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Abstract
The sieve bootstrap is a model-free re-sampling method that approximates an invertible linear process with

a finite autoregressive model whose order increases with sample size. Prediction intervals based on this ap-
proach have been successfully implemented for stationary invertible ARMA processes. The coverage proba-
bilities of sieve bootstrap intervals developed for ARMA models, however, are well below the nominal level
in the presence of a unit root in the autoregressive polynomial. An approach that overcomes this drawback is
proposed and the asymptotic properties of the proposed method are derived. Monte Carlo simulation results
indicate that the proposed method provides near nominal coverage at moderate sample sizes.
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1. Introduction

Many financial and economic time series are non-stationary, and Autoregressive Integrated Moving
Average (ARIMA) processes are often used to model such empirical process. For the practitioner,
one of the main goals of empirical time series modeling is to obtain forecasts based on its past val-
ues. Standard parametric point and interval forecasts are quite accurate under normally distributed
innovations. As noted by Stine (1987) and Thombs and Schucany (1990), parametric prediction
intervals perform poorly when the normal assumption is violated. Nonparametric bootstrap based
prediction intervals, on the other hand offer a potentially superior alternative to parametric meth-
ods. While nonparametric approaches have been proposed for stationary processes, a method that
provides prediction intervals for the class ofARIMAmodels with unknown orders p, q is not avail-
able. In the following sections, a nonparmetric bootstrap approach to obtain prediction intervals for
ARIMA processes with unknown orders is presented.

One drawback of the original bootstrap methods developed for time series is the requirement
of the knowledge of the orders associated with the underlying process. For instance, the bootstrap
approach proposed by Stine (1987) assumes that the order, p, of the AR(p) process is known. The
same is true for methods introduced by Thombs and Schucany (1990), Cao et al. (1997) and Pascual
et al. (2004).

The approach proposed in this paper, however, does not require any knowledge of the orders
associated with autoregressive and moving average polynomials. Our framework is identical to
the Sieve Bootstrap prediction intervals implemented by Alonso, Pena and Romo (2002, 2003 and
2004), which resamples residuals obtained by a sequence of AR(p) models with order p = p(n)
which increases with the sample size n. The foundation of this sieve bootstrap approach was laid
by Kreiss (1988) and (1992), for time series that can be represented by an infinite autoregressive
process. Bühlmann (1997), who introduced the term sieve bootstrap, extended this approach to
more general class of time series that can be written as an infinite order moving average process.
Alonso et al. (2002, 2003) formalized this sieve bootstrap concept and applied it to obtain prediction
intervals for linear processes. The same authors made further refinements in 2004 by introducing
model uncertainty in computing prediction intervals. Alonso’s method was modified by Mukhopad-
hyay and Samaranayake (2010) to improve the coverages of the prediction intervals. They achieved
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this by introducing a variance inflation factor for bootstrap residuals. These preceding bootstrap
methods are, however, limited to stationary linear processes such as ARMA models. Rupasinghe
and Samaranayake (2012) extended Alonso’s 2003 sieve bootstrap procedure to compute prediction
intervals for long memory processes (FARIMA). In this paper, we extend Alonso’s 2003 sieve
bootstrap procedure to obtain prediction intervals for ARIMA processes.

1.1 ARIMA Processes

A real-valued process {xt}t∈Z is said to be a Autoregressive Integrated Moving Average (ARIMA(p,d,q))
process if it is stationary and satisfies

α(B)5d (xt − µ) = θ(B)εt, t ∈ Z, (1)

where α(z) = 1−α1z− ...−αpzp and θ(z) = 1 + θ1z+ ...+ θ(q)zq represent autoregressive and
moving average polynomials of degrees p and q respectively. The mean of the process is µ = E[xt]
for all t. It is assumed that α(.) and θ(.) do not share common zeros. The error terms, {εt}, are
assumed to be zero-mean white noise with finite variance σ2. Note that 5 = 1 − B, where B is
the back-shift operator defined by Bkxt = xt−k for k ∈ N. The difference parameter, d, can take
any non-negative integer, but we assume that d = 1 or 0, where represents the most common type
of ARIMA processes used in empirical modeling.

The literature on methods for obtaining prediction intervals for ARIMA processes is very lim-
ited. Kim (2001) extended the forward and backward bootstrap procedure of Thombs and Schucany
(1990) to obtain prediction intervals for AR(p) models with unit roots by incorporating a bias cor-
rection on the bootstrap estimates of the forward and backward AR coefficients. The backward AR
representation is obtained by reversing the forward (usual) AR(p) model. This bias correction was
adopted from Kilian (1998a) and utilized to improve the coverage probabilities in the presence of
unit roots. Their method, however, assumes that the process is AR(p) and the order, p, is known,
which could be a weakness in situations where the order is unknown. They also assumed normal
errors in establishing the asymptotic validity of the method.

In their recent articles, Panichkitkosolkul and Niwitpong (2011, 2012) introduced parametric
prediction intervals for Gaussian AR(p) models that may include unit root processes. The predic-
tion intervals are computed following preliminary unit root tests and two different formulations for
prediction intervals were used based on the outcome of the initial tests. They used well known
Dickey-Fuller (DF) (Dickey and Fuller (1979)), Augmented Dickey-Fuller (ADF) (Said and Dickey
(1984)), and SSL (Shin, Sarkar and Lee (1996)) unit root tests. The random walk model is used to
obtain point forecasts in case the preliminary test did not reject the null hypothesis that the process
has an autoregressive root equal to unity. There are concerns on the use of unit root tests prior
to computing prediction intervals, as the power of these tests is small under many situations. See
Psaradakis (2000, 2001), Chang and Park (2003) and Palm, Smeekes and Urbain (2008). Specif-
ically, the coverage probabilities that Panichkitkosolkul and Niwitpong (2011, 2012) report based
on a simulation study are conditional on the results of the unit root test. Unconditional coverage
probabilities can be lower due to the low power of the tests and the presence of Type I error.

Our method, however, do not alter the procedure of computing prediction intervals based on
results of a unit root test. If the observed series {xt} satisfies α(B)(1 − B)xt = θ(B)εt, {εt} ∼
WN(0, σ2), observe that the differenced series yt = xt − xt−1 is stationary. One can first compute
the bootstrap distribution of the future observations, yn+h, of the differenced series and then use
it to obtain that of xn+h. This implementation is simple if the underlying process of the original
observations is ARIMA(p, 1, q) because {yt} is then both stationary and invertible, but poses a
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problem if the underlying process is ARMA(p, q). In the latter case, the differenced series is non-
invertible since α(B)yt = (1−B)θ(B)εt. Alonso et al. (2003) and Bühlman (1997) both required
that the moving average polynomial has no roots on or inside the unit circle so that the process is
invertible. This was a key assumption in their sieve bootstrap procedure and was needed in order to
approximate the time series by a sequence of AR polynomials.

Poskitt (2006, 2008) discussed ways of relaxing this condition while maintaining the statisti-
cal viability of finite order autoregressive approximations to non-invertible processes. Results in
Poskitt (2006, 2008) provide a theoretical foundation on which sieve bootstrap based prediction
intervals can be derived, irrespective of whether the differenced series is invertible or not. In the
following sections we show how the method proposed by Alonso et al. (2003) can be modified,
based on insights from Poskitt (2006, 2008), to obtain sieve bootstrap prediction intervals for a non-
invertible process. Mukhopadhyay and Samaranayake (2010) provide additional refinements to the
original method. We employ the 2003 paper by Alonso et al. which set the fundamental theoretical
framework for the application of the sieve bootstrap for invertible processes, as the platform for our
proposed modifications even though Alonso et al. (2004) and Mukhopadhyay and Samaranayake
(2010) give further refinements to the original method. As the Monte Carlo simulation results in
Section 4 show, the proposed method provide good finite sample coverage even without additional
refinements adopted in the above two papers. Thus, the proposed method can be taken as good
initial step in adopting the sieve bootstrap to obtain prediction intervals for ARIMA processes.

The rest of this paper is organized as follows. Section 2 introduces the sieve bootstrap proce-
dure for obtaining prediction intervals and Section 3 establishes asymptotic validity of the proposed
method. The simulation study along with an application is presented in Sections 4 and 5.

2. The proposed sieve bootstrap procedure

The main difference between the sieve bootstrap procedure given below and the procedure intro-
duced by Alonso et al. (2002, 2003) is the criterion used in selecting the order of the autoregres-
sive approximation. This change in the order, together with Poskitt’s AR approximation to non-
invertible processes, are sufficient to establish the convergence results. Unlike Panichkitkosolkul
and Niwitpong (2011, 2012), the proposed procedure does not depend on a unit root test. We
introduce a differencing step at the beginning of the procedure in order to accommodate ARIMA
processes.

Assume that a realization {xt}nt=1 is obtained from ARIMA(p, d, q) process given in Equation
(1) with d = 1 or 0. Define the differenced series, {yt}, using yt = xt − xt−1.

1. Select the order p = p(n) of the autoregressive approximation from among models with
p ∈ {1, 2, ...,Mn} with Mn = o{[log(n)/n]1/2} by the AIC criterion. Alonso et al. (2003)
preferred AICC over AIC and usedMn = o{[log(n)/n]1/4}. This change in order is required
to satisfy condition needed to utilize results of Poskitt (2006, 2008).

2. Estimate the autoregressive coefficients, φ̂1,p,n, ..., φ̂p,p,n, of theAR(p) approximation,
∑p

j=0 φj,pyt−j =
εt,p, by the Yule-Walker method.

3. Obtain the (n − p) residuals: ε̂t,n =
∑p

j=0 φ̂j,p,n(yt−j − ȳ), t = p + 1, ..., n and define
the empirical distribution function of the centered residuals, ε̃t = ε̂t,n − ε̂(.), where ε̂(.) =
(n− p)−1

∑n
t=p+1 ε̂t,n, by F̂ε̃,n(x) = (n− p)−1

∑n
t=p+1 I[ε̃t≤x].

4. Draw a resample ε∗t,n, t = p+ 1, ..., n of i.i.d. observations from F̂ε̃,n.

Business and Economic Statistics Section – JSM 2012

1080



5. Obtain y∗t by the recursion:
∑p

j=0 φ̂j,p,n(y∗t−j − ȳ) = ε∗t,n for t = p+ 1, ..., n and set y∗t = ȳ
for t = 1, ..., p.

6. Compute the estimates φ̂∗1,p,n, ..., φ̂
∗
p,p,n as in Step 2, using {y∗t }nt=1.

7. For h > 0, compute the future bootstrap observations of the differenced series by the recur-

sion: y∗n+h − ȳ =

p∑
j=1

φ̂∗j,p,n(y∗n+h−j − ȳ) + ε∗n+h,n where, y∗t = yt, t ≤ n.

Up to this point we have followed Alonso et al. (2003) sieve bootstrap procedure but the next
step is crucial to obtaining bootstrap future observation of the original time series {xt}.

8. Compute the future bootstrap observations of the original series by the recursion: x∗n+h =
x∗n+h−1 + y∗n+h where, x∗t = xt, t ≤ n, h > 0.

9. Obtain a Monte Carlo estimate of the bootstrapped distribution function of x∗n+h by repeating
steps 4-8 B times.

10. Use the bootstrapped distribution to approximate the unknown distribution of xn+h given the
observed sample.

11. The 100(1−α)% prediction interval for xn+h is given by {Q∗(α2 ), Q∗(1− α
2 )} where, Q∗(.)

are the quantiles of the estimated bootstrap distribution.

3. Asymptotic results

Note that if the original process {xt} is indeed an ARIMA(p, 1, q) process, then the differenced
process {yt} isARMA(p, q) and the results of Alonso et al. (2003) applies directly to the bootstrap
distribution of y∗n+h. It then follows by simple arguments that the bootstrap distribution of x∗n+h

converges to that of xn+h. On the other hand, complications arise if {xt} has no unit root. Then
{yt} would not be invertible and hence the results of Alonso et al. (2003) do not apply. This is
where the new order for Mn (Step 1) and results of Poskitt (2006, 2008) come into play. This
approach avoids the need to pre-test for unit roots and then select the prediction interval procedure
based on the outcome of the test.

In order to establish the asymptotic validity of the sieve bootstrap intervals, Alonso (2003) first
established the convergence of φ̂

∗
p,n to φ̂p,n. We follow the same approach, but modify the proofs to

accommodate the changes arising out of the possibility that the differenced series is non-invertible.
We first establish asymptotic properties of the differenced series {yt} and then move onto proving
results for {xt}.

Rupasinghe and Samaranayake (2012) extended some of the results in Bühlmann (1995, 1997)
and Alonso et al. (2003) to regular processes, a general class of linear processes that includes both
FARIMA and non-invertible time series. As stated in Poskitt (2006), the process {yt}t∈Z is said to
be linearly regular if {yt}t∈Z is covariance stationary with,

yt =
∞∑
j=0

ψjεt−j , (2)

where {εt}t∈Z, is a zero mean white noise process with finite variance σ2 and the impulse response
coefficients {ψj}∞j=0 satisfy the condition ψ0 = 1 and

∑
j≥0 ψ

2
j <∞.
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In the following derivations, we will use the AR(p) approximation suggested by Poskitt (2006)
for such time series.

Definition 1. Let {yt} satisfy equation (2) and define, for p < n, {εt,p} such that
∑p

j=0 φj,pyt−j =
εt,p, where the AR coefficients vector φp = (φ1,p, ..., φp,p)

′ is obtained using the Yule-Walker equa-
tions, Γpφp = −γp, γp = (γ(1), ..., γ(p))′, Γp = [γ(i − j)]pi,j=1, with γ(k) = E[ytyt+k] for
k ∈ N0.

This definition provides us the AR approximation to {yt} even in the case where the series is
not invertible and thus cannot be written as an infinite autoregressive process. It should be noted
that Lemma 1 of Poskitt (2006) establishes that εt,p → εt in mean square as p→∞.

The following sets of assumptions are required in order to prove our asymptotic results.
A1: Let ξt denote the σ-algebra of events determined by εs, s ≤ t. Also, assume εt is i.i.d. and

that
E[εt|ξt−1] = 0 and E[ε2t |ξt−1] = σ2, t ∈ Z.

Furthermore, assume E[ε4t ] <∞ for t ∈ Z.
A2: The series yt is a linearly regular covariance-stationary process with Wold representation

yt =
∑

j≥0 ψjεt−j with
∑

j≥0 |ψ2
j | <∞.

B: Let p(n) = o{[n/log(n)]1/2} and φ̂p,n = (φ̂1,p,n, ..., φ̂p,p,n)′ satisfy the empirical Yule-
Walker equations Γ̂p,nφ̂p,n = −γ̂p,n, where

Γ̂p,n = [R̂(i− j)]pi,j=1, γ̂p,n = (R̂(1), ..., R̂(p))′, and R̂(j) = n−1
∑n−|j|

t=1 (yt − ȳ)(yt+|j| − ȳ) for
|j| < n.

Assumptions in A1 imposes a Martingale difference structure on the innovations. In Proposition
1 we assume i.i.d. innovations for the underlying processes because the sieve bootstrap scheme
draws resamples independently and identically, it is unable to capture the correlation structure of
the innovations if they are correlated.

The order of p in Assumption B is slightly different from that of Rupasinghe and Samaranayake
(2012). They assumed that p(n) = o{[n/log(n)]1/2−d}, where d is the difference parameter taking
fractional values from -0.5 to 0.5. The value for d is set to zero throughout since we are only
interested in ARIMA(p, d, q) models with d = 0 or 1 and differencing removes the unit root, if
present.

Next we present asymptotic properties of the sieve bootstrap method given in Section 2 by
adopting some results form Rupasinghe and Samaranayake (2012).

The following results follows from the same arguments use in Lemmas 1, 2 and 3 of Rupasinghe
and Samaranayake (2012). Therefore, they are stated without proof.

Lemma 1. Assume that A1, A2 and B hold. Then,∑p
j=0(φ̂j,p,n − φj,p)2 = oa.s.{[log(n)/n]1/2},

where φj,p, j = 1, 2, ..., p, p < n are the coefficients given in Definition 1.

Lemma 2. Assume that A1, A2 and B hold. Then, for any fixed t ∈ Z,

E∗(ε∗2t,n) = E(ε2t ) + op(1).
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The next Lemma states asymptotic convergence of bootstrap innovations to theoretical innova-
tions, and is similar to Lemma 5.4 in Buhlmann (1997).

Lemma 3. Assume that assumptions given in A1, A2 and B hold. Then, for each fixed t ∈ N,

ε∗t,n
d∗−→ εt, in probability.

The following proposition is analogous to Proposition 1 of Alonso et al. (2003) and shows that
the bootstrap autoregressive coefficients obtained in Step 6 converge to the autoregressive coeffi-
cients of the fitted model obtained in Step 2.

Proposition 1. Assume A1, A2 and B hold. Then,

max
1≤j≤p(n)

|φ̂∗j,p,n − φ̂j,p,n|
P ∗−→ 0, in probability. (3)

The AR(p) approximation described in Definition 1 is used to establish the convergence of fu-
ture bootstrap values of the differenced series. It is, therefore, essential to show the convergence of
bootstrap innovations, ε∗t,n, to the approximated errors, εt,p. This is a strategic feature proposed to
overcome issues raised in generalizing Alonso et al. (2003) results for regular processes.

Lemma 4. Assume that assumptions given in A1, A2 and B hold. Then, for each fixed t ∈ N,

ε∗t,n
d∗−→ εt,p, in probability.

Proof. Let Fε,n(x) = (n − p)−1
∑n

t=p+1 1[εt,p≤x], Fε,p(x) = P[εt,p ≤ x] for x ∈ R, and denote
the Mallows metric by d2(., .). Then, from standard results it follows that d2(Fε,n, Fε,p) = oa.s.(1).
Thus we need to only show that d2(F̂ε̃,n, Fε,n) = op(1). Let S be uniformly distributed on {p +

1, ..., n} and let Z1 = εS , Z2 = ε̄S , where ε̄t,n = ε̂t,n− ε̂(.)n . Then, d2(F̂ε̃,n, Fε,n)2 ≤ E|Z1−Z2|2 =

(n−p)−1
∑n

t=p+1(ε̄t,n−εt,p)2 = (n−p)−1
∑n

t=p+1(ε̂t,n− ε̂(.)n −εt,p)2. From the proof of Lemma 2

in Rupasinghe and Samaranayake (2012), ε̂(.)n = op(1) and (n− p)−1
∑n

t=p+1 |ε̂t,n− εt,p| = op(1).
Hence d2(F̂ε,n, Fε,n) = op(1).

Now we establish the convergence of the bootstrap differenced series.

Theorem 1. Assume that A1, A2 and B hold. Then, in probability, as n→∞,

y∗n+h
d∗−→ yn+h, for fixed h ∈ N (4)

Proof.

Observe that, yn+h = −
p∑
j=1

φj,pyn+h−j + εn+h,p (5)

and y∗n+h = −
p∑
j=1

φ̂j,p,ny
∗
n+h−j + ε∗n+h,n, (6)
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where y∗t = yt for t ≤ n. For beverity, we prove the theorem for h = 1.

From Lemma 4, ε∗n+1,n
d∗−→ εn+1,p and thus we need only to show that the difference of the first

terms on the right hand side of (5) and (6) converges to zero in probability. Therefore consider,

−
p∑
j=1

(φ̂j,p,n − φj,p)yn+1−j ≤

 p∑
j=1

(φ̂j,p,n − φj,p)2

1/2 p(n)∑
j=1

y2
n+1−j

1/2

= {oa.s.[[log(n)/n]
1/2
2 ]}{Op[p1/2]} = op(1).

Thus, y∗n+1
d∗−→ yn+1, in probability.

Finally, we establish the large sample validity of sieve bootstrap prediction intervals forARIMA(p, d, q)
processes with d = 0 or 1 by proving the convergence of the future bootstrap values of the original
time series, obtained in Step 8.

Theorem 2. Assume that A1, A2 and B hold. Then, in probability, as n→∞,

x∗n+h
d∗−→ xn+h, for h = 0, 1, ... (7)

Proof. The future values of the originally observed time series, {xn+h} can be written as xn+h =
xn+h−1 + yn+h. Then the bootstrap one-step ahead value exhibit the following property:

x∗n+1 = xn + y∗n+1
d∗−→ xn + yn+1 = xn+1. For h > 1, the result can be proven using the

mathematical induction.

4. Simulation Study

In order to investigate the finite sample performances of the method proposed in this paper, a Monte-
Carlo simulation study, using a series of models given in Table 1, was carried out with three different
error distributions and sample sizes 100 and 200. The coverage, bootstrap length, and the length
of the interval theoretically achievable under known order and parameter values were computed for
95% and 99% prediction intervals to asses the performance of the proposed method. Results are
reported in Tables 2 through 7.

Table 1: Models considered in the simulation study
Nomenclature Model AR roots MA roots

M1 (1− 0.75B + 0.5B2)Xt = εt 1.414, 1.414 -
IM1 (1− 0.75B + 0.5B2)(1−B)Xt = εt 1, 1.414, 1.414 -
M2 Xt = (1− 0.9B)εt - 1.1̄

IM2 (1−B)Xt = (1− 0.9B)εt 1 1.1̄

M3 Xt = (1− 0.3B + 0.7B2)εt - 1.195, 1.195
IM3 Xt = (1− 0.3B + 0.7B2)εt 1 1.195, 1.195
M4 (1− 0.7B)Xt = (1− 0.3B)εt 1.428 3.3̄

IM4 (1− 0.7B)(1−B)Xt = (1− 0.3B)εt 1, 1.428 3.3̄

M5 (1− 0.95B)Xt = (1− 0.3B)εt 1.05 3.3̄

IM5 (1− 0.7B)(1−B)Xt = (1− 0.3B)εt 1, 1.05 3.3̄
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Note that the models employed in the study are the sameARMAmodels studied by Mukhopad-
hyay and Samaranakaye (2010) and Alonso et al. (2004). We also considered corresponding
ARIMA models (with labels beginning with I) since we are interested in unit root processes.
The standard normal distribution, t-distribution with 3 degrees of freedom, and exponential (1)
distribution centered at zero, were considered for error distributions. Prediction intervals for leads
h = 1, 2, 3 were computed. The Matlab (Version 2011a) software was used for these simulations.

For each combination of model, sample size, nominal coverage and error distribution, N =
1, 000 independent series were generated and for each of these simulated series, steps 1 to 15 were
implemented. To compute the coverage probabilities for each of this N simulations, R = 1, 000
future observations (xn+h) were generated using the original model. The proportion of those falling
in between the lower and upper bounds of the bootstrap prediction interval was then defined to be the
coverage. Thus, the coverage at the ith simulation run is given by C(i) = R−1

∑R
r=1 IA[xrn+h(i)]

where A = [Q∗(α/2), Q∗(1 − α/2)], IA(.) is the indicator function of the set A and xrn+h(i),
r = 1, 2, ...1, 000 are the R future values generated at the ith simulation run.

The bootstrap length and theoretical length for the ith simulation run are given by LB(i) =
Q∗(1− α/2)−Q∗(α/2) and LT (i) = xrn+h(1− α/2)− xrn+h(α/2) respectively. The theoretical
length LT (i) is the difference between the 100(1 − α/2)th and 100(α/2)th percentile points the
empirical distribution of the 1,000 future observations that were generated using the underlying
time series model with known order and the true values of the coefficients. Using these statistics, the
mean coverage, mean length of bootstrap prediction intervals, mean length of theoretical intervals,
and their standard errors were computed as:
Mean Coverage C̄ = N−1

∑N
i=1C(i)

Standard Error of Mean Coverage SEC̄ = {[N(N − 1)]−1
∑N

i=1[C(i)− C̄]2}1/2

Mean Length (bootstrap) L̄B = N−1
∑N

i=1 LB(i)

Standard Error of Mean Length SEL̄B
= {[N(N − 1)]−1

∑N
i=1[LB(i)− L̄B]2}1/2

Mean theoretical Length L̄B = N−1
∑N

i=1 LB(i)
In total 120 different combinations of model type, sample size, nominal coverage probability,

and error distributions were investigated in this simulation study. However, due to space limitations,
we report only a representative sample of results for 95% intervals, in Table 2 through 7. These
tables report the mean coverage, mean interval length, and mean theoretical length, standard error
of mean coverage and standard error of mean interval length. The complete results of the simulation
study are available upon request from the corresponding author.

To investigate the behaviour of the intervals for each of the 120 combinations, the minimum
value, percentiles (25th, 50th, and 75th), and the maximum value of (a) the coverage probabilities,
(b) the bootstrap interval bounds (upper and lower), and (c) the theoretical interval bounds (upper
and lower), were further computed, based on the 1,000 values generated through simulation, and
these statistics are also available upon request.

From Tables 2-7, we can see that the mean coverages of the proposed sieve bootstrap method
are very close to the nominal coverage for all the leads regardless of presence or absence of a unit
root and of the nature their error distribution. Also, it is seen that the mean bootstrap interval lengths
are close to the theoretical lengths.

It is interesting to note (Tables 4,6 and 7) how the proposed sieve bootstrap procedure performs
for models M5 and IM5 in which the AR root is close to unity. In practice, many parametric and
nonparametric prediction intervals produce very liberal coverages when the AR polynomial has a
root close to unity (see Alonso et al. (2002, 2004)). However, from Tables 4, 6 and 7, we can see
that our proposed method is capable of producing accurate prediction intervals for time series with
an AR root close to one.
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Table 2: Coverage of 95% intervals for Models M1 & IM1 with normal errors
Leads Size Model M1 Model IM1

Theo. Coverage Length Theo. Coverage Length
Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1 100 3.9040 0.9548 4.2994 3.9339 0.9561 4.4168
(0.0026) (0.0444) (0.0029) (0.0492)

200 3.9178 0.9503 4.2013 3.9153 0.9598 4.3081
(0.0024) (0.0298) (0.0019) (0.0403)

2 100 6.7753 0.9500 7.5408 10.3208 0.9464 11.1515
(0.0031) (0.0901) (0.0034) (0.1263)

200 6.7719 0.9484 7.4664 10.2422 0.9539 10.9454
(0.0031) (0.0619) (0.0023) (0.1049)

3 100 8.9874 0.9456 10.1540 18.5608 0.9365 19.5478
(0.0041) (0.1308) (0.0040) (0.2382)

200 8.9473 0.9476 10.1857 18.3911 0.9491 19.3903
(0.0036) (0.0961) (0.0027) (0.1969)

Table 3: Coverage of 95% intervals for Models M4 & IM4 with normal errors
Leads Size Model M4 Model IM4

Theo. Coverage Length Theo. Coverage Length
Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1 100 3.8980 0.9463 4.2205 3.9305 0.9545 4.1908
(0.0031) (0.0275) (0.0020) (0.0380)

200 3.9102 0.9438 4.2945 3.9267 0.9579 4.1649
(0.0037) (0.0462) (0.0012) (0.0218)

2 100 4.2136 0.9425 4.6845 6.7384 0.9528 7.2182
(0.0045) (0.0329) (0.0023) (0.0729)

200 4.2094 0.9512 4.9479 6.7303 0.9573 7.1610
(0.0043) (0.0550) (0.0015) (0.0472)

3 100 4.3746 0.9400 5.0388 9.4048 0.9492 9.9920
(0.0063) (0.0374) (0.0028) (0.1182)

200 4.3675 0.9523 5.3092 9.4416 0.9568 10.0501
(0.0044) (0.0704) (0.0018) (0.0803)
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Table 4: Coverage of 95% intervals for Models M5 & IM5 with normal errors
Leads Size Model M5 Model IM5

Theo. Coverage Length Theo. Coverage Length
Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1 100 3.9134 0.9396 3.9704 3.9281 0.9439 4.0540
(0.0029) (0.0369) (0.0026) (0.0368)

200 3.9051 0.9466 4.0106 3.9068 0.9481 3.9901
(0.0021) (0.0313) (0.0020) (0.0293)

2 100 4.6468 0.9431 4.8376 7.5649 0.9485 8.1119
(0.0029) (0.0469) (0.0024) (0.0854)

200 4.6862 0.9465 4.8470 7.5790 0.9525 7.9298
(0.0021) (0.0378) (0.0019) (0.0573)

3 100 5.2358 0.9468 5.6353 11.6686 0.9480 12.7837
(0.0032) (0.0595) (0.0031) (0.1745)

200 5.2679 0.9488 5.5933 11.6951 0.9523 12.3978
(0.0025) (0.0537) (0.0022) (0.1048)

Table 5: Coverage of 95% intervals for Models M4 & IM4 with exponential errors
Leads Size Model M4 Model IM4

Theo. Coverage Length Theo. Coverage Length
Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1 100 3.6257 0.9522 4.2604 3.6652 0.9583 3.8065
(0.0081) (0.0626) (0.0045) (0.0502)

200 3.6535 0.9610 4.2893 3.6562 0.9694 4.1766
(0.0055) (0.0743) (0.0020) (0.0766)

2 100 4.0041 0.9499 4.7753 6.4765 0.9520 6.6051
(0.0075) (0.0665) (0.0032) (0.0841)

200 4.0081 0.9617 4.8360 6.4841 0.9662 7.1918
(0.0038) (0.0813) (0.0025) (0.1256)

3 100 4.2433 0.9498 5.1285 9.1766 0.9468 9.2601
(0.0080) (0.0688) (0.0031) (0.1174)

200 4.2318 0.9553 5.1947 9.1801 0.9592 10.0295
(0.0059) (0.0974) (0.0032) (0.1871)
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Table 6: Coverage of 95% intervals for Models M5 & IM5 with exponential errors
Leads Size Model M5 Model IM5

Theo. Coverage Length Theo. Coverage Length
Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1 100 3.6596 0.9637 4.0219 3.6823 0.9520 4.0145
(0.0041) (0.0525) (0.0048) (0.0725)

200 3.6978 0.9613 4.0387 3.6831 0.9570 3.8241
(0.0036) (0.0723) (0.0043) (0.0558)

2 100 4.4705 0.9481 4.8064 7.2723 0.9479 8.0177
(0.0051) (0.0528) (0.0044) (0.1331)

200 4.4917 0.9493 4.8302 7.2880 0.9510 7.4932
(0.0041) (0.0790) (0.0034) (0.0941)

3 100 5.1322 0.9463 5.5740 11.3299 0.9462 12.6384
(0.0052) (0.0641) (0.0046) (0.2140)

200 5.1352 0.9503 5.6875 11.3583 0.9497 11.7789
(0.0044) (0.0920) (0.0029) (0.1525)

Table 7: Coverage of 95% intervals for M5 & IM5 with t-dist errors
Leads Size M5 IM5

Theo. Coverage Length Theo. Coverage Length
Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1 100 6.3676 0.9367 6.3982 6.3954 0.9442 6.8128
(0.0029) (0.1329) (0.0026) (0.1451)

200 6.3828 0.9428 6.5108 6.3827 0.9445 6.4212
(0.0022) (0.0989) (0.0019) (0.0884)

2 100 7.7655 0.9379 8.2689 12.5904 0.9470 13.9975
(0.0031) (0.1965) (0.0026) (0.3207)

200 7.7979 0.9441 8.1410 12.5435 0.9446 12.7702
(0.0022) (0.1388) (0.0020) (0.1609)

3 100 8.7704 0.9405 9.8278 19.5889 0.9450 22.6252
(0.0034) (0.3086) (0.0032) (0.6393)

200 8.8182 0.9443 9.4723 19.3835 0.9442 20.1380
(0.0026) (0.1757) (0.0022) (0.3077)

5. Application to a real data set

The proposed sieve bootstrap method was applied to the daily highest Yahoo stock prices from
February 4, 2009 to March 31, 2011; 544 observations in total. The data set can be found at http:
//finance.yahoo.com/q/hp?s=YHOO. The time series is displayed in Figure 1 and clearly
exhibits a unit root behavior. The first 535 observations were used to compute 95% prediction
intervals for the next consecutive 10 days using the proposed method. The dashed lines in Figure 2
show the upper and lower bounds of the computed prediction intervals. The sieve bootstrap method
was able to capture the true future values of this empirical time series accurately confirming the
results in the simulation study.
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Figure 1: Daily Highest Yahoo Stock Prices

Figure 2: 95% SB Prediction Bands for Yahoo Stock Prices in dashed lines; Only a segment of
Figure 1 is displayed

6. Conclusion

In this paper, we proposed a sieve bootstrap based prediction intervals for unit root (ARIMA) pro-
cesses that provides proper coverage without altering the computational steps based on the results of
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a unit root test. Large sample properties are established for the proposed method and a Monte-Carlo
simulation study was carried out determine finite sample properties. The simulation results indi-
cates that the procedure works very well under normal, exponential and t distributed errors. Most
importantly, the method is stable even when the AR polynomial of the underlying process has a
root close to unity.

REFERENCES

Alonso A. M., Pena D., Romo J. (2002), “Forecasting time series with sieve bootstrap,” Journal of Statistical Planning
and Inference, 100, 1–11.

Alonso A. M., Pena D., Romo J. (2003), “On sieve bootstrap prediction intervals,” Statistics and Probability Letters, 65,
13–20.

Alonso A. M., Pena D., Romo J. (2004), “Introducing model uncertainty in time series bootstrap,” Statistica Sinica, 14,
155–174.
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