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When should a tree be harvested?

Anders Muszta

Abstract

We propose a simple mathematical model for the growth of ahrinigs of a single generic tree,
subject to random competition for resources. The moded @stwo premises: The ring diameters
are bounded and are increasing with time. A simple way o$fértig these premises is to model
the diameter as the running maximum of a bounded stochaffiiceshtial equation, driven by a
Wiener process. To obtain an explicit solution to the eaqumtwe require it to be reducible to an
Ornstein-Uhlenbeck process. This allows us to obtain a latheiterated logarithm for the ring
diameter, which can assist in deciding when the tree shalthibvested.

Key Words: Tree ring diameter, growth, competition, stochastic défgial equation, maximum
process, Ornstein-Uhlenbeck process, Langevin processpk the iterated logarithm.

1. Introduction

An essential part in managing a forest is knowing when to dstrvOne tool in assisting
making such a decision is simulation of forest growth. A $bris made up of trees, so if
we can make simulation of tree growth then we have taken apetstvards simulating
the forest. There are mathematical models that focus onglesiree e.g., the models
studied in 1980 by Bailey [1] and those investigated 21 ykdes by Fox, Ades and Bi [2],
and these models often result in analytically tractablaeltesThis mathematical elegance
comes at a price, namely one disregards the interactiom®xist between trees; nearby
trees compete for light and water. To model competitiontesys of interacting single-tree
models are constructed as for example in 1979 by Garcia [Biteose constructed 29 later
by Qiming, Scheider and Pitchford [4]. The advantage is nmeedistic models, but the
disadvantage is the inability of obtaining analyticallgdrable solutions and often having
to rely on numerical approximations of the system; thisieamwith it questions of whether
the approximations really approximate the right things ainghat rate the approximations
converge to the true tree growth.

This presentation describes a simple model for the growéhsuigle tree, where effects
of environmental disturbances and interactions with othegs are a natural part of the
model, and do not have to be introduced as systems of intagactes.

2. Methods

The model we propose studies the annual rings of a singlaatréeests on two premises:
the ring diameter is bounded and increases. A simple waytisfigag these premises is to
model the ring diameter as the running maximum of the salutiva bounded stochastic
differential equation.
Dy =max X;, t>0.
s€(0,t]

If the solution, X, has continuous trajectories, then the correspondingdi@jies of the
running maximum-process will be continuous and increasisigvell. If we require the
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stochastic diffgrentialsgcggr@ggg Apstllgse aﬁg%%‘ﬂkr?\l/?rb r'][rplgnq mﬁg)ijgctive map of the d|
ameter dynamics to the dynamics of the running maximum ofadimensional Ornstein-
Uhlenbeck process. This strictly monotone map allows favadf the iterated logarithm

to be obtained, which can assist in deciding when the treelghie harvested.

2.1 Stochastic differential equation

Our stochastic differential equation describes the abiiita of sunlight and water, in-
corporating a deterministic growth model)(in the absence of competition, and a non-
deterministic model of disturbances, conceivably caugeshironmental effects and com-
peting trees.

dXt = /L(Xt) dt + O'(Xt) th .

The connection between sunlight and water and their effectiameter growth is a very
complicated one — among other things it is governed by thdlitanprocess of photosyn-
thesis —which we disregard in this case, simply assumimgaéta proportionality. Another
thing we assume is that the tree is insensitive to randomrtlishces when its diameter is
very small and when it is very large; this is reflected in clogghe diffusion coefficient
function to have a parabolic shape.

o(z)=0px(K—z), z€(0,K).

The positive constanfl denotes the largest possible diameter the tree rings camnpbt
it is determined by the tree species, among other things. tégether with the positive
constantg the product( K is related to the rate of growth of the tree volume. The random
disturbanceslV, are continuous and mostly of a small magnitude; hence wehtiogim by
a Wiener process. We do not take into account sudden majorltksices, such as storms
or fires, the effects of which might be modeled by a Lévy pssce

To obtain an analytically tractable (strong) solution, wequire the stochastic differen-
tial equation to be reducible to an Ornstein-Uhlenbeck ggeg’; this effectively deter-
mines the drift coefficient function to be

u(x) =o(x) - {%J/(x)—aco%—a-/xﬁdy}, zxe€(0,K),

wherea > 0 andcy are arbitrary constants. A stochastic differential equmatvith these
drift- and diffusion coefficient functions has a unique styeolution equal to the stochastic
process

Xt = f(Y;f) , t= 0 )

with the bounded and strictly increasing function

() K

= e @R G YE(000),
and the stochastic procegsequal to an Ornstein-Uhlenbeck process

t
Y; = Yoe o + Joe_at/ e* dWs .
0

Thus we have constructed a model in which the availabilitysurilight and water X)
change in a smooth but random, fashion and does not exceed the upper bAundon-
sequently, the tree ring diameter — being the running maxirofithe sunlight-and-water
process — also increases in a smooth random fashion, anchdbesceed the upper bound
K.

1As a more realistic model of the physical process of Browniation, the Ornstein-Uhlenbeck process is
designed to have differentiable trajectories.
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How do trajectories of our model compare with growth curvésciual trees? Do they
have qualitative features in common?

One of the most notable features of our model is that it digpfseriods of constancy,
just like real data; this is due to taking the running maximaira continuous process.
Another feature of our model is that the rate of growth sloasilwhen the tree becomes
old; this is found in nature as well, where the cambial grogifttrees slows down when the
tree becomes old. Located in the tree trunk, the cambiumagex bf cells that continually
differentiates into short-lived xylem cells and long-livehloem cells. The xylem cells
transport minerals and water from the roots upward in the, @ed when the xylem cells
die they become the rings we are trying to describe with oudehoThe phloem cells
transport sugars, created by photosynthesis in the ledoesgyward in the tree.

Figure 1. Simulation of the growth of a single tree, using our progbs®del.Observe the
periods of constancy, which can be interpreted as the tpeeriexcing harsh environmen-
tal conditions for growth, like competition with neighbog trees or enduring periods of
drought. If the tree is competing for resources it does noiwvdn girth, but rather in height,

until it reaches favorable circumstances for ring growth.

Diameter (Metres)

T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Age (Years)
Figure 2: Part of tree ring data on a 1533 year old fig that grew by trer @isnein the Los

Alerces National Park in Argentina during the years 441419ke tree diameter became
0.8 meters.
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From an economic point of view, a tree might be harvested wihnernelative increase of its
diameter over e.g., a ten-year time period is small enoudheivdloes this occur?

To answer this question we make use of the fact that we havecags {) given by a
strictly increasing function of the well-known Ornsteirildnbeck process, and determine
a Law of the iterated logarithm for the corresponding treg diameterD. To do this we
make use of the fact that the Ornstein-Uhlenbeck procesdearpresented as a time-
changed Wiener process, with an explicitly known striatigreasing time-change,

Y= }/E]e_at + er_atWT(t) )
7(t) = 20)71(e* - 1), t>0.
This will give us a deterministic growth curve around whidte ttrajectories ofD will
eventually fluctuate.
The Wiener process obeys the Law of the iterated logarithan,dlmost all trajectories

of the process have the following property: For any positiuenbere, the trajectories of
the Wiener process will eventually be found somewhere bertvtiee two curves

t— +(1+¢)y/2tloglogt,

and occasionally the trajectories will be above the curve (1 — )+/2¢ log log t or below
the curvet — —(1 —¢)+/2tloglog ¢ . Or, more succinctlyP{lim sup,_, ., % =1}=1,
where we introduce the function

L(t) = +/2tloglogt, te(3,00).
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Figure 3: Almost all trajectories of a Wiener process will eventydle found somewhere
between the solid curves, and occasionally those samettrags will be found above the
upper dashed curve or below the lower dashed curve.

The time-changed Wiener proceHls. will obey the same law, since the time-change is
non-random.

W,
P{lim sup Wro|

tsoo (L oT)(t) =1=1.
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This implies that (for%% rpoonsgié{%igsuary&ﬁg l‘;"rll\WrgrS]rtn earHI[I _trﬁjﬁ%lges of the procegsgY)
e

will occasionally be found above the curve
t f(Yoe= ™ + ope (1 —¢)(LoT)(t)),

and this will also be true for the running maximum of this mse. Thus, eventually the
trajectories of the ring diameter procegs, will be above a certain curvéy, essentially
determined by the diffusion coefficient functien To put it succinctly,

D,
P{limsup —— > 1} =1,
{tﬁmpG@)_ }
where we express the asymptotic growth cugvamplicity by
1 K o0 e?et — 1)
co— ——log (—— —1) = e Yy + —(e** — 1) loglo .
0T R gQ%ﬂ ) {Yo+—( ) log log ~———}
] D ]
N H r f (,r"!_,
05 / | [[HH #
1 —~
03 J“ va\J“
r"d r’ |
o] | [, |
0.1 AAII IJ “/_‘
¥or

Figure 4: The asymptotic growth curv@ as function of time, together with five simulated
trajectories of tree ring growth, generated using the pataraK = 0.8, = 0.01, oy =
0.5 andcy = —3.

When the relative increase in ring diameter is too smalln thenight be a good time to
harvest. We can use the asymptotic cuii& compute its corresponding relative increase
over a time periodh > 0, and compare it with the corresponding relative increagben
data; to be of any practical use, the time period must not bdatog; we choosé = 10
years.
G(t+h)—G(t)
G(t) ’
Should we declare a relative increase less than 0.3 to bentatl, shen the asymptotic
curve in Figure 5 suggests harvest to occur after about 45 ytés agrees quite well with
the data, as its relative increase goes below 0.3 for thdifiretafter about 40 years.

G, (t) = t>0.

3. Conclusion

Using a simple stochastic differential equation we havenlzdse to derive a model whose
qualitative behavior resembles that of annual tree ringvtdto The asymptotic behavior
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Figure 5. The solid curve represents the 10-year relative increaseng diameter ac-

cording to our model, when using the same parameters as ime~g The dashed curve
represents the 10-year relative increase in ring diamétidred_os Alerces fig depicted in
Figure 2.

of the model was derived using the law of the iterated lolarifor a Wiener process, and
using the asymptotic growth curve a corresponding relatieeease in diameter growth was
be computed. This relative increase can be used when dgdltirbest time to harvest.
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