables 

and 69 indicators of item missingness; however, the logistic regression model would still 

not be capable of identifying optimal breakpoints to distinguish between nonrespondents 

and respondents.  The results would only show that more or less of something was 

indicative of nonresponse, not specifically how much or how little.  Another limitation is 

that for purposes of this study, we had rich auxiliary data; therefore, we are unsure 

whether trees would perform as well as calibration using only limited frame data.  On the 

other hand, when we do have rich auxiliary data, a tree is capable of including a number 

of variables in the model; however, the same is not true for calibration.  The more 

variables we include in the calibration process, the more difficult it can become to meet 

all of the specified targets and thus converge at a solution.  The fact that the trees were 

able to account for so many other characteristics that the calibration weights did not, may 

in part explain why they performed slightly better when adjusting for the production type 

items. 

4. Discussion 

In the case of the ARMS survey, NASS has good external estimates to use as calibration 

targets.  This analysis shows that this weighting scheme considerably reduces the bias 

that would be introduced into the selected survey estimates using only the survey‟s base 

weights. Indeed, the objective of calibration is not just to meet the calibration 

benchmarks, but to improve all of the statistics produced by the survey.  The correlation 

between the calibration variables and survey estimates of economic activity is likely high.  

For example, an operation‟s “corn acres” (the calibration benchmark) is likely correlated 

with its “cropland acres” and “seed expenses” (the survey variables of interest discussed 

in this analysis).  Although, for other variables of interest, the correlation is likely lower 

(for example with variables such as “acres rented” or “operator‟s age”).  The analysis 

also shows that a single-tree or ensemble tree weighting scheme is more effective at 

reducing nonresponse bias of the mean than calibration for selected production items, but 

not for demographic type items.   
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While these results are limited to the 30 variables assessed in relation to nonresponse for 

the ARMS III 2008 sample, this research suggests that trees work better than logistic 

regression and are comparable to calibration, which is not always an option.  The results 

also indicate that while on average using a single-tree approach results in less bias across 

variables, an ensemble-tree approach provides a better estimate for more variables than a 

single-tree approach.  If a survey administrator is more concerned about the average bias 

across estimates, then a single tree appears to work best; however, if they are more 

concerned with how frequently they produce the best estimate, they may want to consider 

creating an ensemble of classification trees.  While calibration works well for ARMS III, 

calibration is not a viable option in surveys when good external benchmarks for 

calibration are not available.  Our analysis provides evidence that tree methods may 

provide a comparable alternative to calibration when rich auxiliary data is available. 
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