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Abstract

Inference in the presence of missing data is a widely encountered and difficult problem in statis-
tics. Imputation is often used to facilitate parameter estimation, which uses the complete sample
estimators to the imputed data set. We consider the problem of parameter estimation for linear
mixed models with non-ignorable missing values, which assumes the missingness depends on the
missing values only through the random effects, leading to shared parameter models (Follmann and
Wu,1995). We develop a parametric fractional imputation (PFI) method proposed by Kim (2011)
under this non-ignorable response model, which simplifies the computation associated with the EM
algorithm for maximum likelihood estimation with missing data. In the M-step, the restricted or
adjusted profiled maximum likelihood method is used to reduce the bias of maximum likelihood es-
timation of the variance components. Results from a simulation study are presented to compare the
proposed method with the existing methods, which demonstrates that imputation can significantly
reduce the non-response bias and the idea of adjusted profiled maximum likelihood works nicely in
PFI for the bias correction in estimating the variance components.

Key Words: EM algorithm, Random effect, Restricted maximum likelihood, Longitudinal data.

1. Introduction

Mixed models are the statistical models containing both fixed effects and random effects.
These models are useful in a wide variety of disciplines in the physical, biological and
social sciences. They are particularly useful in settings where repeated measurements are
made on the same statistical units, or where measurements are made on clusters of related
statistical units. For instance, mixed models are useful in longitudinal studies which are
designed to investigate changes over time in a characteristic measured repeatedly for each
individual.

However, missing data frequently occurs and destroys the representativeness of the
remaining sample. There are several assumptions about the missing mechanism. If the
missing probability is unrelated to the missing value after adjusting for the observed auxil-
iary information, the missing mechanism is called missing at random (MAR) or ignorable;
whereas if the missing probability is related to the missing value even after adjusting for
the auxiliary information, the missing mechanism is called missing not at random (MNAR)
or non-ignorable. To model the missing mechanism one can consider either the selection
model (Diggle and Kenward, 1994) or the pattern-mixture model (Little, 1995). In this
paper we consider a special case of the selection model, where we assume that missingness
only depends on the random effects, which yields the so-called shared parameter models,
considered by Follmann and Wu (1995).

To carry out likelihood-based inference, we need to obtain the marginal density of the
observed data, which involves integrating out the missing part of the data. Except for a few
special cases this is analytically infeasible and thus requires numerical integration. Usually,
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the marginal likelihood involves a high dimensional integral and numerical integration may
not be feasible or reliable. One solution to this problem is imputation. By imputation, one
can construct a complete data set by assigning reasonable values for the missing data. It has
several advantages. Firstly, it facilitates the parameter estimation by simply applying the
complete-sample estimators to the imputed data set. Secondly, it ensures different analysis
are consistent with one another. Thirdly, it reduces the non-response bias.

Integration approximated by imputation under non-ignorable missing was considered
by Greenlees et al. (1982). Ibrahim et al. (1999) considered continuous y variable using
a Monte Carlo EM method of Wei and Tanner (1990) to compute the E-step of the EM al-
gorithm in a generalized linear mixed model. Booth and Hobert (1999) used an automated
Monte Carlo EM algorithm to compute the E-step of the EM algorithm to speed up the
convergence rate. Chan and Kuk (1997) applied Gibbs sampling in the E-step to obtain
maximum likelihood estimates for the probit normal model for binary data. McCulloch
(1997) proposed a Monte Carlo Newton-Raphson algorithm used of importance sampling
idea in maximum likelihood algorithms for generalized linear mixed models. For Monte
Carlo EM algorithm, in each E-setp, the imputed values are regenerated and thus the com-
putation quite heavy. Also the convergence of Monte Carlo sequence of the estimators is
not guaranteed for fixed Monte Carlo sample size (Booth & Hobert, 1999).

In this paper, we develop a parametric fractional imputation (PFI) method proposed
by Kim (2011) which can be used to simplify the Monte Carlo implementation of the EM
algorithm, for linear mixed models with the shared parameter response model. The main
idea in PFI is to produce a complete data set by imputation and each imputed value is
associated with fractional weights, by which the observed likelihood can be approximated
by the weighted mean of the imputed data likelihood. The resulting estimator is close to
the maximum likelihood estimator and thus has very nice asymptotic properties, such as
efficiency and asymptotic normality.

For mixed models, it is well known that the maximum likelihood estimation of variance
components in mixed model is biased downwards. A method related to maximum likeli-
hood is restricted maximum likelihood (REML), (Patterson & Thompson, 1971), where the
effect of estimating fixed effect is taken into account for ML estimation. Thus the variance
components are estimated without being affected by the fixed effects.

Another way of taking into account the bias in estimating variance components is us-
ing the adjusted profile likelihood. The simplest approach is to maximize out the fixed
effects for the variance components and to construct the profile likelihood. The profile
likelihood is then treated as an ordinary likelihood function for estimation and inference
about the variance components. Unfortunately, with large numbers of nuisance parameters,
this procedure can produce inefficient or even inconsistent estimates. A number of authors
proposed the modified profile likelihood (Barndorff-Nielsen, 1986) and the closely related
conditional profile likelihood (Cox and Reid, 1987), in which they correct the inconsistency
of the profile likelihood in some problems and automatically make “degrees of freedom”
adjustments in normal theory cases where accepted solutions are available for evaluation
of their approaches. In this paper, we develop a novel PFI uses adjusted profile likelihood
idea to correct the bias in estimating variance components.

In section 2, we introduce the basic setup. Section 3 develops the parametric fractional
imputation for the non-ignorable missing data mechanism and discusses the incorporation
of adjusted profile likelihood estimation in the parametric fractional imputation to reduce
the bias in estimating variance components. Section 4 develops variance estimation based
on Taylor linearization. Section 5 presents a simulation study and we conclude with dis-
cussion in Section 6.
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2. Basic Setup

In this section we introduce the data model and the missing mechanism model considered
in the paper. We consider the linear mixed model,

yij = β0 + β1xij + bi + eij,i = 1, . . . , n, j = 1, . . . ,m. (1)

where i indexes individual, and j indexes the repeated measurement within each individual,
bi iid ∼ N(0, τ2) specifying the unobserved individual effects and eij iid ∼ N(0, σ2) is
the measurement error within individual.

Let yi = (yi1, . . . , yim)′ be the complete measurements on the ith individual if they
are fully observed. The observed and missing components are denoted as ymis,i, yobs,i

respectively, so yi = (ymis,i,yobs,i). Let ri = (ri1, . . . , rim)′ be vector of indicators of
missing data, so rij = 1 if yij is observed, otherwise, rij = 0.

To model the missing mechanism, we consider the selection model

f(yi, ri, bi) = f(yi|bi)f(ri|yi, bi)f(bi). (2)

Furthermore, in the selection model, we assume that missingness depends on the miss-
ing values only through the random effects f(ri|yi, bi) = f(ri|bi), which leads to non-
ignorable missingness.

Under this assumption, the joint density becomes

f(yi, ri, bi) = f(yi|bi)f(ri|bi)f(bi).

which is called the shared parameter models (Follmann and Wu,1995).
We further assume that conditional on bi, {rij}mj=1 are independent. Then we have

f(ri|bi, φ) =
m∏
j=1

f(rij |bi, φ)

=
m∏
j=1

{f(rij = 1|bi, φ)}rij{1− f(rij = 0|bi, φ)}1−rij .

for some unknown parameter φ.
For the ith individual, the complete data density of (yi,bi, ri) is given by

f(yi, bi, ri|γ) = f(yi|β, σ2, bi)f(ri|bi, φ)f(bi|τ2)

=
m∏
j=1

{
f(yij |β, σ2, bi)f(rij |bi, φ)

}
f(bi|τ2).

where γ = (β, σ2, τ2, φ). The complete log likelihood function of γ is thus given by

lcom(γ) = log f(yi, bi, ri|γ)

=

n∑
i=1

log
{( m∏

j=1

f(yij |β, σ2, bi)f(rij |φ, bi)
)
f(bi|τ2)

}
=

n∑
i=1

m∑
j=1

log f(yij |β, σ2, bi) +

n∑
i=1

m∑
j=1

log f(rij |φ, bi) +
n∑

i=1

log f(bi|τ2)

= l1(β, σ
2) + l2(φ) + l3(τ

2).

Under the complete response and assuming that bi’s are fully observed, the maximum
likelihood estimator of γ can be obtained by maximizing l1(β, σ2), l2(φ), and l3(τ2), re-
spectively.

Section on Survey Research Methods – JSM 2012

4368



When we only observe (ry, r), the observed density can be obtained by integrating out
the unobserved random effects and missing values of the joint complete density,

fobs(yobs; γ) =
n∏
i=1

∫ ∫
{(

m∏
j=1

p(yij |β, σ2, bi)p(rij |φ, bi))p(bi|τ2)dymis,ij}dbi.

Then the observed log likelihood function of γ is specified by,

lobs(γ) = log fobs(yobs, γ)

=

n∑
i=1

log
{∫ ∫ ( m∏

j=1

f(yij |β, σ2, bi)f(rij |φ, bi)
)
f(bi|τ2)dymis,ijdbi

}
=

n∑
i=1

log fobs,i(yi,obs; γ).

where fobs,i(yi,obs; γ) =
∫ ∫

(
∏m
j=1 f(yij |β, σ2, bi)f(rij |φ, bi))f(bi|τ2)dymis,ijdbi. As

we can see, since yij depends on bi and rij depends on bi as well, (β, σ2), φ, τ2 can-
not be separated in lobs(γ) as we do in lcom(γ). Thus parameters γ need to be estimated
simultaneously.

Maximum likelihood estimator γ̂ can be obtained by maximizing lobs(γ). Louis (1982)
showed an alternative way to find the maximum likelihood estimator γ̂ by maximizing

Q(γ) = E{lcom(γ; yobs, Ymis)| yobs, r}. (3)

The conditional expectation usually has no analytical expression and thus requires nu-
merical approximation. Instead of using the Monte Carlo EM method, Kim (2011) pro-
posed a parametric fractional imputation method which modifies the importance sampling
idea which largely reduces the computation burden and also guarantees convergence of es-
timation under fixed Monte Carlo size. We will apply the parametric fractional imputation
idea to linear mixed model and also incorporate the adjusted profile likelihood idea in the
next section.

3. Parametric fractional imputation

3.1 Fractional imputation in EM algorithm for Maximum likelihood estimation

To apply EM algorithm, write function (3) as

Q(γ|γ) = [Q1(β, σ
2|γ), Q2(φ|γ)′, Q3(τ

2|γ)].

where

Q1(β, σ
2|γ) = E{l1(β, σ2) | yobs, r; γ}.

Q2(φ|γ) = E{l2(φ) | yobs, r; γ}.
Q3(τ

2|γ) = E{l3(τ2) | yobs, r, γ}.

The MLE can be obtained by the EM-type algorithm,

γ̂(t+1) ← argmaxQ(γ|γ̂(t))

The Monte Carlo EM method (MCEM) computes Q(γ|γ̂(t)) by regenerating the imputed
values for each EM iteration and assigning equal weights 1/M to each imputed value.
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The computation is cumbersome because it often requires an iterative algorithm such as
Metropolis-Hastings algorithm for each EM iteration also it is not guaranteed for the con-
vergence of the MCEM sequence of fixed Monte Carlo sample sizes. Alternatively, the
parametric fractional imputation (PFI) modifies the idea of importance sampling to imple-
ment the Monte Carlo EM algorithm. In the PFI method, we generate the imputed values
only in the beginning of the EM iteration and in each iteration keep the imputed values
and only update the importance weights and the parameter estimates. Because the imputed
values are not regenerated, it is much more computationally efficient and the convergence
of the EM sequence is guaranteed.

We extend the PFI method to non-ignorable missing in linear mixed model setup. The
M imputed values b∗(1)i , . . . , b

∗(M)
i ∼ h1(·), y∗(1)ij , . . . , y

∗(M)
ij ∼ h2(·) are generated from

initial densitiesh1(bi) and h2(yij |xij) with the same support as f(yij). Given the current
parameter estimates γ̂(t) and the M imputed values b∗(1)i , . . . , b

∗(M)
i and y∗(1)ij , . . . , y

∗(M)
ij

generated above, the joint density of (yi,obs,y
∗(k)
i,mis, b

∗(k)
i ) for each individual i, where

y
∗(k)
i,mis = (y

∗(k)
mis,ij)j∈Miss is a vector of imputed values for missing, is

f
∗(k)
i (γ) =

m∏
j=1

(f(y
∗(k)
ij |β, σ

2, b
∗(k)
i )f(rij |φ, b∗(k)i ))f(b

∗(k)
i |τ2). (4)

For each individual i, assign the kth imputed data vector y∗(k)i = (yi,obs,y
∗(k)
i,mis) a frac-

tional weight as

w
∗(k)
i (γ(t)) =

f
∗(k)
i (γ(t))/(

∏
j∈M h2(y

∗(k)
ij |b

∗(k)
i ))h1(b

∗(k)
i )∑M

l=1 f
∗(l)
i (γ(t))/(

∏
j∈M h2(y

∗(l)
ij |b

∗(l)
i ))h1(b

∗(l)
i )

. (5)

The Monte Carlo approximate of the observed likelihood function is

Q∗(γ|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t)) log f

∗(k)
i (γ) (6)

=

n∑
i=1

M∑
k=1

w
∗(k)
i (γ(t))

{
log f(y

∗(k)
i |β, σ2) + log f(ri|φ) + log f(b

∗(k)
i |τ2)

}
≡ Q∗1(β, σ

2|γ(t)) +Q∗2(φ|γ(t)) +Q∗3(τ
2|γ(t)).

where

Q∗1(β, σ
2|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i

(
− m

2
log(2πσ2)− 1

2σ2

m∑
j=1

(y
∗(k)
ij − β0 − β1xij − b∗(k)i )2

)
.

Q∗2(φ|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i

( m∑
j=1

(rij(φ0 + φ1b
∗(k)
i )− log(1 + exp{φ0 + φ1b

∗(k)
i }))

)
.

Q∗3(τ
2|γ(t)) =

n∑
i=1

M∑
k=1

w
∗(k)
i

(
− 1

2
log(2πτ2)− 1

2τ2
(b
∗(k)
i )2

)
.

Thus, the PFI method computes the E-step of the EM algorithm using fractional weights in
(5). In the M-step, the updated parameters are computed by maximizing the imputed mean
likelihood function. That is, we obtain γ̂(t+1) by maximizing Q∗1(β, σ

2|γ(t)), Q∗2(φ|γ(t)),
Q∗3(τ

2|γ(t)) for γ.
Maximizing Q∗1, Q

∗
2, Q

∗
3 can be easily implemented by incorporating the fractional

weights in the existing software. The EM sequence {γ̂(t); t = 1, 2, . . .} converges to
a stationary point γ̂∗ since the imputed values are unchanged and only the weights are
changed. Under some regularity conditions, specified in Kim (2011), γ̂∗ is asymptotically
equivalent to the maximum likelihood estimator for large M.

Section on Survey Research Methods – JSM 2012

4370



3.2 Adjusted profile likelihood for bias correction

We now take into account the bias in estimating variance components by using the ad-
justed profile likelihood. The simplest approach is to maximize out the fixed effects for the
variance components and to construct the profile likelihood. The profile likelihood is then
treated as an ordinary likelihood function for estimation and inference about the variance
components. Unfortunately, with large numbers of nuisance parameters, this procedure can
produce inefficient or even inconsistent estimates. A number of authors proposed the mod-
ified profile likelihood (Barndorff-Nielsen, 1986) and the closely related conditional profile
likelihood (Cox and Reid, 1987), in which they correct the inconsistency of the profile like-
lihood which automatically make “degrees of freedom” adjustments in normal theory cases
where accepted solutions are available for evaluation of their approaches. The adjustment
can be interpreted as the information concerning the variance components carried by the
fixed effects in the ordinary profile likelihood.

In the normal case we shall see the adjusted profile likelihood matches exactly the re-
stricted maximum likelihood (REML) (Patterson and Thompson, 1971) using the marginal
distribution of the error term y−Xβ̂θ. The data can be divided into two independent parts,
the error term y−Xβ̂θ = Sy and Qy, S = I −X(XtΣ−1X)−XtΣ−1 and Q = XtΣ−1.
The likelihood l1 is separated into l′1 and l′′1 ,

l1(β, θ) = l′1(θ) + l′′1(β, θ)

= Pβ(l1; θ) + l′′1(β, θ).

where

Pβ(l1; θ) = lp(θ)−
1

2
log |XtΣ−1X/(2π)| (7)

= −1

2
log |2πΣ| − 1

2
(y −Xβ̂θ)tΣ−1(y −Xβ̂θ)

−1

2
log |XtΣ−1X/(2π)|.

and

l′′1(β, θ) = −1

2
log |XtΣ−1X| (8)

−1

2
(y −Xβ)tΣ−1X(XtΣ−1X)−1XΣ−1(y −Xβ).

The REML estimate of θ is obtained by maximizing Pβ(l1; θ). And the estimate of β is
obtained by maximizing l′′1 , which is given by

β̂ = (XtΣ̂−1X)−1XtΣ̂−1y.

with fixed θ̂.
In order to obtain REML estimate under missingness, we can re-write function (3) as

Q(γ) = E{l1(β, θ) + l2(φ)| yobs, r} (9)

= E{Pβ(l1; θ) + l′′1(β, θ) + l2(φ)| yobs, r}.

and further write function (9) as

Q(γ|γ) = Q′1(β, θ|γ) +Q′′1(β, θ|γ)′ +Q2(φ|γ).
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where

Q′1(β, θ|γ) = E{Pβ(l1; θ) | yobs, r; γ}.
Q′′1(β, θ|γ) = E{l′′1(β, θ) | yobs, r, γ}.
Q2(φ|γ) = E{l2(φ) | yobs, r; γ}.

The imputed Q functions is given by

Q′∗1 (θ|γ) = −1

2
log |2πΣ| − 1

2
log |XtΣ−1X/(2π)| (10)

−1

2

n∑
i=1

M∑
k=1

w
∗(k)
i (γ)

(
(y
∗(k)
i −Xiβ̂θ)

tV −1i (y
∗(k)
i −Xiβ̂θ)

)
.

Q′′∗1 (β, θ|γ) = −1

2
log |XtΣ−1X| − 1

2

n∑
i=1

M∑
k=1

w
∗(k)
i (γ) (11)

(y
∗(k)
i −Xiβ)tV −1i Xi(X

t
iV
−1
i Xi)

−1XiV
−1
i (y

∗(k)
i −Xiβ).

where the weights w∗(k)i (γ) are given by (5). The REML can be obtained by the EM-type
algorithm:

θ̂(t+1) ← argmaxQ′∗1 (θ|γ(t))

β̂(t) ← argmaxQ′′∗1 (β, θ̂(t+1)|γ(t))

i.e. β̂(t) = 1
n

∑n
i=1

∑M
k=1w

∗(k)
i (γ(t))(Xt

i (V̂
(t+1)
i )−1Xi)

−1Xt
i (V̂

(t+1)
i )−1y

∗(k)
i .

φ̂(t) ← argmaxQ∗2(φ|γ̂(t))

3.3 Estimation of parameters not in the model:

In survey sampling, we are often interested in estimating parameters other than the param-
eters in the model, say η, which can be written as a solution to

E{U(Y,b; η)} = 0. (12)

For example, if we are interested in the population mean, then U(Y,b; η) = n−1
∑n
i=1 yi−

η.
Under complete response, a consistent estimator of η can be obtained by solving

Û(η) ≡ n−1
n∑
i=1

U(yi, bi; η) = 0. (13)

for η. Under non-response, we can obtain a fractionally imputed estimating equation

Ū∗(η) ≡ n−1
n∑
i=1

M∑
k=1

{w∗(k)i U(y
∗(k)
i , bi; η)} = 0. (14)

where w∗(k)i = limt→∞w
∗(k)
i(t) and w∗(k)i(t) is defined in (5). Thus, the final fractional weights

w
∗(k)
i are computed by the MLE (or REML) of γ, denoted by γ̂, instead of the tth EM

estimate of γ in (5). By the law of large numbers

p lim
M→∞

M∑
k=1

w
∗(k)
i U(y

∗(k)
i , , bi; η) = E{U(Yi, bi; η)|ri, γ̂}.
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and Ū∗(η) converges to Ū(η|γ̂) = E{U(Y,b; η)|yobs, r; γ̂} for sufficiently large M al-
most surely. The resulting estimator η̂∗ obtained from (14) is asymptotically consistent and
efficient.

4. Variance estimation

Since β and θ are information orthogonal, we can use Louis’s formula to construct the
confidence intervals for β.

Iobs(β) = −
n∑
i=1

E{Ṡ(β; yi)|yi,obs} −
n∑
i=1

V {S(β; yi)|yi,obs} = [V (β)]−1. (15)

which can be approximated by

−
n∑
i=1

M∑
k=1

w
∗(k)
i Ṡ(β̂; y

∗(k)
i )−

n∑
i=1

M∑
k=1

w
∗(k)
i {S(β̂; y

∗(k)
i )− S̄i(β̂)}⊗2. (16)

where S(β; y) = ∂ log f(y;β)/∂β = XtV −1(y − Xβ), Ṡ(β; y) = ∂S(β; y)/∂β =

−XtV −1X and S̄i(β) =
∑M
k=1w

∗(k)
i S(β; y

∗(k)
i ).

For variance estimation of η̂ , based on Taylor linearization, we can write Ū(η|γ̂) ≈
Ū(η0|γ0) +K ′S̄(γ0), where K is defined as

K = −[E{∂S̄(γ0)/∂γ}]−1E{Smis(γ0)U(η0)}.

If we write

Ū(η|γ) +K ′S̄(γ) = n−1
n∑
i=1

{ūi(η|γ) +K ′s̄i(γ)} = n−1
n∑
i=1

ũi.

the plug-in estimator of V ar(
∑n
i=1 ũi) is

∑n
i=1(ûi− ¯̂u)(ûi− ¯̂u)′ , where ûi = ūi(η̂; γ̂) +

K̂ ′s̄i(γ̂). The terms ūi(η̂; γ̂) and s̄i(γ̂) can be computed from fractional imputation with
fractional weights.

5. Simulation study

To test our theory, we performed a limited simulation study. In the simulation study, B =
2000 Monte Carlo samples of sizes n ×m = 10 × 15 = 150 were generated from bi ∼
N(0, τ2), eij ∼ N(0, σ2), xij = j/m and yij = β0 + β1xij + bi + eij with β0 = 2, β1 =
1, σ2 = 0.1, τ2 = 0.5 and the response indicator variable rij for missing is distributed as
Bernoulli(πij) where logit(πij) = φ0 +φ1bi with φ0 = 0, φ1 = 1. Under this model setup,
the average response rate is about 50%. The following parameters are computed.

1. β1, τ2, σ2: slope, variance components in the linear mixed effect model

2. µy: the marginal mean of y.

3. Proportion: Pr(Y < 2).

For each parameter, compute the following estimators:

1. Complete sample estimator,

2. Incomplete sample estimator,
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3. Parametric fractional imputation (PFI) for ML estimation with imputed sample size
of M=100,

4. PFI with adjusted profile likelihood estimation with imputed sample size of M=100.

Table (1) presents Monte Carlo mean, variance and standardized variances of the point
estimators. The incomplete sample estimators are biased for the mean type of the param-
eters, as expected. From the response model, individuals with large bi values are likely
to response; whereas individuals with small bi values are likely to not response. Thus the
estimate of the population mean will tend to be larger than the true mean (in the simulation
study, we know the true mean is 2.54) and the proportion of y < 2 will tend to be smaller
than the true probability (the true probability is 0.26). On the other hand, the proposed esti-
mators are essentially unbiased in estimating the mean type of parameters. Imputation can
largely reduce non-response bias. For estimating variance component τ2, the imputed ML
estimator is biased downward; however the imputed APL estimator can correct the bias and
thus is essentially unbiased for estimating the variance component. The imputation method
works well for estimating the variance parameters after incorporating the adjusted profile
likelihood idea. PFI (either MLE or APL) is efficient, which can be seen from the Std Var
column in Table (1) , for µy, Pr(y < 2), and τ2, the variance for PFI is even smaller.

Table (2) presents the Monte Carlo relative bias and the t-statistics of the variance es-
timators. Relative biases of the variance estimators were computed by dividing the Monte
Carlo bias of the variance estimator by the Monte Carlo variance of the point estimator.
The t-statistics are constructed to test the significance of the bias of the variance estima-
tors. A justification of the t-statistics is given in Appendix D of Kim (2004). The variance
estimators for PFI are nearly unbiased for the parameters that we are interested in.

6. Discussion Remark

Parametric fraction imputation is proposed as a general tool for estimation with missing
data. If the parametric fractional imputation is used to construct the score function, the
solution to the imputed score equation is very close to the maximum likelihood estimator
for the parameters in the model. The imputation method is very flexible by easily incor-
porating the restricted maximum likelihood idea or adjusted profile likelihood idea. The
variance estimator can be obtained from a Taylor linearization.

REFERENCES

Barndorff-Nielsen, O.E. (1986), Inference on full and partial parameters based on the standardized signed log
likelihood ratio, Biometrika 73, 307-22

Booth, J. G. Hobert, J. P. (1999). Maximizing generalized linear models with an automated Monte Carlo EM
algorithm, Journal of the Royal Statistical Society, Series B, 61, 625-85.

Chan, J. S. K., and Kuk, A. Y. C. (1997). Maximum Likelihood Estimation for Probit-linear Mixed Models
with Correlated Random Effects, Biometrics 53, 86-7.

Cox,D.R. and Reid, N (1987). Parameter orthogonality and approximate conditional inference (with discus-
sion), Journal of the Royal Statistical Society, Series B, 49, 1-39.

Diggle, P.J. and Kenward, M.G. (1994). Informative drop-out in longitudinal analysis, Applied Statistics, 43,
49-93.

Follmann, D.A. and Wu, M.C. (1995). “An Approximate Generalized Linear Model with Random Effects for
Informative Missing Data,” Biometrics 51, 151-168.

G.C.G. Wei, M.A. Tanner. (1990). A Monte Carlo implementation of the EM algorithm and the poor man data
augmentation algorithm, Journal of the American Statistical Association, 85, 699-04

J.G. Ibrahim, S.R. Lipsitz, M. Chen. (1999). Missing covariates in generalized linear models when the missing
data mechanism is non-ignorable, Journal of the Royal Statistical Society, Series B, 61 , 173-90

Kim, J.K. (2011). Parametric fractional imputation for missing data analysis, Biometrika, 98, 119-132.

Section on Survey Research Methods – JSM 2012

4374



Little, R.J.A. (1995). Modeling the drop-out mechanism in repeated-measures studies, Journal of the American
Statistical Association, 90, 1112-1121.

McCulloch, C.E., 1997. Maximum likelihood algorithms for generalized linear mixed Models, Journal of the
American Statistical Association. 42 (437) 162-70.

Patterson, H. D. and Thoponson, R. (1971). Recovery of inter-Block Information when Block sizes are unequal,
Biometrka, 58, 545-554.

Troxel, A.B., Harrington, D.P. and Lipsitz, S.R. (1998). Analysis of longitudinal measurements with nonig-
norable non-monotone missing values, Applied Statistics, 47, 425-438.

Greenlees, J.S., K.D. Zieschang. (1982). Imputation of missing values when the probability of response
depends on the variable being imputed, Journal of the American Statistical Association, 77, 251-61.

Section on Survey Research Methods – JSM 2012

4375



Table 1: Mean, variance and standardized variance of the point estimators, based on 2000
Monte Carlo samples.

Parameter Method Mean Var Std Var
β1 = 1 Complete 1.00 0.00832 100

Incomplete 1.00 0.01822 219
PFI(MLE) 1.00 0.01751 211
PFI(APL) 1.00 0.01439 173

µy = 2.54 Complete 2.54 0.04900 100
Incomplete 2.74 0.05344 109
PFI(MLE) 2.54 0.04696 96
PFI(APL) 2.54 0.03526 72

Pr(y < 2) = 0.26 Complete 0.26 0.00969 100
Incomplete 0.17 0.00651 67
PFI(MLE) 0.26 0.00942 97
PFI(APL) 0.26 0.00725 75

τ2 = 0.5 Complete 0.50 0.06000 100
Incomplete 0.50 0.06049 101
PFI(MLE) 0.48 0.04970 83
PFI(APL) 0.50 0.05873 98

σ2 = 0.1 Complete 0.10 0.00014 100
Incomplete 0.10 0.00032 222
PFI(MLE) 0.10 0.00034 241
PFI(APL) 0.10 0.00027 191

Table 2: Monte Carlo relative biases and t-statistics of the variance estimator for the impu-
tation, based on 1000 Monte Carlo samples.

Parameter Method R.B. (%) t-statistics
β1 PFI(APL) 0.0497 1.0687
µy PFI(APL) 0.2497 0.0174

Pr(y < 2) PFI(APL) 0.2101 0.7723
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