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Abstract
We propose a simple mathematical model for the growth of annual rings of a single generic tree,

subject to random competition for resources. The model rests on two premises: The ring diameters
are bounded and are increasing with time. A simple way of satisfying these premises is to model
the diameter as the running maximum of a bounded stochastic differential equation, driven by a
Wiener process. To obtain an explicit solution to the equation, we require it to be reducible to an
Ornstein-Uhlenbeck process. This allows us to obtain a law of the iterated logarithm for the ring
diameter, which can assist in deciding when the tree should be harvested.
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1. Introduction

An essential part in managing a forest is knowing when to harvest. One tool in assisting
making such a decision is simulation of forest growth. A forest is made up of trees, so if
we can make simulation of tree growth then we have taken one step towards simulating
the forest. There are mathematical models that focus on a single tree e.g., the models
studied in 1980 by Bailey [1] and those investigated 21 yearslater by Fox, Ades and Bi [2],
and these models often result in analytically tractable results. This mathematical elegance
comes at a price, namely one disregards the interactions that exist between trees; nearby
trees compete for light and water. To model competition, systems of interacting single-tree
models are constructed as for example in 1979 by Garcia [3] and those constructed 29 later
by Qiming, Scheider and Pitchford [4]. The advantage is morerealistic models, but the
disadvantage is the inability of obtaining analytically tractable solutions and often having
to rely on numerical approximations of the system; this carries with it questions of whether
the approximations really approximate the right things andat what rate the approximations
converge to the true tree growth.

This presentation describes a simple model for the growth ofa single tree, where effects
of environmental disturbances and interactions with othertrees are a natural part of the
model, and do not have to be introduced as systems of interacting trees.

2. Methods

The model we propose studies the annual rings of a single treeand rests on two premises:
the ring diameter is bounded and increases. A simple way of satisfying these premises is to
model the ring diameter as the running maximum of the solution to a bounded stochastic
differential equation.

Dt = max
s∈[0,t]

Xs , t > 0 .

If the solution,X, has continuous trajectories, then the corresponding trajectories of the
running maximum-process will be continuous and increasingas well. If we require the
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stochastic differential equation to be reducible, then we obtain a bijective map of the di-
ameter dynamics to the dynamics of the running maximum of a one-dimensional Ornstein-
Uhlenbeck process. This strictly monotone map allows for a law of the iterated logarithm
to be obtained, which can assist in deciding when the tree should be harvested.

2.1 Stochastic differential equation

Our stochastic differential equation describes the availability of sunlight and water, in-
corporating a deterministic growth model (µ) in the absence of competition, and a non-
deterministic model of disturbances, conceivably caused by environmental effects and com-
peting trees.

dXt = µ(Xt)dt+ σ(Xt)dWt .

The connection between sunlight and water and their effect on diameter growth is a very
complicated one – among other things it is governed by the familiar process of photosyn-
thesis – which we disregard in this case, simply assuming it to be a proportionality. Another
thing we assume is that the tree is insensitive to random disturbances when its diameter is
very small and when it is very large; this is reflected in choosing the diffusion coefficient
function to have a parabolic shape.

σ(x) = σ0x(K − x) , x ∈ (0,K) .

The positive constantK denotes the largest possible diameter the tree rings can obtain;
it is determined by the tree species, among other things. Andtogether with the positive
constantσ0 the productσ0K is related to the rate of growth of the tree volume. The random
disturbances,W , are continuous and mostly of a small magnitude; hence we model them by
a Wiener process. We do not take into account sudden major disturbances, such as storms
or fires, the effects of which might be modeled by a Lévy process.

To obtain an analytically tractable (strong) solution, we require the stochastic differen-
tial equation to be reducible to an Ornstein-Uhlenbeck process,Y ; this effectively deter-
mines the drift coefficient function to be

µ(x) = σ(x) ·
{1

2
σ′(x)− αc0 + α ·

∫ x 1

σ(y)
dy

}

, x ∈ (0,K) ,

whereα > 0 andc0 are arbitrary constants. A stochastic differential equation with these
drift- and diffusion coefficient functions has a unique strong solution equal to the stochastic
process

Xt = f(Yt) , t ≥ 0 ,

with the bounded and strictly increasing function

f(y) =
K

1 + e−(σ0K)·(y−c0)
, y ∈ (−∞,∞) ,

and the stochastic processY equal to an Ornstein-Uhlenbeck process

Yt = Y0e
−αt + σ0e

−αt

∫ t

0
eαs dWs .

Thus we have constructed a model in which the availability ofsunlight and water (X)
change in a smooth1, but random, fashion and does not exceed the upper boundK. Con-
sequently, the tree ring diameter – being the running maximum of the sunlight-and-water
process – also increases in a smooth random fashion, and doesnot exceed the upper bound
K.

1As a more realistic model of the physical process of Brownianmotion, the Ornstein-Uhlenbeck process is
designed to have differentiable trajectories.
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2.2 Comparison with data

How do trajectories of our model compare with growth curves of actual trees? Do they
have qualitative features in common?

One of the most notable features of our model is that it displays periods of constancy,
just like real data; this is due to taking the running maximumof a continuous process.
Another feature of our model is that the rate of growth slows down when the tree becomes
old; this is found in nature as well, where the cambial growthof trees slows down when the
tree becomes old. Located in the tree trunk, the cambium is a layer of cells that continually
differentiates into short-lived xylem cells and long-lived phloem cells. The xylem cells
transport minerals and water from the roots upward in the tree, and when the xylem cells
die they become the rings we are trying to describe with our model. The phloem cells
transport sugars, created by photosynthesis in the leaves,downward in the tree.

Figure 1: Simulation of the growth of a single tree, using our proposed model.Observe the
periods of constancy, which can be interpreted as the tree experiencing harsh environmen-
tal conditions for growth, like competition with neighboring trees or enduring periods of
drought. If the tree is competing for resources it does not grow in girth, but rather in height,
until it reaches favorable circumstances for ring growth.

Figure 2: Part of tree ring data on a 1533 year old fig that grew by the riverCisnein the Los
Alerces National Park in Argentina during the years 441-1974; the tree diameter became
0.8 meters.
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2.3 Law of the iterated logarithm

From an economic point of view, a tree might be harvested whenthe relative increase of its
diameter over e.g., a ten-year time period is small enough. When does this occur?

To answer this question we make use of the fact that we have a process (X) given by a
strictly increasing function of the well-known Ornstein-Uhlenbeck process, and determine
a Law of the iterated logarithm for the corresponding tree ring diameterD. To do this we
make use of the fact that the Ornstein-Uhlenbeck process canbe represented as a time-
changed Wiener process, with an explicitly known strictly increasing time-change,τ .

Yt = Y0e
−αt + σ0e

−αtWτ(t) ,

τ(t) = (2α)−1(e2αt − 1) , t > 0 .

This will give us a deterministic growth curve around which the trajectories ofD will
eventually fluctuate.

The Wiener process obeys the Law of the iterated logarithm, i.e., almost all trajectories
of the process have the following property: For any positivenumberε, the trajectories of
the Wiener process will eventually be found somewhere between the two curves

t 7→ ±(1 + ε)
√

2t log log t ,

and occasionally the trajectories will be above the curvet 7→ (1− ε)
√
2t log log t or below

the curvet 7→ −(1− ε)
√
2t log log t . Or, more succinctlyP{lim supt→∞

|Wt|
L(t) = 1} = 1 ,

where we introduce the function

L(t) =
√

2t log log t , t ∈ (3,∞) .

Figure 3: Almost all trajectories of a Wiener process will eventually be found somewhere
between the solid curves, and occasionally those same trajectories will be found above the
upper dashed curve or below the lower dashed curve.

The time-changed Wiener processWτ will obey the same law, since the time-change is
non-random.

P{lim sup
t→∞

|Wτ(t)|
(L ◦ τ)(t) = 1} = 1 .
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This implies that (for any positive numberε) almost all trajectories of the processf(Y )
will occasionally be found above the curve

t 7→ f
(

Y0e
−αt + σ0e

−αt(1− ε)(L ◦ τ)(t)
)

,

and this will also be true for the running maximum of this process. Thus, eventually the
trajectories of the ring diameter process,D, will be above a certain curve,G, essentially
determined by the diffusion coefficient functionσ. To put it succinctly,

P{lim sup
t→∞

Dt

G(t)
≥ 1} = 1 ,

where we express the asymptotic growth curveG implicity by

c0 −
1

σ0K
log

( K

G(t)
− 1

)

= e−αt{Y0 +
σ0

α
(e2αt − 1) log log

(e2αt − 1)

2α
} .

Figure 4: The asymptotic growth curveG as function of time, together with five simulated
trajectories of tree ring growth, generated using the parametersK = 0.8, α = 0.01, σ0 =
0.5 andc0 = −3.

When the relative increase in ring diameter is too small, then it might be a good time to
harvest. We can use the asymptotic curveG to compute its corresponding relative increase
over a time period,h > 0, and compare it with the corresponding relative increase inthe
data; to be of any practical use, the time period must not be too long; we chooseh = 10
years.

G′
h(t) =

G(t+ h)−G(t)

G(t)
, t > 0 .

Should we declare a relative increase less than 0.3 to be too small, then the asymptotic
curve in Figure 5 suggests harvest to occur after about 45 years; this agrees quite well with
the data, as its relative increase goes below 0.3 for the firsttime after about 40 years.

3. Conclusion

Using a simple stochastic differential equation we have been able to derive a model whose
qualitative behavior resembles that of annual tree ring growth. The asymptotic behavior
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Figure 5: The solid curve represents the 10-year relative increase in ring diameter ac-
cording to our model, when using the same parameters as in Figure 4. The dashed curve
represents the 10-year relative increase in ring diameter of the Los Alerces fig depicted in
Figure 2.

of the model was derived using the law of the iterated logarithm for a Wiener process, and
using the asymptotic growth curve a corresponding relativeincrease in diameter growth was
be computed. This relative increase can be used when deciding the best time to harvest.
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