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Abstract 
Parameter estimation in the pharmacokinetics requires a probability theoretical model. 

One often uses a regression formula with a random error term. Another approach is de-

veloped here. Random variable is the residence time of a drug molecule in the individual. 

Its probability distribution is derived from the pharmacokinetic model via the related 

ordinary differential equations. The related parameter estimation is calculated according 

to the varied minimum-  -method from the measured concentration values. The applica-

bility of this procedure was examined for certain classic compartment models.  Examples 

and counterexamples are given. If the varied minimum-  -estimation exists, it is unique-

ly determined and consistent. The test of Pearson then can be used for the model choice. 

 

Key Words: Pharmacokinetics, compartment model, residence time distribution, mini-

mum-   parameter estimation 

 

 

1. Introduction 

 
If a mathematical model is formulated for the change of the concentrations of drugs in an 

organism over time, then it is to be biochemically, physiologically, etc. verified in a tech-

nical context. The a-posteriori selection of a model can't do without a mathematical char-

acterization of the decision rule and the related calculation methods. Well-founded rules 

for decisions should be formulated. The judgment of the compatibility of measurements 

with a function chosen for the description of them is a generally formulated task. For 

experimental evaluations, statistical methods are preferred in which experimental plan-

ning (in the statistical sense), parameter estimation and tests of goodness of fit infer the 

ideal problem solution. 

 

The typical pharmacokinetic experiment consists in drug concentration measurements 

    at an individual at different times             So an individual kinetics is looked 

at. In a population kinetic context, samples                      of   such indi-

vidual kinetics are evaluated. It is clever to measure they at the same     for each individ-

ual. The statistical methods found in literature about parameter estimation and model 

choice, respectively, refer mainly to regression models  

     (  )              
Here             is a random vector, its realizations             are the measured 

concentrations at times    and  ( ) is a model function. The error terms     are understood 

as random variables. It is well known, that the ordinary Least-squares-method is a best 

linear unbiased estimator for the parameters of a linear model function, e.g. ( )     
        

  , whenever the error terms are uncorrelated, homoscedastic and have expec-
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tation zero. This is no longer true, when the model function is proper nonlinear in its pa-

rameters. Such functions are typical of the pharmacokinetics, e.g.     ( )         (   ) . 

The Maximum-likelihood-method (ML-method) allows the parameter estimation in such 

situations and is preferred because of its asymptotic properties concerning efficiency, 

unbiasedness and normality. It requires the knowledge of the probability distribution of 

the random vector (         ). The parameters to be estimated have to be parameters 

of this distribution. Usually normal distributions are presupposed. An error variance 

model is required besides that. The ADAPT software package [10] offers a comfortable 

environment for modeling, parameter estimation and simulation experiments in pharma-

cokinetics. Weighted Least-square-estimation, ML estimation, Generalized-least-square-

estimation and Bayesian estimation are there available to calculate model parameters 

from a set of individual kinetics. Considerable numerical efforts are involved in these 

procedures. The specific pharmacokinetic models, measurement plans and error models 

are mathematically developed and explained in the user manual of ADAPT. Further 

commercial software packages to the pharmacokinetics are in use. There is an extensive 

literature to regression models and related ML parameter estimations in general. 

 

The typical pharmacokinetic experiment consists in drug concentration measurements 

    at an individual at different times             So an individual kinetics is looked 

at. In a population kinetic context, samples                      of   such indi-

vidual kinetics are evaluated. It is clever to measure they at the same     for each individ-

ual. The statistical methods found in literature about parameter estimation and model 

choice, respectively, refer mainly to regression models  

     (  )              
Here             is a random vector, its realizations             are the measured 

concentrations at times    and  ( ) is a model function. The error terms     are understood 

as random variables. It is well known, that the ordinary Least-squares-method is a best 

linear unbiased estimator for the parameters of a linear model function, e.g. ( )     
        

  , whenever the error terms are uncorrelated, homoscedastic and have expec-

tation zero. This is no longer true, when the model function is proper nonlinear in its pa-

rameters. Such functions are typical of the pharmacokinetics, e.g.     ( )         (   ) . 

The (ML)-method allows the parameter estimation in such situations and is preferred 

because of its asymptotic properties concerning efficiency, unbiasedness and normality. It 

requires the knowledge of the probability distribution of the random vector 
(         ). The parameters to be estimated have to be parameters of this distribu-

tion. Usually normal distributions are presupposed. An error variance model is required 

besides that.  

The ADAPT software package [10] offers a comfortable environment for modeling, pa-

rameter estimation and simulation experiments in pharmacokinetics. Weighted Least-

square-estimation, ML-estimation, Generalized-least-square-estimation and Bayesian 

estimation are there available to calculate model parameters from a set of individual ki-

netics. Considerable numerical efforts are involved in these procedures. The specific 

pharmacokinetic models, measurement plans and error models are mathematically devel-

oped and explained in the user manual of ADAPT. Further commercial software packag-

es to the pharmacokinetics are in use. There is an extensive literature to regression mod-

els and related ML parameter estimations in general. 

Nonparametric statistical procedures that make as few assumptions as possible necessary, 

may serve for the selection of models due to the judgment of the error terms. This in-

cludes sign and rank tests which are recommended for the application in the pharmacoki-

netics and compared with other decision criteria in [17]. With look at regression models 
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one can watch in the literature concerning pharmacokinetics, the errors    are presup-

posed to be stochastically independent. Variance equality is usually accepted. Hypothesis 

examination is carried out by means of methods which are justified for linear statistical 

models with regard to suppositions of normal distributions. In [2] , [3], [17] and [23] the 

variance of the residuals is judged with the F-test. This test is here for the choice of mod-

els mathematically not well-founded, but for the situation however practicable. The dif-

ferent nature of observed time courses of concentration is discussed regarding an analysis 

of variance in [14]. The sum   of weighted quadratic residuals, as well as the number   

of parameters to be estimated have influence on the criteria of goodness of fit by Akaike 

[1] and Schwarz [20]. The Akaike criterion was applied to pharmacokinetic examples by 

[24]. Normally distributed  residuals were assumed. The authors came to the conclusion 

that for the observed data sets the Akaike and F-test both lead to the same model selec-

tion. The same criteria are compared in [16], on the basis of Monte-Carlo simulations 

though. There are further empirical methods of the model choice. Here for example the 

models are linearized and graphic representations are judged.  

 

In this contribution another approach is proposed concerning the simultaneous parameter 

calculation and model choice for the classical pharmacokinetic compartment models. The 

residence time of a pharmaceutical molecule is considered a random variable. Its proba-

bility distribution is derived from the differential equation defining the respective com-

partment model. In comparison to regression attempts, assumptions on the distribution 

and properties of error terms are not necessary. The measured concentrations      are not 

a direct observation of residence times. Therefore the standard ML-method is not appli-

cable. Instead one gets the estimates of parameters from the varied Minimum-  -method. 

This allows the application of the classical   -test of goodness of fit from K. Pearson for 

the model choice. The proofs of the below formulated propositions are omitted here. One 

will find it in a book which is just prepared for publication [5]. 

 

 

2. Compartment models 

 
In the medicine compartment models are used e.g. in pharmacokinetics (the first mono-

graph on pharmacokinetics is [12] ) and in urea kinetics (e.g. [19]) to describe the time 

course of the concentrations of the substance being in observation. The method is taken 

from chemical reaction kinetics.  

The so-called One-compartment-model for iv bolus administration describes the time 

course of a substance administered rapidly at time zero,    , to a body, which is re-

garded to be a single homogeneous compartment. The related differential equation is the 

diffusion equation 
 

  
 ( )       ( ) 

 

with time    , elimination constant       and initial value  ( )    . The unique 

solution to this homogeneous linear differential equation with constant coefficient is 

 ( )       (     ).  

The inhomogeneous linear problem, the so-called One-compartment-model with first 

order input, 

 
 

  
 ( )      ( )       

    (    )                      
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  is here the value of the first order input function at time equals zero, has the unique 

solution 

 

 ( )    
               for           and 

 

 ( )   
    

      
  [              ]     for         , abbreviated 

 

 ( )     [           ]  . 
 

The so-called system parameters       are functions of the model parameters      , 

     and the initial condition   
   .  

The Two-compartment model of the pharmacokinetics is given by the differential equa-

tion system 
 

  
 ( )     ( )   ( ) 

 

with the transposed compartments concentration functions vector  ( )  [  ( )   ( )]
 , 

the transposed compartments input functions vector  ( )  [  ( )   ( )]
 , and the model 

parameters matrix 

  (
 (       )    

    (       )
). 

 

Here the model parameters       are the transfer parameters from compartment i to 

compartment j and     the compartments elimination parameters. For simplicity, we con-

sider the situation  ( )  [   ] , i.e. there is iv bolus drug administration only in the 

compartment number one and the initial conditions are   ( )      and    ( )    . The 

solutions to this so-called Two-compartment-model for iv bolus administration arise with 

the known standard methods. To specify the Two-compartment-models for iv bolus ad-

ministration, for the model parameters we write 0 for       and     for       in the 

following and call it (                ) -Two-compartment-model for iv bolus admin-

istration. There are 16 different such Two-compartment-models for iv bolus administra-

tion depending on whether the model parameters are different from zero. Models which, 

however, contain compartments with output but without input are left out as well the 

trivial model with model parameters all zero. Nine models remain in the consideration. 

Among them are (          )  and (            )  the One-compartment-model for iv 

bolus administration and the One-compartment-model with first order input, respectively. 

Additionally, the solutions to the differential equation system require case distinctions. 

The relations between the model parameters and the system parameters, calculable from 

the data, get complicated with that [4]. 

 

  

3. Residence time distributions related to compartment models 

 
The parameters of the above established compartment models shall be calculated as well 

as the goodness of fit shall be judged with statistical methods. The measurements of an 

individual kinetics serve as data. So a probability theoretical model of the drug disposi-

tion process which corresponds with the compartment model is needed.  

Every non-negative continuous real function with integral equals 1 over the whole set of 

real numbers defines a probability distribution. Probability densities can be produced 
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from suitable solutions to differential equations this way. Well known is the Pearson fam-

ily of probability distributions [13]. A probabilistic model of the drug disposition process 

which corresponds with the deterministic compartment model in a canonical way is 

sought. Random variable is the residence time of a drug molecule. Its probability distri-

bution has to be defined. Does a solution to the Two-compartment-model for iv bolus 

administration generate the associated residence time distribution? Statistical parameter 

estimations and tests are possible in these cases. 

Residence time distributions and their connection to compartment models were studied 

under different points of view ([15], [22], [4], [6], [25], for example). A complete de-

scription of the residence time distributions associated to the Two-compartment-model 

for iv bolus administration one will find in [5]. In this contribution we restrict ourselves 

to examples. 

 

Definition 1 

Let   ( )   (         ) be a function that corresponds with one of the observed com-

partment models, is dependent on system parameters         and is integrable on the 

whole set of nonnegative real numbers. Then 

  ( )  
 ( )

   
 

with  

    ∫  ( )    
 

 

 

denotes the standardized concentration-time function of  ( ).                                     ∆ 

 

Not every function  ( ) associated with a compartment model can be assigned a stand-

ardized function   ( )  The function  ( )      (  )    is among the solutions of a 

two-compartment model and only locally integrable. 

 

The duration of presence, synonymously: residence time, of a drug molecule in an organ-

ism is regarded to be a random variable    
 

Definition 2 

With respect to a compartment model, let   ( ) denote the drug quantity of applied dose 

    eliminated from the organism up to time    The probability distribution of    is de-

fined as 

  ( )      (   )  
  ( ) 

   
    

  

the density is denoted by   ( )  Mass and concentration are in the relation  ( )    ( )  
The distribution volume   is regarded as constant.                                                            ∆ 

 

Agreement: Densities and distributions are defined on the whole set of real numbers per 

definitionem. Followingly we ignore the extension with zero of these functions   ( ) and 

  ( ), respectively, on the negative real numbers because of a simpler notation. 

 

We consider now as examples the simplest cases. 

 

Proposition 1 

For a One-compartment-model for iv bolus administration, the residence time of a drug 

molecule is exponentially distributed, 
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  ( )    ( )        
          

                                                                                             ∆ 

 

Proposition 2 

The following is valid under the assumption         for the One-Compartment model 

with first order input: 

 

1. The random variable   has the distribution function   

 

  ( )     
     

      
  [

        

  
  

       

   
]      

 

2.    ( )    ( ) is valid for the density function. 

 

3.   ( ) is the linear combination of the densities of two exponential distributions.         ∆ 

 

 

Proposition 3 

The following is valid under the assumption           for the One-Compartment 

model with first order input: 

 

1. The random variable   is Gamma distributed and has the distribution function  

 

  

  ( )     (    )          
 

2. The following is valid for the density function: 

 

  

  ( )    ( )                
                                                                                                                                             ∆ 

 

The proofs of these propositions are straightforward. Calculate the solutions to the differ-

ential equation system according to the given conditions, calculate the standardized con-

centration-time functions according to the definition, calculate the probability distribu-

tions according to the definition. Use the mass balance equation      ( )    ( )  
From a systematic of the case distinctions one obtains explicit the residence time distribu-

tions related to the Two-compartment-model for iv bolus administration. They exist as 

functions of the concentration course in the drug administration compartment for the 

models (          ) , (            ), (              ), (              ). The residence 

time distribution densities are linear combinations of the standardized concentration-time 

functions     
( )  and     

( )  for the models  (              ) and  (                ) . 

One will be able to find more details in [5]. A sufficient condition for the coincidence of 

residence time density and standardized concentration-time function gives 

 

Proposition 4 

The residence time   of a molecule in an organism is a continuous distributed random 

variable with density    ( ). Elimination of the pharmaceutical is only carried out in the 

observation compartment. Quantity and concentration in the observation compartment are 
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connected by the equation  ( )    ( ) and   is a constant distribution volume. The 

elimination can be described by   
 ( )     ( )       Here     is an elimination constant. 

Then the following is valid: For every density   ( )  a time course of concentration  ( ) 

exists such that    ( )    ( ). 

                                                                                                                                             ∆ 

 

Not every one of the Two-compartment-models for iv bolus administration corresponds 

with a residence time distribution. It should be stressed that the distribution functions are 

independent from the applied drug quantity     and that the densities correspond with 

the observable time courses of concentration. 

The correspondence of residence time density and standardized concentration-time func-

tions is fundamentally based on the qualities of the pharmacokinetic model: Consider a 

so-called elimination process of 0-th order     ( )      ,   ( )    . In our context, the 

solution only applies to the interval [       ⁄ ]  where it is not negative. One goes over of 

the concentration-time-course to the mass-time-function by introducing the constant dis-

tribution volume    The residence time distribution    ( )          ⁄   one obtains via 

the mass balance equation. It is dependent from       In addition,   ( )    ( ). 

 

 

4. Parameter estimation: The varied Minimum-  -method 

 
The calculation of the parameters of a pharmacokinetic model is now formulated as a 

statistical problem of density parameters estimation. The random variable   is the resi-

dence time of a drug molecule in an organism. The parameters of its probability distribu-

tion can be estimated from samples. It is necessary to know its relations to the 

pharmacokinetic model for the interpretation of results. The residence times of the 

applied drug molecules shall serve as a concrete sample. To obtain a sample 

therefore indicates supplying the organism with a number of molecules and regis-

tering the residence time of every molecule. Four points of view require discus-

sion with regard to the sampling method:  

 

1. It must be assumed that the residence times of the single molecules are stochas-

tically independent. This prerequisite is necessary to be able to use basic state-

ments of the statistical estimation theory. On the other hand it is also essential for 

a theory of distribution processes at a molecular level, see [22] and in a more gen-

eral setting [8]. One surely will accept the independence at low drug concentra-

tions. Saturation as known for drug transporters or metabolizing enzymes can be 

an argument against independence. Pharmacologists have to decide the ac-

ceptance of the assumption at the end. 

2. A measurement     of concentration at    isn't realization of the residence time 

of a molecule. It has a summarizing character. Therefore, standard maximum-

likelihood methods can't be used for parameter estimations. These require 

knowledge of the numerical values that the residence time takes on in a concrete 

sample. Residence times of single molecules are not available from the classical 

pharmacokinetic experiment. 

3. The molecules however aren't actually detected one by one when a concentra-

tion is measured. Certain units of mass are counted. The precision of the method 

of measurement is contemplated here. According to this, the sample size   is con-
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sidered to be the integral multiple of the unit of administered drug mass. Such a 

specification is also found in kinetics of chemical reactions: The equations formu-

lated for molecules are only the model of thought for the relation between the 

amounts of substances that are, for example, measured in Mol. 

4. If the last measurement of concentration yields an observed value considerable 

above zero, then the lifetime of a part of the elements of the sample wouldn't be 

recorded by the observation. However, transition to a truncated distribution is 

possible. This requires an interpretation of results with respect to the truncation. 

 

From the observation of the concentration-time course one gets residence time 

data in grouped form. The standard statistic for evaluation of such data is the   -

statistic. Two problems can be processed with that, parameter estimation and 

model choice as a statistical test. As is well known, using the same data twice in 

subsequent statistical procedures is problematic. It is an advantage of the   -test 

that merely a loss of degrees of freedom arises here. 

Let   be the cell number and   the number of parameters to be estimated. The 

asymptotic distribution of the   -test statistic is the   -distribution with     
  degrees of freedom if the parameters were estimated according to the varied 

Minimum-  -method. This is also right for the ML-estimated parameters if this 

estimation is based on the group frequencies of grouped data. The   -test statistic 

does not have any limiting   -distribution in general, when the ML-estimation of 

the parameters stems from the original sample data [7]. A direct comparison of 

  -estimation and ML-estimation for medium sample situations can be carried 

out with simulation studies. The Minimum  -estimation is a special kind of the 

minimum distance estimation method and has a very welcome robustness proper-

ty: Accepted the real but unknown watched residence time distribution  ( ) is not 

member of the distribution family which was developed from the compartment 

model. That means the proposed model is incorrect. Then a minimum distance 

estimator is a consistent estimator for the specific parameter, which selects the 

best approximation of  ( ) in the parametric distribution family [18]. So the ro-

bustness ensures a certain compensation of the model error. This must be taken 

into consideration since the data also contain information about disturbance varia-

bles as well as measuring errors.  

The varied Minimum-  -method is chosen here for the construction of parameter 

estimates in connection with pharmacokinetic models. This corresponds with the 

interpretability of the pharmacokinetic experiment as a sample procedure, makes 

propositions concerning the qualities of possible estimators, and permits the use 

of the statistical test theory for the treatment of the problem concerning the selec-

tion of a model. The varied Minimum  -method is explained in such a way now 

as it is needed for the Two-compartment-models for iv bolus administration. As 

calculation example an One-compartment-model for iv bolus administration was 

selected for the sake of simplicity. 

  (         )  denotes the density of the continuous random variable   which 

is dependent on parameters   .         with       is a disjoint partition of the 

real range of  . The associated probabilities are     (    ) with      
     and        (       ) .    is the number of observations in    and 
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       is the number of realizations of   in    expected with regard to    in a 

sample of size  . If 

     (       )  ∑
(     )

 

  

 

   
 

 

reaches a minimum at ( ̂     ̂ ) , then ( ̂     ̂ ) is called a Minimum-  -

estimate for (       ). Suppose    is differentiable with regard to   .  

 
 

   
  ( ̂     ̂ )                  

 

are necessary conditions that ( ̂     ̂ ) is an extreme value of   . The follow-

ing simpler system of equations can be obtained when the denominator of    is 

viewed as a constant: 

 

∑
(     )

  

   

   
                   

 

   
 

 

Its' solutions yields the so-called varied Minimum-  -estimates of the parameters. 

The problem of parameter estimation in Two-compartment-models for iv bolus 

administration is now examined with regard to this method. The measuring times 

             yield a partition    [       ) of  [       ) in     intervals as 

well as the set of nonnegative real numbers in     intervals. The latter are the 

ones mentioned before as well as [    )  and   [    ). The number    of drug 

molecules observed in    is proportional to the integral over the interval [       )  

of the observed concentration-time function  ( )  An approximation is required to 

more accurately denote the observed function  ( )  from the measurements 

             on hand. Interpolating cubic spline functions are suitable for 

this. The number    of expected realizations in    of   arises from the knowledge 

of   ( ) and is calculated as 

 

        ∫   ( )     
    

  

 

 

The sample size   can be obtained by the area under the spline function.     or 

   and    or    correspond with the intervals  [    )  and [    ) , respectively. 

Two problems need to be solved in order to be able to estimate the parameters of 

the residence time distribution of interest by means of the Minimum-  -method. 

First, an incomplete observation of the process influences the parameter estima-

tion. This is expected when  (    )   (    ) has a noteworthy magnitude. 

A way out could be the consideration of truncated densities. But this leads to a 

modification of the pharmacokinetic model. 

Second, if   ( ) represents a linear combination of the densities of two standard-

ized  ( )-functions, then the expected values    aren't only dependent on one of 
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the two functions   ( ) anymore. In these cases, the observations of only one of 

the courses    ( ) , or  ( ), isn't enough to indicate the realizations of the random 

variable. The number of drug molecules observed in a single compartment isn't 

proportional to the number of molecules present in the organism. The estimation 

of parameters via the Minimum-  -method isn't possible for Two-compartment-

models for iv bolus administration with elimination from both compartments. 

This gives a probability-theoretical look to the significance of the mammillary 

models with regard to the residence time concept. The problem itself was already 

addressed by [11]. Mammilary models have all input into a central compartment 

and all loss occurring from the central compartment. These models are extremely 

common in pharmacokinetics. So the exclusion of models with elimination from 

both compartments does not seem to be overly restrictive. 

 

Proposition 5 

Of the Two-compartment-models for iv bolus administration, exactly the models  

(          ) , (            ) , (              )  and (              )  are esti-

matable with regard to the varied Minimum  -method.                                        ∆ 

 

 

5. Model selection by the varied Minimum-  -method 

 
A fundamental theorem is consulted for the characterization of the statistical qualities of 

the varied Minimum  -estimator in connection with Two-compartment-models for iv 

bolus administration. It dates back to R.A. Fisher, E.A. Pearson, J. Neyman and H. 

Cramer. Bibliographical references as well as a proof can be found already in [9]. 

 

Theorem  ([9, pages 427-434] 

  real functions and   (       ) , …,   (       ) of       variables         

are given. Let the following be true for all points (       ) of a non-degenerated sub-

set   of   : 

 

1. ∑   (       )    
    . 

 

2.   (       )     for all        . 

 

3. All    have continuous partial derivatives 
 

   
   and  

  

      
   ,           . 

 

4. The matrix    ( 
   

   
) ,           and          , has rank  . 

Let   be a random variable,         a disjoint partition of its range, and   
  

  
 (  

      
 )   (    )  with    (  

      
 ) an inner point of   . For   realiza-

tions of   denotes    the number of its values in    ,   + …+     . Then the system of 

equalities   

 

∑
(     )
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has a unique solution  ̂  ( ̂     ̂ ). It converges in probability to   for     The 

random variable    calculated with  ̂    ( ̂     ̂ ), 

 

   ∑
(     ̂ )

 

  ̂ 
   

 

   
 

 

is asymptotically   -distributed with          degrees of freedom.                            ∆ 

 

This theorem is fundamental for the proofs of the following propositions. 

 

Proposition 6 

For the Two-compartment-models (          ) , (            ) and (              ) , 

the parameters of the associated residence time distributions are estimated consistently 

and uniquely via the varied Minimum-  -method. The compatibility of measurements 

with accompanying concentration-time-functions of the respective model can then be 

judged with Pearson's   -test of goodness of fit.                                                                ∆ 

 

Conjecture: Also for the Two-compartment-model (              ) the Pearson test is 

applicable. However, we do not have any proof at present. 

 

Proposition 7 

Let the residence time distribution that is truncated at the first and last measurements be 

assigned to the One-compartment-model for iv bolus administration. It's parameter     is 

estimated consistently and uniquely via the varied Minimum-  -method. The compatibil-

ity of the measurements and the function  ( )       (     ) on the observation inter-

val [     )  can then be judged with the   -test of goodness of fit. The number of degrees 

of freedom is    –    .                                                                                                           ∆ 

 

 

6. Example 

 
An example will illustrate the test of goodness of fit in connection with the parameter 

estimation. The model function  ( )       (     ) is chosen and truncation is carried 

out at    and    . Next, the function values are calculated for        and         at 

measuring times              . For even   , these results are alternatively increased 

or decreased by    percent of their values. With these "measurements", the model pa-

rameter     was estimated with regard to the varied Minimum-  -method with reference 

to the residence time distribution with truncation. The corresponding   -value     was 

calculated. The critical values for the respective significance levels 0.05 and 0.01 of the 

tests here are        
        and         

        . For        , by the varied Mini-

mum-   -estimation result   ̂           and            . This        is the 

smallest   -value such that     exceed the critical   -test value. It is recognizable at 

which fluctuation of the measurements the test of goodness of fit rejects the compatibility 

with the best fitted model function (see also Figure 1). 
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Figure 1: Varied Minimum-  -estimation and Pearson's test of goodness of fit.  

Dotted line: model function  ( )         (      ); single points: data;        . 
The estimated  ̂           defines a model function (solid line) not fitting the data,  

                 
       , (see text). 

 

 

7. Averaging 

 

The problem of averaging proper nonlinear functions is of special interest in a population 

kinetic context. The described varied Minimum-  -method offers particularly the possi-

bility of calculating average kinetics. Individual kinetics   ( )         deliver each 

  
  observed and   

  expected numbers of realizations of residence times in the respective 

intervals    (see the explanations of the varied Minimum-  -estimation above). The fol-

lowing process to determine the varied Minimum  -averaged kinetic    ( ) of the given 

individual kinetics   ( ) can then be proposed: 

 

1.  Chose a system of knots   ,             ,  and fix it for all measurements! 

 

2. Calculate the parameter ( ̂     ̂ )  of the varied Minimum-  -averaged kinetic 

   ( ) as the solution to   

 

∑  
 

   
∑

(  
    

 )

  
 

  
   

   
                  

 

   
 

 

The requirement of a system of fixed knots                , for all measurements is a 

necessary condition for the proposed averaging method. This way the averaging is similar 

to the situation one meets at the classical   -test of homogeneity. 

As an example, two kinetics 

 ( )( )   ( )   (     
( )

 ) 

and 

 

 ( )( )   ( )   (     
( )

 ) 

 

are varied Minimum-  - averaged (see Figure 2). 
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Figure 2: Illustration of the varied Minimum-  -averaging (solid line) of two individual 

kinetics (single dots). The method-of-least-squares - averaged curve (dotted line) is given 

for comparison. Explanations can be found in the text. 
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