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Abstract 

 
Often it is of interest to know whether treatment effects are heterogeneous over various 
subgroups of patients defined by the prognostic factors. We address this problem in a 
survival analysis setting. We extend the standard definition of interaction used in a 
standard 2×2 factorial experiment to survival analysis. We define the interaction in terms 
of median time. We use Efron’s bootstrap for estimating the standard error of median 
time. We propose model-free tests and discuss sample size determination. We discuss 
some possible applications of these tests in biomarker validation investigations.  
 
Key Words: Stratified randomization, Kaplan-Meier method, simple effects, Gail-
Simon test, likelihood ratio test, predictive biomarker. 
 
 

1. Introduction 
 
The heterogeneity of treatment effects across the levels of a baseline variable refers to the 
circumstance in which the treatment effects vary across the levels of the baseline 
characteristic. Heterogeneity is sometimes further classified as being either quantitative 
or qualitative. In the first case, one treatment is always better than the other, but by 
various degrees, whereas in the second case, one treatment is better than the other for one 
subgroup of patients and worse than the other for another subgroup of patients (Wang et 
al., 2007). Gail and Simon (1985), among others, have used the terms crossover 
interaction for qualitative interaction and non-crossover interaction for quantitative 
interaction. In this paper we propose model-free nonparametric tests for verifying the 
presence or absence of crossover and non-crossover interactions in survival analysis. 
 
We focus on a clinical trial where the efficacy of an experimental treatment is compared 
with a control as measured by a time-to-event endpoint. We assume that the baseline 
characteristic is dichotomous and that randomization is stratified. This baseline 
characteristic is also called a stratification factor. We define the interaction in terms of 
median event-time. Because the distribution of survival times tends to be positively 
skewed, the median is the preferred summary measure of the location of the distribution. 
Also, the median is straightforwardly informative to the clinicians. Efron (1981) said it 
very nicely- “The median is often favoured as a location estimate in censored data 
problems because, in addition to its usual advantage of easy interpretability, it least 
depends upon the right tail of the Kaplan-Meier curve, which can be highly unstable if 
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censoring is heavy.” As a result, it has become a common practice in clinical trial study 
reporting to give point and interval estimates for the median event-time.  This motivated 
us to define interaction in terms of median event-time.  

The tests proposed in this article may be useful in biomarker validation investigations. To 
facilitate a discussion, we need to state a definition of what is called a predictive 
biomarker. Sargent et al. (2005) define a predictive marker as a marker that predicts the 
differential efficacy (benefit) of a particular therapy based on marker status (e.g., only 
patients expressing the marker will respond to the specific treatment or will respond to a 
greater degree than those without the marker). That is, the treatment is better than the 
control in the absence and presence of the marker, but by various degrees. Therefore, 
quantitative interaction implies marker’s predictivity. Mandrekar and Sargent (2009) state 
that if interactions exist, and they are fairly common in oncology clinical trials, one 
should plan the clinical trials in such a way that interactions can be estimated and tested. 
They recommend prospectively designed randomized controlled trials to test a marker-
by-treatment interaction for prospective validation of a predictive marker. Mandrekar and 
Sargent (2009) propose two types of clinical trial designs for predictive biomarker 
validation when efficacy is measured by a time-to-event endpoint. One of them is a 
parallel group design- called the marker by treatment interaction design, which uses the 
marker status as a stratification factor when randomizing subjects to treatment. Our 
proposed test for quantitative interaction is applicable in the analyses of such trials. 
 
The Gail-Simon test for qualitative interaction is widely used in practice. It has entered 
reference books. Marubini and Valsecchi (2004) have included a section on Gail-Simon 
test in their book entitled “Analyzing Survival Data from Clinical Trials and 
Observational Studies”. Dmitrienko et al. (2005) have provided a SAS macro that 
calculates a p-value for the Gail-Simon likelihood ratio test for qualitative interaction.  
Lawrence (2003) has used the Gail-Simon test to study the inconsistency of losarton 
effect compared to atenolol, as measured by event-free survival (EFS), among ethnic 
subgroups (Black vs. Non-Black) of patients with left ventricular hypertrophy (LVH). 
Quan et al. (2010) have indicated a possible use of the Gail-Simon test for assessment of 
consistency of treatment effects in multiregional clinical trials. Our proposed test for 
qualitative interaction is a better alternative to the Gail-Simon test. 
 

This article is organized as follows. In Section 2, we describe the nonparametric survival 
analysis setting that serves as the base for this article. In Section 2, we also explain the 
need for bootstrap standard error of the median and provide necessary details on its 
calculation. We define simple effects and interaction in terms of medians, and provide 
additional notations in Section 3. We propose an asymptotic z-test for a null hypothesis of 
no quantitative interaction in Section 4.  In Section 5, we explain why the Gail-Simon test 
for no qualitative interaction fails in survival data analysis. In Section 6, we propose a 
new test for no qualitative interaction in terms of event-time medians. We provide a 
discussion on sample size determination in Section 7. We end the article with some 
miscellaneous comments. 
 
 

2. The nonparametric preamble 
 
We develop the tests under the frame work of a randomly right-censored survival model. 
We assume that are iid random variables with a continuous distribution nYYY ,,, 21 
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function , and that F F has a density and medianf  . These variables represent the 

event-times of the subjects under observation. Associated with each  is an independent 

censoring variable , which are assumed to be iid from a censoring distribution . The 

data consist of n  pairs , where is either an observed failure-time  or an 

observed censoring time , and

iY

iC H

iY), ii dT

i

(

C
iT

iY )(i Id iC . The basic quantity employed to describe 

time-to-event phenomenon is the survivor function )(1 tFS )(t  . The median survival 

time estimate is given by , where  is the product-limit 

estimate of . That is, the median survival time is estimated from the product-limit 

estimate to be the first time that the survival curve falls to  or below. The sample 

median  is asymptotically normally distributed with mean

}5.0)t(ˆ: Sinf{  tm )(ˆ tS

5.0
)(tS

m  . The variance  of 

 is mathematically intractable. The SAS lifetest procedure provides an estimate of 
survivor function accompanied by survival standard error. By default, the SAS lifetest 
procedure uses the Kaplan-Meier method. It also produces a point estimate of the 
median

)(2 m
m

 of and the 95% confidence interval- derived by Brookmeyer and Crowley 
(1982). Brookmeyer and Crowley obtained the confidence intervals by inverting a 
generalization of the sign test for censored data. They did not need the standard error of 
the sample median. Obviously, the SAS lifetest procedure does not provide the standard 
error of the sample median . One form of the asymptotic variance of median  is 

F

(2

m

)(2 m

m
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where  is found using the Greenwood’s formula (Collett, 1994). A slightly different 

version of  is provided in Reid (1981): 
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As is unknown, the variance  given either in (2.1) or (2.2) becomes useless in 

estimating the population median time 

f

 (Babu, 1985).  We propose to estimate the 

standard error of using the Efron’s bootstrap (1981), which does not make any 
distributional assumptions. In a single sample setting, Efron’s bootstrap may be described 

as follows. We draw a bootstrap sample , ) , 

m

)*
1,( *

1Y C ,( *
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*
2 CY  , by 

independent sampling times with replacement from 

), *
nC( *
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n F and calculate the median 

. We repeat this independently B)data*(*m m times, obtaining B medians: 

. An estimated variance of the sample median time m  is  
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One may set B equal to . This is called “model-free” or the Efron’s bootstrap 
procedure II. The University of Texas at Austin (1996) has provided some introductory 
SAS codes needed to resample a SAS dataset. 

1000
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Efron (1985) states: the bootstrap estimate BOOT̂  given in (2.3) is a consistent estimate, 

but  in (2.1) or in (2.2) itself may be meaningless. Therefore, we assume that , 

which does not depend on either or 

2
BOOT̂

f  is a viable substitute for . Thus, we work 

under the notion that the sample median time m  is asymptotically normally distributed 

with mean

)(2 m

 and variance . We suppress the subscript BOOT of the estimated 
variance.  

2
BOOT̂

 

What is an indication of an unstable median or heavy censoring is a crucial question. As 
observed by Brookmeyer and Crowley (1982), if the survival curve is relatively flat in the 
neighbourhood of 50% survival, there can be great deal of variability in the estimated 
median. It would be more appropriate to cite a confidence interval for the median. We 
propose a simple rule of thumb. If the upper limit of a 95% confidence interval on 
median is not available, one may conclude that median is unstable and/or censoring is 
heavy. Therefore, the proposed tests should work efficiently when the Brookmeyer-
Crowley upper limit of a 95% confidence interval on median is available. This also 
minimizes the number of bootstrap samples whose Kaplan-Meier curves do not reach 0.5 
survival probability. In addition, asymptotic normality requires that ̂2m . See also 
Section 8 for a related comment.   
 
 

3. Basic notation, definitions, and further details  
 

Consider a standard analysis of variance 2×2 factorial experiment with r replications. Let 

00y , 01y , 10y , and 11y denote the averages of response y , respectively, at the four 

treatment combinations , , , and of two factors A and 00BA 10BA 01BA 11BA B each at 

levels- and . The difference 2 0 1 0010 yy  represents the simple effect of A at . 

Similarly, the difference 
0B

01y11 is the simple effect of A at 1 . The average of simple 
effects is called the main effect. The interaction is defined as the difference between two 
simple effects (Cochran and Cox, 1957). The presence or absence of interaction is 
specific to the measure of the treatment effect. Interaction indicates the failure of the 
differences in response to changes in levels of one factor to be the same at both levels of 
another factor.  We extend these definitions to survival analysis.  

y  B

 

Consider a clinical trial where the experimental treatment is compared with a control as 
measured by a failure-time , which is right censored. In what follows, we assume that 

longer failure-time implies favourable clinical outcome. We use 

T

x to denote the indicator 

variable for treatments. We set 1x for the experimental treatment and for the 

control. For simplicity, we assume that there is only one stratification factor  at 

randomization. Let us further assume that  is dichotomous with values- 0 or . This 

defines two subsets 1 and 2 that correspond to 

0x

1

z

z

0z  and 1z , respectively. 
Randomization of subjects to the treatments within subsets is carried out independently.  

 

We use the following notation. 
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00 : Median of F for 0x  at 0z  

10 : Median of F for 0x  at 1z  

10 : Median of F for 1x  at 0z  

11 : Median of F for 1x  at 1z  
 

Let  denote the corresponding sample medians. The difference )1,0;1,0(  jimij

00100   is the simple effect of the experimental treatment at 0z , and similarly, 

the difference 01111   is the simple effect of the experimental treatment at . 
We define the interaction as the difference   

1z

 
                                           0010011101                                           (3.1) 

 
The concepts of quantitative interaction and qualitative interaction are illustrated in 
Figures 1 and 2 in sections 4 and 6, respectively. As the parameters 

)1,0;1,0(  jiij are unknown, the simple effects and the interaction are unknown. 

Estimates of the simple effects 0 and 1  are given by 00100 mmD  and , 

respectively. The Kaplan-Meier estimator is asymptotically unbiased for
01111 mmD 

ijijm   

. Therefore, and  are unbiased for )1,0;1,0(  ji 0D 1D 0 and 1 , respectively. The 

difference is an unbiased estimate of the interaction between 01 DD  x and .  

Let denote the bootstrap variances of

z
2ˆ ij )1,0;1,0(  j

0D 1D

0010

iijm

1D
2
01̂

0

. We use  and to 

denote the bootstrap variances of and , respectively. Because of the design, it 

follows that and . Therefore, and are independently 

asymptotically normally distributed with means 

2
0̂

2
1̂

0

2
11̂ 

D

2
00̂2

10
2
0 ˆˆ   2

1̂
  and 01111  

a

 , and 

variances and , respectively. In what follows, z denotes the 100 th percentile 
of the standard normal distribution.  

2
0̂

2
1̂ a

 
 

4. Test for quantitative interaction 
 
In order to perform the proposed test for quantitative interaction, we first calculate the 
four sample medians using the Kaplan-Meier method. Next, we calculate bootstrap 
standard errors of the medians. We skip the further computational details. Table 1 below 
provides the basic information needed for the test.  

 

    Table 1: Table of medians (variances) for a 2×2 factorial experiment setting 

Covariate  z 

Treatment x  0  1 

 

Simple effect estimate 

           0
00m ( ) 2

00̂ 10m ( ) 2
10̂ 00010 mmD   

          1 
01m ( ) 2

10̂ 11m ( ) 2
11̂ 01111 mmD   
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A plot of the four points , in the presence of 
quantitative interaction should look like the one shown in Figure 1.  

)},1(),,1(),,0(),,0(:),{( 11011000 mmmmmz

 

 
    Figure 1: Illustration of quantitative interaction in a factorial arrangement 

 

Here we want to verify if the simple effect 1  of the experimental treatment at is 

significantly greater than the simple effect 

1z

0  at 0z  or vice versa. As stated by 
Piantadosi and Gail (1993), the null hypothesis requires that a specified treatment is 
preferred in both subsets.  We need to test the null hypothesis 0: 0101 H  versus the 

two-sided alternative hypothesis 0: 011 AH . Equivalently, we test 

 
                  0: 0010011101  H  vs. 0: 001001111  AH                (4.1) 

 
Under the null hypothesis  in (4.1), the statistic  01H

 

0010011101 mmmmDD   
 

is asymptotically normally distributed with mean 0 and variance . Therefore, we 

reject the null hypothesis in favour of the alternative in (4.1) at level 

2
1

2
0 ˆˆ  

01H 1AH  if  

 

21
2
1

2
000100111 ˆˆ||   zmmmm .  

 
 

5. Gail-Simon test for qualitative interaction 
 
Gail and Simon (1985) have proposed a pseudo likelihood ratio test for qualitative 
interaction. They have illustrated the test using a survival dataset in their section 3. 
Piantadosi and Gail (1993) have compared power of the Gail-Simon test with the 
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standardized range test proposed by Robert Tarone. They have also considered an 
example of survival data analysis in the power comparison. In this section we point out 
that Gail-Simon test that is derived in terms of regression coefficients is flawed and 
inapplicable in survival data analysis.  
 
The Gail-Simon method is model dependent and requires that the hazard ratios in subsets 
1 and 2 be estimated separately. Then in each subset  ( 2i ,1i ), the proportional hazards 
model sets 
 
                                     ,0),exp()()(  tzthth iiCiE                                              (5.1) 

 
where is the hazard function andh 1,0z . The model (1) can be re-written in the 

form zthth iiCiE ])()([log , where the quotient )()( thth iCiE is the hazard ratio (HR) 

of the treatment relative to the control, and 1 and 2  are the regression coefficients- also 

called the log hazard ratios. Note that the maximum likelihood estimator  of i̂ i  

( 2 ) is asymptotically normally distributed with mean,1i i and variance :   )i(2
i  1

iI 
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ii rr
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1 2
21
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])exp([
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


 ,                                     (5.2) 

 
where  and denote the numbers of subjects at risk in the experimental treatment 

and control at the smallest failure time 

jEr Cjr

)( jt ),,1( kj  , respectively (Collett, 1994).  

      
The objective is to test the hypothesis that there is no crossover interaction. Gail and 
Simon used },:{ 21  β

 O

 to denote the unrestricted parameter space. They 

set the null parameter space as , where , and O }0,0:{ 21  βO

}0,0:{ 21  βO . Gail and Simon consider the pseudo likelihood 
 

                               


2

1

22
1 ]2/)ˆ([exp)()(

i iiic ββ ,                                 (5.3) 

 

where , for deriving their test. As seen from (5.2), is a function of 1
211 )2()(  βc 2

i

i ( 2i ), and therefore, depends onβ . ,1 1c

 
Gail-Simon proposed the likelihood ratio test statistic 
 

                           
])2/)ˆ((exp[max

])2/)ˆ(([expmax
2

1

22
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



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


i iii
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




β

β
                               (5.4) 

  
They state that the hypothesis of no crossover interaction is rejected if both 
 

              cIQ iii   )0ˆ()ˆ( 22   and cIQ iii   )0ˆ()ˆ( 22  , 
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where 1)0ˆ( iI  if 0ˆ
i and otherwise, and 1)0ˆ( iI  d 0  

rwis e quantities Q and Q are the minimum values of 

   an
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0 if 0ˆ i

e. Th 22
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)ˆ( iii   over 

spectively, and the likelihood ratio test can be expressed as 

c . T y provide the values of c corresponding to sig

O

min

.0

and

he ificance levels 

. See Gail and Simon (1985) fo

 comments on their test. The intended likelihood ratio for the Gail-

                                         

O , re

Q  ),

,05.0 ,1.0 and

Q(

,001 2.0 r further details.  
 
We have the following
Simon test is 

]);([max

]);([max










ββ

ββ

β

β




 ,                                                (5.5) 

where ) s given
 

 by (5.3). This statistic (β i  in (5.5) is different from GS in (5.4) in that 
1

211 )2()(  βc is missing from the numerator and from the denominator of GS . The 
restricted maximum likelihood estimate is not equal to the unrestricted maximum 
likelihood estimate. Therefore, the 1c in the numerator and 1c n the denominator of the 

statistic

 i

 in (5.5) cannot be cancelled. Also the variance 2
i in the exponent in )(β  

cannot be ignored. Gail and Simon have assumed that the variances 2
i are known. At 

end of section 2 they have claimed that consistent estimates 2
is may be inserted for 

2
i in all the previ s equations without altering the asymptotic distributi  theory. In the 

current scen  2
i is not a nuisance parameter.  As seen from (5. i is an explicit 

function of i

the 

ou

ario

on

), 22

 on which inference is needed. If i  is unknown, 2
i is un own.  A 

rigorous n of the test requires that 2
i be treated as a function of i

kn

derivatio  . In their 

Table 3, 208.0is  is the standard error of i̂  for the stratum “Age < 50 and PR 10”. An 

important question is: how did they get it? In practice, two different values of is a used 

to make inference on i

 <

re 

  (SAS Institute, Inc., 1997). A numerical value o for 

example, may be obtai the observed information in (5.2) evaluated at 01 
f 1s , 

ned using  . It 

is because fo ing, : 10 r test 0H , the cor test uses the observed information in (5.2) 

evaluated at 01 
s e 

 . Setting the  s in 1c as 0 and then maximizing the numerator and the 

denom ator of GSin  would be erroneous. Alternatively, for the Wald test, the standard 

error 1s  is calculated using the observed i ation in (5.2) evaluated at 11 ̂  . An 

attempt to estimate 2
1 as the inverse of )ˆ( 1I and then treat it as a constant in the 

derivation of the test is not a good move. The denominator in (5.5) is not equal to 1 as 
claimed by Gail and Simon. In addition, the Gail-Simo ical values c are valid only if 

the conditional distribution of

nform

n crit
22ˆ
ii s giv 0̂  or 0ˆ i  is central chi-square with 1 

degree of freedom. As 2
is is a function of i and 2

is are not independent ( 2,1i ), and 

therefore, conditional distribution of 

en

i̂ , 

i

̂

 

22ˆ
ii s is not central chi-square. Consequently, 

derivation of the Gail-Simon test fails when applied in survival analysis. In the next 
section we modify the Gail-Simon test and propose a new test for the null hyp thesis of o

1no cro r interacssove tion terms of  in medians instead of regression coefficients  and 2 .  
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6. New test for qualitative interaction 

rmation needed is the same as shown in T
, in the presence of 

ualitative interaction should look like the one shown in Figure 2.  

 

 
Once again, the basic info able 1. But this time a 
plot of the four points )},1(),,1(),,0(),,0(:),{( 11011000 mmmmmz

q

 

Figure 2: Illustration of qualitative interaction in a factorial arrangement 

esis

 

We test the null hypoth  0H 0010:2   and 0111    or 0010   and 11 01  vs. the 

2AH that 20H is false. Here the alternative hypothesis 2AH means: 

0010

alternative hypothesis 

   and 0111   and vice versa. In Piantadosi and Gail’s (1993) words, the null 
hypothesis requires that the treatment effect has the same unspecified direction in both 
subsets. In order to derive our test, we switch back to the Gail-Simon original 

notation O and O . Let T),( 10 δ , where 0  and 1 are the simple effects, which 

}0,0:{ 10  δO and }0,0:{ 10  δO . We let   OO denote the 
parameter space restricted under the null hypothe

were defined in earlier in Section 3. Let 

sis 


d an   denote the unrestricted 
arameter space. The likelihood ratio test statistic is  
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As th p variances 2ˆ i of iD  are independent of )1,0( ii , the 

factor 1
21 )ˆˆ2(  , which appears in the numerator and in the denominator is cancelled 

ut. The likelihood ratio (LR) test statistic in (6.1) can now be written as  
 
o
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This test statistic is similar to the Gail-Simon test statistic GS in (5.4). Therefore, Gail-

Simon arguments used in support of their test statistic GS  prove to be useful here in 

deriving the test LR  given in (6.2). We reject the hypothesis of no crossover interaction 
if both 
 

cDIDQ ii ii  )0()ˆ( 22   and cDJDQ ii ii   )0()ˆ( 22  , 

 
where if and otherwise, and 1)0( iDI 0iD 0 1)0( iDJ if  and  

otherwise. Gail-Simon (1985) critical values  remain valid for our new test as well.  

0iD 0

)(c
 
 

7. Sample size for quantitative interaction test 
 
Testing for interaction arises in clinical trials where comparing a time-to-event between 
two treatments is a primary objective. Consider such a study where the subjects are 
randomized to the treatments in a 1:1 ratio. The required number of deaths can be 

obtained from the equation: 

d
22

2 )HR(log)(4  zzd  , where HR  is the hazard ratio 

of the active treatment relative to the control. See p. 255 in Collett (1994) for details. 
 
Mandrekar and Sargent (2009) have discussed sample size consideration for a marker by 
treatment interaction design. They have calculated the sample size as the sum of the 
number of events required for the marker +ve arm comparison and the number of events 
required for the marker −ve arm comparison. That is,  
 

.)log()log()(4 ][ 2
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112

00

102
2

 






 zzd  

 
We base the sample size determination on the interaction. We assume that failure-
time has an exponential distribution. That is, T 0,0;)(exp)(   tttf . The 

maximum likelihood estimator of   is 
n

rtd
1

̂ , where d is the number of events out 

of the n  observations. The median estimate is ̂2log . The maximum likelihood 

estimator is asymptotically normally distributed. By the delta method, the sample 

median 

̂
̂2log  is approximately normally distributed with mean 2log and standard 

error equal to d2log (Collett, 1994). Let ij denote the parameters of the exponential 

distributions for the failure-times corresponding to subsets formed by , 

and . We assume that the medians for the two treatment arms at  are 

known. That is, we assume that 

1,0,  iix

0z1,0,jz j

00 and 10 are pre-specified and therefore, 

2log)11( 000 10   is known. Let  be a pre-specified constant that represents the 

interaction of interest. Set  1 0 .  Our objective is to test 00 : 10 H  versus 
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  01:AH at  level of significance. We seek a power of 1

d

H

. For simplicity, we 

assume that both subsets have the same number of events per arm so that the total 

number of events needed is at least . It follows that under , the variance of  

is 

d4 0

01 DD  d)()2(log2 2
00

2
10

2   2
0  . Clearly, we are in the single sample z-test setting. 

Therefore, 2
20( z ]||)  z[d 

8.0

. The test for interaction should be performed at a 

higher significance level, preferably between and ; and the power may not exceed 

.  

1.0 2.0

 
8. Miscellaneous comments 

 
Often an estimate of median is available but the upper limit of the 95% confidence is not 
available. In this case, median may not be available for a good number of bootstrap 
samples that would be used to find standard error of the sample median. For these 
samples, the median estimate may be set to be the largest failure time (Keaney and Wei, 
1994). In this case, one should check that 2m  for both treatments in each subset. 
 
Demonstration of overall treatment effect in the target population is the ultimate goal of a 
clinical trial. Stratified log-rank test is the most commonly used to compare survival 
curves. Stratified Cox model based hazard ratio, which requires a proportional hazards 
assumption, is often used as a measure of clinical benefit of the experimental treatment 
relative to the control. The concept of hazard ratio is elusive. Clinicians find it hard to 
understand.  In view of this, we define the term of what is called the main effect. The 
average 2)( 10   , of the simple effects is called the main effect of the experimental 

treatment. The mean 2)( 10 DD   is an asymptotically unbiased estimate of the main 
effect. The main effect estimate is model-free and is more informative and appealing 
compared to a hazard ratio. The estimated main effect may be numerically different from 
the difference between the treatment medians, which are routinely obtained from the 
combined data.  
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