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Abstract 
Rosenblum and Van der Laan (2011) proposed a new adaptive enrichment design for a 
two-stage randomized trial where the enrollment decision at the second stage and the 
hypothesis testing at the final are based on the first stage data. The proposed 
methodology provides a strong control of the family-wise type I error rate under a wide 
range of interim decision rules. In this paper we apply this new methodology to a CRT 
trial data under two interim decision rules. We also look at the effect of the decision 
rules to the overall power of this adaptive enrichment design through simulation 
studies. We conclude that decision rule at interim analysis is critical, and clinical input 
as well as statistical considerations should be taken into account when utilizing this new 
adaptive enrichment method for the study.  
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1. Introduction 
 

In many clinical trials experimental treatment is showed to have different treatment effect 
for different subpopulations, such as female subpopulation or diabetic subpopulation. For 
example, one study of a ventricular assist device (VAD) showed that female subjects 
treated with the investigational VAD were found to have much higher rate of stroke 
compared to male subjects. The heterogeneity among different stratum of subpopulation 
may be desirable in that the results of the trial can be generalizable to a wide class of 
patients.  Sometimes, especially in regulatory setting, the main interest is to find any 
subgroup for which experimental treatment works. Under the traditional fixed sample 
size trial, the sample size is usually calculated to provide just enough power to reject null 
hypothesis of no treatment effect on the overall population, and therefore the trial is 
underpowered to detect possible treatment effect on some of the subpopulations.  In 
regulatory setting, when trial data fail to provide significant evidence to reject the null 
hypothesis for the overall population, and the subgroup analysis indicates clinically, but 
not statistically, significant treatment effect on some of the subpopulation, the usual 
approach trial sponsor takes is to design a new trial that is specifically targeting at the 
promising subpopulation so that the new trial is powered to reject the null hypothesis for 
that subpopulation. Essentially the first trial serves as an exploratory study for the second 
trial that is tailed to the specific subpopulation. This two-trial approach is not cost-
efficient and can be very time consuming for the industry to seek regulatory approval for 
their product.  Adaptive design has been proposed in the literature to streamline trials to 
hopefully increase the chance of getting a success trial, in addition to shorten the trial 
time and decrease the cost. For example, Follmann (1997) presented a large class of 
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useful enrichment designs to adaptively change subgroup proportions in trials. See 
Rosenblum and Van der Laan (2011) for a comprehensive review of adaptive 
methodologies in the literature. In this paper, we focus only on the adaptive strategy 
proposed by Rosenblum and Van der Laan (2011), and apply this method to a clinical 
trial data set.   

 
 

2. A Two-stage Adaptive Enrichment Design 
 
Rosenblum and Van der Laan (2011) proposed a general method for constructing two-
stage randomized enrichment designs that allow changes to the population enrolled based 
on interim data using a pre-specified decision rule. The aim of these designs is to improve 
overall power and better determine subpopulation-specific treatment effects, while the 
asymptotic, family-wise type I error rate is strongly controlled at a specified level α.  
Here is a simple description of the settings of the general clinical studies Rosenblum and 
Van der Laan (2011) focused on. A typical two-arm randomized clinical trial is 
considered where participants are enrolled and randomly assigned to one of the treatment 
arms: test arm treated with experimental treatment or therapy and control arm receiving 
some control therapy. The overall target population consists of two non-overlapping 
subpopulations, subpopulation 1 and subpopulation 2. For example, subpopulation 1 
consists of all males and subpopulation 2 of all females. Under this setting, there are three 
questions the trial data can help answer: the experimental treatment works better than the 
control on overall population, experiment treatment only works on subpopulation 1 or 
only works on subpopulation 2.  
 
The following is a brief description of Rosenblum and Van der Laan’s (2011) general 
adaptive methodology tailed to the clinical trial setting mentioned above. Suppose the 
primary endpoint for the trial is some variable, denoted by X, with higher value of X 
being more desirable, and the treatment effect is assessed through looking at the mean 
difference of variable X between the two comparing treatments. Let H01 denote the null 
hypothesis for subpopulation 1, that the mean under the new treatment is less than or 
equal to the mean under the control. In an analogous manner, define the null hypothesis 
H02 corresponding to subpopulation 2, and the null hypothesis H0a corresponding to the 
total population.  The trial is divided into two stages, and the total number of subjects to 
be enrolled in stage 1 and stage 2 is pre-specified and can not be changed. At the end of 
stage 1, three test statistics, Ta

(1) , T1
(1), and T2

(1), corresponding to the standardized 
difference in mean values of X between treatment and control arms for subjects in the 
total population, in subpopulation 1 and in subpopulation 2, respectively;  are calculated. 
According to a pre-specified decision rule, enrollment plan for stage 2 subjects can be 
decided from the two possible choices: (i) continue enrolling from both subpopulations in 
the same way as in stage 1 or (ii) enroll subjects only from the subpopulation s ∈ {1, 2} 
corresponding to the larger of the stage 1 test statistics, T1

(1) and T2
(1). A test statistic Ti

(2) , 
based on stage 2 data only, can be calculated in a similar way when stage 2 data are 
available, where i ∈ {a, 1, 2}, depending on the actual enrollment plan for stage 2.  At the 
end of the trial, a final test statistic T is computed leading to a possible rejection of one of 
the three null hypotheses {H0a, H01, H02}. This final test statistic T is calculated in a 
conventional way, as it is a weighted combination of the test statistic Ta

(1), which pools all 
stage 1 data from both subpopulations, and the test statistic Ti

(2), which pools all stage 2 
data. The corresponding weights are the proportions of enrolled subjects in each stage. If 
the final test statistic T exceeds a threshold c, which turns out to be the usual critical 
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value for fixed trial design, null hypothesis corresponding to the subpopulation, or the 
total population, selected for enrollment in stage 2, will be rejected.   
 
There are some interesting features of this adaptive enrichment procedure that make it 
different from other designs in the literature. The first feature is that all stage 1 data are 
used in the final testing regardless the null hypothesis that end up being tested in the 
final. For example, enrollment decision after the interim data analysis is that only patients 
from subpopulation 1 would be enrolled for stage 2, but data from subpopulation 2 in 
stage 1 would still be used in the final test statistic, even when the final hypothesis tested 
concerns only subpopulation1. The second feature of this design is that the final decision 
is “random”, here “random” means that we do not know, before we see the trial data, 
which null hypothesis, among the three possible null hypotheses, will be tested at the end 
of the trial. The third feature of this adaptive design is that the final test statistic is 
calculated in a conventional way and the testing of the hypothesis is conducted in a 
conventional way also, even when the trial is modified midway. Usually some type of 
penalty, either by combining data from two stages in an unconventional way or by raising 
the threshold in testing procedure or, is needed to control the type I error rate when some 
aspect of the trial design is adapted. It seems  Rosenblum and Van der Laan’s design 
requires no penalty to offset the gain of the power through adaptation. Rosenblum and 
Van der Laan (2011) provided some intuitive explanation for this. They argued that the 
aforementioned first feature of the design is actually the way this design pays the penalty 
when enrollment plan is changed, and their theoretical proof showed that the asymptotic, 
worst-case, family-wise Type I error rate for a wide range of enrichment designs is 
strongly controlled for their proposed trial design.  
 

 
3. MADIT- CRT Trial  

The MADIT-CRT trial is Boston Scientific’s Multicenter Automatic Defibrillator 
Implantation Trial – Cardiac Resynchronization Therapy study. The goal of this 
randomized study is to determine whether Cardiac Resynchronization Therapy 
Defibrillators (CRT-D) in high-risk heart failure (HF) patients will reduce the combined 
endpoint of all cause mortality or HF intervention when compared to implantable 
cardioverter defibrillator (ICD) therapy. CRT-D provides two functions.  As an 
implantable cardioverter defibrillator (ICD) it senses dangerous abnormal heart rhythms 
and then attempts to shock the heart back into a normal rhythm. As cardiac 
resynchronization therapy, it generates small electrical impulses to coordinate the beating 
of the left and right ventricles so that they work together more effectively to pump blood 
throughout the body.  The MADIT-CRT trial enrolled a total of 1820 patients from 110 
centers in 14 countries. Among them 1089 were randomized into CRT-D arm and 731 in 
ICD arm. The primary endpoint is all-cause mortality or heart failure intervention, 
whichever occurs first. The following table showed the data from the overall population. 

Table 1: Data from Overall Population 

 Test Arm  Control Arm Hazard Ratio (HR), 95% CI for HR 

Subject number 1089 731 HR=0.62 

95% CI of HR: (0.50, 0.75) 
Event number  208 208 
Event Rate 19.1% 28.4% 
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The above data demonstrated that early CRT intervention reduces the relative risk of all-
cause mortality or first heart failure event when compared to ICD therapy. During the 
review of data for the pre-market approval (PMA) application, subgroup analysis for a 
wide range of different subgroups were conducted and a significant interaction between 
treatment and bundle branch block morphology was detected. Left Bundle Branch Block 
(LBBB) is a marker of an electrical conduction disorder in the heart and has been 
associated with a greater benefit in patients receiving CRT, further analyses revealed that 
LBBB is an objective discriminator of patient benefit from CRT-D (primary endpoint) 
regardless of other baseline characteristics. For MADIT-CRT trial, there were 1281 and 
539 patients in LBBB subpopulation and no-LBBB subpopulation. The following two 
tables displayed the primary endpoint results for the two non-overlapping subpopulations.  

Table 2: Data from LBBB subpopulation 

 Test Arm  Control Arm Hazard Ratio (HR), 95% CI for HR 

Subject number 761 520 HR=0.43 

95% CI of HR: (0.33, 0.56) 
Event number  120 162 
Event Rate 15.8% 31.1% 

Table 3: Data from no-LBBB subpopulation 

 Test Arm  Control Arm Hazard Ratio (HR), 95% CI for HR 

Subject number 328 209 HR=1.32 

95% CI of HR: (0.85, 2.04) 
Event number  81 41 
Event Rate 24.6% 19.6% 

The MADIT-CRT data indicated a quantitative interaction between treatment and the 
LBBB subgroup: the LBBB subpopulation benefits greatly from CRT-D, but not no-
LBBB subpopulation. And it seemed that the observed statistically significant treatment 
effect on the overall population is largely driven by LBBB subpopulation which 
constituted 70% of the enrolled patients in the trial. Because of this finding, Boston 
Scientific’s CRT-D indication is limited to sub-population of MADIT-CRT patients with 
left bundle branch block morphology. An interesting intellectual exercise is to apply the 
enrichment trial design proposed by Rosenblum and Van der Laan (2011) to the MADIT-
CRT data and see whether the new enrichment design would lead to something different.  

 
4. Application of the Enrichment Design to MADIT- CRT Trial Data  

 
The application of the new enrichment trial design requires specification of some design 
parameters. Sample sizes for stage 1 and stage 2 are specified as 910, which is half of the 
total enrollment in MADIT-CRT trial. Proportion of LBBB subpopulation is specified as 
70%, which is close to the observed proportion in MADIT-CRT trial. Interim decision 
rules need to be pre-specified before data available.  In this paper, we look at two 
decision rules at the interim analysis: 

• Decision rule (1): enroll from overall population if Ta
(1) > 1.5; else enroll only the 

subpopulation corresponding to larger Ti
(1) . 
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• Decision rule (2): If T1
(1)  and T2

(1)  have different signs, then two subpopulations 
are not poolable, enroll only the subpopulation corresponding to positive Ti

(1); 
else enroll overall population. 

 
The advantage of decision rule (1) is it provides more chance of testing null hypothesis 
for the overall population. Medical product industry that seeks regulatory approval for 
their product may prefer this decision rule.  
 
Decision rule (2) emphasizes the poolability of the two subpopulations. If prior data 
indicated possible heterogeneity of the two subpopulations, trial designs utilizing 
decision rule (2) can provide higher power to reject the null hypothesis for one 
subpopulation. This can be an advantage and a disadvantage for the medical product 
company, since the product can have a higher chance to be approved for one 
subpopulation and at the same time the other subpopulation would be excluded from the 
indication.  

 
In this paper, the MADIT-CRT data were randomly split into half and half, with the first 
half serving as stage 1 data. The following three tables showed the primary endpoint 
results for overall population, LBBB subpopulation and no-LBBB subpopulation based 
on the stage 1 data.  

Table 4: Stage 1 Data from Overall Population 

 Test Arm  Control Arm Test Statistic 

Subject number 542 368 Ta
(1) =1.8638 

 
Event number  94 83 
Event Rate 17.3% 22.6% 

 

Table 5: Stage 1 Data from LBBB Subpopulation 

 Test Arm  Control Arm Test Statistic 

Subject number 378 265 T1
(1) =2.932 

 
Event number  52 61 
Event Rate 17.3% 22.6% 

 

Table 6: Stage 1 Data from no-LBBB Subpopulation 

 Test Arm  Control Arm Test Statistic 

Subject number 164 102 T2
(1) = - 0.6022 

 
Event number  42 22 
Event Rate 25.6% 21.6% 
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a) Under decision rule (1), the enrollment plan for stage 2 is to enroll 910 patients from 
the overall population as the test statistic for overall population, Ta

(1) =1.8638, is larger 
than the cut-off value of 1.5. So there is no change in trial design and the trial is 
essentially a group sequential design. The following table presented the primary 
endpoint results for stage 2 data when enrolled from the overall population. 

Table 7: Stage 2 Data from Overall Population 

 Test Arm  Control Arm Test Statistic 

Subject number 547 363 Ta
(2)=4.1138 

 
Event number  94 105 
Event Rate 17.1% 28.9% 

Data from two stages were combined using weighted average of the tests Ta
(1) and Ta

(2)
: 

 

The final test statistic T is larger than the conventional critical value of 1.96, therefore we 
can reject H0a at the 5% significance level and concluded that CRT-D provided more 
benefit than the control ICD for the overall population. 

b) Under decision rule (2), we looked at the signs of the two statistics, T1
(1)  and T2

(1)  
corresponding to two subpopulations. Table 5 and 6 indicated the two statistics, 
T1

(1)=2.932  and T2
(1) = -0.6022,  having different signs, so the enrollment plan for stage 

2 is to enroll 910 patients from the LBBB subpopulation only as the test statistic for this 
subpopulation T1

(1) is positive. This is an enrichment design where the LBBB 
subpopulation, which showed greater treatment benefit of the CRT-D through the 
interim data, is enriched by stage 2 data. For the MADIT-CRT trial data, there were 
only 638 LBBB patients left in the remaining stage 2 data, but the enrollment plan 
requires enrolling a total of 910 LBBB patients. One possible solution is to bootstrap 
910 subjects from the 638 LBBB patients. The following table gave the primary 
endpoint results for stage 2 data from LBBB subpopulation using bootstrap. 
 

Table 8: Stage 2 Data from LBBB Subpopulation after Bootstrap 

 Test Arm  Control Arm Test Statistic 

Subject number 542 368 T1
(2) =6.7364 

 
Event number  79 117 
Event Rate 14.2% 33.2% 

To calculate the final test statistic T, we combine data from two stages using weighted 
average of the tests Ta

(1) and T1
(2)

: 
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The final test statistic T is larger than the conventional critical value of 1.96, therefore we 
can reject H01 at the 5% level and concluded that CRT-D provided better benefit than 
ICD for LBBB subpopulation. Note that the final conclusion concerns LBBB 
subpopulation only, but data from no-LBBB subpopulation are used in reaching that 
conclusion through stage 1 test statistic Ta

(1).  From table 6 we can see that no-LBBB 
subpopulation in stage 1 contributed negatively to the overall stage 1 data Ta

(1),  therefore 
including this unfavorable data in the final testing is the built-in statistical correction (or 
penalty) to control the type I error rate after adaption.  

 
5. Discussion 

 
From section 4 we see that different conclusions are reached for the same MADIT-CRT 
trial data when the trial is designed under different decision paths. It shows the critical 
role of the interim decision rule for this adaptive enrichment trial design. As mentioned in 
section 4, medical product sponsor may prefer decision rule (1) so their product can get 
approval in a wider patient population. However, regulatory agency may prefer decision 
rule (2) as that decision rule provides more chance of protecting some subpopulation 
from exposing to the potentially risky treatment, if early data provided some evidence of 
no treatment benefit for this subpopulation. In the MADIT-CRT trial example of section 
4, we see that if decision rule (2) is utilized in the trial, then no no-LBBB subpopulation 
patients would be enrolled in stage 2 and therefore the 272 (=910-638) no-LBBB patients 
could have avoided exposing themselves to the potentially risk treatment of CRT-D. At 
the trial design phase, if this enrichment adaptive methodology is being considered for 
the study, trial sponsor and regulatory agency should work closely together to decide and 
agree upon the right interim decision rule. The overall trial goal and the clinical relevance 
should be considered in working on the decision rule for the interim analysis.  

 
Rosenblum and Van der Laan (2011) showed in their paper that the family-wise type I 
error rate is strongly controlled under the proposed class of decision rules. The two 
decision rules considered in section 4 are members of that class of decision rules, the 
critical value of 1.5 used in decision rule (1) is arbitrarily chosen, and the criteria of 
poolability of the two subpopulations used in decision rule (2) is quite arbitrary also. A 
natural question to ask is does the critical value in those decision rules have any impact 
on the operating characteristic of the trial design? We conducted two simulation studies 
to help answer this question. 

 
Simulation study 1: the impact of critical value of c1 under decision rule (1) on the 
overall power of the enrichment adaptive design. In this simulation study, we focus on 
decision rule (1): enroll from overall population if Ta

(1) > c1; else enroll only the 
subpopulation corresponding to larger Ti

(1). We let c1 take values in the range of (0.2, 
1.8) in the simulation. A total of 920 subjects are simulated from some binomial 
distributions, among them, 70% are from subpopulation 1 and 30% are from 
subpopulation 2. The success rates for test arm of subpopulation 1, control arm of 
subpopulation 1, test arm of subpopulation 2 and control arm of subpopulation 2 are 0.86, 
.72, 0.75, and .80, respectively. Half of them are used as stage 1 subjects. The trial is 
simulated 100,000 times and the overall power (rejecting any null hypothesis) under 

Biopharmaceutical Section – JSM 2012

637



decision rule (1) is calculated. The following graph showed the plot of power vs. c1.

 
Figure 1: power as a function of cut-off value c1 

 
It can be seen from Figure 1 that the overall power is an increasing function of cut-off 
value c1. Under decision rule (1), larger cut-off value c1 means higher standard of 
significance for overall population, which leads to smaller chance of enrolling overall 
population, and then more chance to enroll better subpopulation, and therefore leads to 
higher overall power. 
 
Simulation study 2: the impact of poolablility criteria c2  under decision rule (2) on the 
overall power of the enrichment adaptive design. In this simulation study, we focus on 
revised decision rule (2): enroll from overall population if |T1

(1) –T2
(2)

 |< c2; else 
enroll only the subpopulation corresponding to larger Ti

(1). We let c2 take values in 
the range of (0.2, 1.8) in the simulation. The simulation parameters used in simulation 
study 2 are quite similar to simulation study 1:  a total of 920 subjects are simulated from 
some binomial distributions, among them, 70% are from subpopulation 1 and 30% are 
from subpopulation 2. Half of them are used as stage 1 subjects. The trial is simulated 
100,000 times and the overall power (rejecting any null hypothesis) under decision rule 
(2) is calculated. We tried a range of success rates for the four strata: test arm of 
subpopulation 1, control arm of subpopulation 1, test arm of subpopulation 2 and control 
arm of subpopulation 2. Note that decision rule (2) provides higher power when there 
exists heterogeneity between the two subpopulations. Here we presented the simulation 
results when the two subpopulations are quite different. The following graph showed the 
plot of power vs. c2. 
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Figure2: power as a function of poolability criteria c2 

 
It can be seen from Figure 2 that the overall power is a decreasing function of cut-off 
value c2. Under revised decision rule (2), smaller cut-off value c2 means higher standard 
for poolability, which leads to smaller chance of enrolling overall population, and then 
more chance to enroll better subpopulation, and therefore leads to higher overall power. 
 
The two simulation studies further supported our position that the interim decision rule is 
really important for utilizing this adaptive enrichment design. Careful planning is 
essential in adopting this methodology to a clinical study. 
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