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Introduction  
For multilevel data such as patient data where patients are nested within hospitals, or 

panel data where there are both cross-sectional and time components, researchers often 

face a decision of whether to use fixed effects or random effects models to estimate the 

effect of the covariates of interest. When the covariates vary systematically by groups and 

correlate with group effects, the estimates from random effects models are no longer 

reliable as demonstrated by the influential work of Hausman and Taylor (1981).  

   

Since consistency in estimation is a much desired property and covariates are often 

correlated with group effects, fixed effects models often end up as the default choice in 

practice. However, despite the fact that fixed effects model can yield unbiased estimates 

by sweeping away unobserved group effects through group dummy variables, they have 

serious limitations. To start, fixed effects models are not efficient by discarding all 

information at group level and can have larger variance than random effects models. 

They are not able to measure group effects that may also be of research interest and 

policy concerns. Additional efforts such as two or three-step regressions are proposed to 

estimate group level variations within the framework of fixed effects models (Plumper 

and Troeger. 2007). The fixed effects models are also limited in not being able to make 

inference outside existing groups.  

   

Is there a method that allows us to continue to use random effects models while at the 

same time derive consistent estimates? The answer is yes. The solution is simply to bring 

group averages of correlated covariates into the model to control for group level 

heterogeneity. The idea appears in the original article of Hausman and Taylor and has 

been the subject of several recent studies (Bafumi and Gelman, 2006; Ebbes, Böckenholt 

and Wedel, 2004). These recent simulation-based studies show that random intercept 

models can yield unbiased estimates with added group means. These simulations, 

however, are all based on linear models with normally distributed data. It is not clear 

whether same results apply for models with binary outcomes. 

 

Motivation  
Binary outcomes and related models are common in many applied areas. It would be 

interesting and useful to find out whether adding group means to random effects models 

can correct the bias caused by the correlation between covariates and group effects in 

binary models. In addition, we want to know how sample size and strength of correlation 

affect the behaviors of the models. 

 

Models for Estimation in Simulation 

Let yij be the outcome for the j
th

 individual in the i
th

 group, being 1 if the individual 

experiences certain event and 0 otherwise.  Let xij be the covariate of interest that 

correlates with groups, and zij be the variable to control for other characteristics of the 

individual. Let zij not correlate with either group effects or xij.  Both xij and zij are also 

binary.   

 

Pr(yij=1) = logit
-1
( αj + βxij + γzij ),   for i=1,…,n and j=1,…,m  
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where n is the number of individuals within each group and m is the number of groups, 

and αj is group dummies for the fixed effect model and is subject to a normal distribution 

αj ~ N(µ, σ
2
) for j=1,…,m in random intercepts model.  

 

The proposed random effects model with adjustment is  

 

Pr(yij=1) = logit
-1
( αj + βx ij+ γzij +  x j),   for i=1,…,n and j=1,…,m  

 

where x j is group averages of the original covariate xij, and x ij is the de-meaned xij as x ij  

= xij - x j.  Basically, the original covariate is divided into two parts, i.e., within-group and 

between-group components. Since the within-group component is removed of group level 

variation, it is no longer correlated with group effects. It is also independent of the 

between-group component by design. It works as in fixed effects models by removing 

group level variations so its parameter estimate is consistent. In contrast to the fixed 

effects models, having the between-group component x j in the same model allows 

measurement of the covariate’s contribution to group level variations and potential 

interactions among variables at different levels.  

 

The fourth model is the linear probability model with group dummies. Even though linear 

models are typically considered inappropriate for binary outcomes, studies show that 

linear models offer results close to those from logistic models when the outcome is at the 

middle of the distribution. In addition, unlike estimates from logistic model in logits or 

odds ratios, estimates from linear models are invariant to omitted variables (Mood, 2010). 

 

 

Table 1. Simulation Models and Parameters  

 
 

 

 

Estimation Model Covariate Command in R

Fixed Effects x glm (binomial,logit)

Random Intercepts x lmer (binomial,logit)

Random Intercepts with adjustment De-meaned x and x bar lmer (binomial,logit)

Linear Fixed Effects x lm

Parameter Description Values

m Number of groups 20, 100

n Observations per group 10, 50, 500

ρ
Correlation between covariate and
groups

0.2, 0.4, 0.6

β True value for covariate x 1.11
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Simulation Steps  
• Choose number of groups and generate the same number of group effects by 

using random normal function with mean 0 and standard deviation of 1.  

• Choose the number of individuals per group and assign group effects to each 

individual depending on the groups. 

• Calculate the sample size = number of groups x number of individual in each 

group. 

• Generate covariate x with a certain degree of correlation through the probability 

in random binomial function by multiplying group effects. 

• Generate covariate z with a fixed probability (0.4) using random binomial 

function. 

• Assign true values of parameters (1.11 to beta for x and 2.22 to gamma for z). 

• Generate binary outcome by using random binomial function with a probability 

equal to the inverse logit of linear predictors of group effects and covariates x 

and z.  

• Calculate group averages and de-means for the covariate of x. 

• Run four models for a new randomly generated outcome data in each simulation 

using three regression functions in R, glm for fixed effects, lmer for random and 

adjusted random effects, and lm for linear probability model.  

• Collect two statistics from each model, beta estimate and t or t-equivalent 

statistics for x or de-meaned x.  Save instances of randomly generated data for 

Hausman test in Stata. 

 

 

 

Key Results  
The adjusted random intercepts model is able to correct for the bias in the covariate 

correlated with group effects and does as well as the fixed effects models in all scenarios. 

The histograms below show the similarity in estimates and t statistics between the first 

row (fixed effects) and the third row (adjusted random effects) in two scenarios with high 

correlations (ρ=0.6). The mean (the red line) of simulated estimates is close to the true 

value of 1.11. When the sample is larger, even the estimate in the random effects model 

without adjustment is getting closer to the true value. 
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Results Details  
• Random effects models without adjustment work only when sample size is large 

and correlation is moderate, as shown in the second row of beta RE with size of 

500 and correlation ρ of 0.2 in Table 2 below.  

• When sample size is small, even fixed effect estimates deviate substantially from 

the true value, possibly because of sampling errors. 

• Adjusted random effects models with group averages and de-meaned covariates 

perform as good as fixed effects models, and better when sample size is small.  

• Linear probability models yield the most reliable estimates throughout various 

combinations of number of groups, size of the group and correlation. It is worth 

further investigation to find out why there is such a property and how their 

effects compare with those of logit models for multilevel data. 

• In terms of bias, the size of group is far more important than the number of 

groups as shown by the similarity between top and bottom panels with 20 and 

100 groups. Statistical significance shown by t-statistics, however, is mostly 

determined by the total sample size. 
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• The strength of correlation between covariates and group effects only affects 

random effects models. All other three models are insensitive to the increase in 

correlation.  

• The outcomes of the Hausman test depend on sample size. When sample size is 

small, the Hausman test often fails to reject the random effects model even when 

its estimate is very different from that of the fixed effects model. When sample 

size is large, the Hausman test tends to reject the random effects model even 

when the real difference is very small. 

 

 

 

Table 2. Simulation Results in Main Parameter β (True Value = 1.11) and t 

Statistics from Four Models under Combinations of Groups, Number of 

Observations Per Group and Correlation ρ between Main Covariate and Group 

Effects 

 
 

 

 

 

 

20 groups size = 10 size = 50 size = 500

ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.2 ρ = 0.4 ρ = 0.6

beta FE 1.327 1.303 1.308 1.144 1.147 1.133 1.114 1.115 1.112

beta RE 1.419 1.631 1.786 1.183 1.253 1.406 1.118 1.127 1.142

beta RE adj. 1.218 1.201 1.125 1.115 1.123 1.109 1.110 1.115 1.115

beta LM 0.168 0.182 0.155 0.160 0.155 0.165 0.156 0.159 0.167

t stat FE 2.7 2.6 2.4 6.2 5.9 5.2 19.9 19.0 16.6

t stat RE 3.4 3.8 4.1 6.6 6.6 6.8 20.0 19.2 17.2

t stat adj. 2.8 2.6 2.3 6.2 5.9 5.2 19.8 19.0 16.7

t stat LM 3.0 3.0 2.2 6.5 5.9 5.5 20.2 19.5 17.5

100 groups size = 10 size = 50 size = 500

ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.2 ρ = 0.4 ρ = 0.6

beta FE 1.281 1.278 1.271 1.145 1.143 1.142 1.112 1.115 1.114

beta RE 1.285 1.520 1.901 1.176 1.236 1.383 1.115 1.127 1.142

beta RE adj. 1.115 1.096 1.125 1.117 1.117 1.116 1.109 1.113 1.116

beta LM 0.168 0.165 0.180 0.166 0.168 0.172 0.167 0.170 0.173

t stat FE 6.4 5.9 5.2 14.3 13.7 12.0 45.6 43.4 37.7

t stat RE 7.3 8.1 9.6 15.0 15.1 15.1 45.8 44.0 38.8

t stat adj. 6.3 5.7 5.1 14.3 13.7 12.0 45.6 43.4 37.8

t stat LM 6.4 5.9 5.4 14.6 14.1 12.5 47.0 45.1 39.6
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Limitations 
• In this simulation study, the covariate and group effects are created in two steps. 

As a result, the correlation between the two is not precisely controlled. It is 

possible to do just that if we use latent variable approach and create both from a 

single multivariate normal distribution with a defined covariate structure. That 

should make the simulation more rigorous.  

• The simulation study has a generic control variable z and is in all four models. It 

would be interesting to leave it out and watch how an omitted variable that is not 

correlated with the main covariate affects model fitting in multilevel logistic 

models.  

• There are only three correlation settings of 0.2, 0.4 and 0.6 to cover the common 

area of concern. A wider and finer scale may be helpful to examine the effect in 

various scenarios. 

Conclusions 
• Results here clearly show that random effects models with the adjustment of 

group averages are effective in correcting the bias in the unadjusted random 

effects models across all scenarios without exception, similar to what has been 

found for linear models.  

• The adjustment is easy to implement. First, one runs a fixed effects model 

without the covariate to get intercepts as group effects. Then one can correlate 

the covariate with the group effects to see whether they are correlated. If they are 

correlated, one just needs to create a de-meaned version and the group averages 

of the covariate and include them in the random effect model.  

• Given the ease of the adjustment and the advantages of random effects models 

over fixed effects models minus the concern of bias, random effects models 

should become the default choice in most situations. Major statistical software 

packages such as R, Stata, SAS and SPSS all have capabilities for random effects 

models, also called mixed effects or hierarchical models. 
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