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Abstract
We consider the comparative strengths of spectral diagnostics and the FM test statistic of Ly-

tras, Feldpausch and Bell (2007) for detecting significant seasonality in two contexts: (i) Deciding
whether a time series meets the minimum requirement to be a candidate for seasonal adjustment,
the focus of the comparisons of Lytras et al. (ii) Deciding whether a seasonally adjusted time series
still has seasonality that is detectable in its more recent data. Our results show that the best ways
to apply the diagnostics differ according to the context. The scope of the results is increased by the
analysis of simulation results for stationary seasonal autoregressive models and a theoretical result
showing their relevance.

Key Words: Seasonal adjustment, Residual seasonality, Seasonal autoregressive models, Station-
ary seasonality, X-13ARIMA-SEATS
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1. Diagnostics for Detecting Seasonality

Lytras, Feldpausch and Bell (2009), hereafter LFB, presented a new F -statistic, designated
FM , to test for stable seasonality in monthly time series, which has been incorporated into
X-13ARIMA-SEATS (U.S. Census Bureau, 2012) and into versions of TRAMO-SEATS
(Gómez and Maravall, 1996) and TSW (Caporello and Maravall, 2004) to be released soon.
(Personal communication from A. Maravall.) Its formula is given below in Subsection 3.
They compared its performance, on simulated series from non-seasonal ARIMA models
and from Airline models, to the performance of the autoregressive spectrum diagnostic
of X-12-ARIMA, reprised below in Section 2, and to the performance of historic X-11 F-
statistics and other X-l1-ARIMA diagnostics inherited by X-12-ARIMA and X-13ARIMA-
SEATS (a combination we abbreviate as X-12/13). Having ”significant” stable seasonality
has historically been a necessary condition for seasonally adjusting a series in software
incorporating the X-11 method. (It does not establish that an adjustment of acceptable
quality can be found.)

LFB did not consider the detection of residual seasonality in seasonally adjusted series.
This is the most fundamental deficiency a seasonal adjustment can have. We investigate
the efficacy of FM , AR spectra, and the periodogram for this task in Section 4. There we
analyze seasonal adjustments of 28 U.S. Census Bureau Service Sector Statistics obtained
with deliberately incorrect X-11 seasonal filter options. A least one diagnostic indicates
residual seasonality in 22 of these series. When a better seasonal adjustment is obtained
with X-12/13A-S’s automatic moving seasonality ratio seasonal filter selection procedure
inherited from X-11-ARIMA (Dagum , 1980), none of these diagnostics indicates residual
seasonality. Our analysis shows that a useful conclusion of LFB regarding the length of the
data interval used to calculate the diagnostics for detecting seasonality in the unadjusted
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series is reversed in the new context: for detecting residual seasonality, the short default
8-year span of X-12/13A-S should be used for FM and for the spectrum diagnostics, not a
much longer span.

In Section 5, we examine the performance of the diagnostics with simulated series
having positive stationary autocorrelation of varying amounts at seasonal lags 12, 24, and
beyond, but no stable seasonality. A formal definition of seasonality is lacking. The oper-
ational heuristic concept is that seasonality consists of movements in the series away from
its underlying level or trend that recur with the same direction and a similar magnitude
from one year to the next, for several years at least. Thus, substantial positive “correlation”
of some kind at seasonal lags 12, 24 and 36 is expected. The simplest mathematical model
is that of perfect correlation/repetition, i.e. fixed or stable seasonality, but this is rarely
realistic. Equally simple and more versatile are stationary first-order seasonal autoregres-
sive models with a positive coefficient 0 < Φ < 1. For such a model, autocorrelations at
seasonal lags are powers of this coefficient, ρ12k = Φk for k = 1, 2, . . . . TRAMO-SEATS
and TSW usually use this model for the seasonal component when an automatically iden-
tified seasonal ARIMA model does not include a seasonal difference and Φ is not below a
specified threshold.

2. Spectral Diagnostics

Here we review the autoregressive spectral density and periodogram diagnostics as imple-
mented in X-12/13 for monthly data, which could be the appropriately transformed original
series or seasonally adjusted series.

2.1 The AR(p) Spectral Density

Here we briefly review the spectrum diagnostics of X-13ARIMA-SEATS and its X-12-
ARIMA predecessors (hereafter X-12/13) for monthly data xt. Let ϕ̂ (B) = 1−

∑p
j=1 ϕ̂jB

j

denote the estimated AR(p) polynomial of a p-th order autoregressive model ϕ (B) (xt − µ) =
at for data xt, t = d + 1, . . . , n resulting from differencing of order d ≥ 0. The estimated
model’s spectral density is

ĝ (λ) =
σ̂2
a∣∣∣1−∑p

j=1 ϕ̂jei2πjλ
∣∣∣2 ,−1/2 ≤ λ ≤ 1/2, (1)

where σ̂2
a = (n− d− p)−1 ∑n

t≥d+p+1

(
xt −

∑p
j=1 ϕ̂jxt−j

)2
.

Without the assumption being made that xt is AR(p), AR spectral densities are a stan-
dard diagnostic for periodic components, see Priestley (1980). (Note that a perfectly re-
peating seasonal component satisfies the autoregression zt = zt−12+0.) For monthly data,
for the BAYSEA seasonal adjustment program (Akaike and Ishiguro, 1982), introduced
as a diagnostic the decibel-scaled version of ĝ (λ) with p = 30, calculated at 61 discrete
frequencies,

arspec (λ) = 10 log10 (λ) (2)

calculated at 61 frequencies, λk = k/120, k = 0, 1, . . . , 60.Thus λk, k = 10, 20, . . . , 50, 60
are the seasonal frequencies 1/12, 2/12,. . . , 1/2 cycles per month or 1, 2,. . . , 6 cycles
per year. There are no statistical tests for a significant seasonal peak. Instead, the”visual
significance” or v.s. criterion of Soukup and Findley (1999) is used in X-12/13, which
was developed empirically to detect trading day effects. With R = maxkarspec(λk) −
minkarspec(λk), a peak at any of λk, k = 10, 20, 40, 50 (which we designate by S1, S2,
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... , S5) than the median of the arspec values and also more than (5/32)R greater than the
neighboring values arspec(λk−1) and arspec(λk+1). A v.s. peak at 5 cycles per year (λ50)
is sometimes ignored, especially if it is the only v.s. peak, because such peaks often seem
to have little connection to seasonality, especially in a seasonally adjusted series. (The fre-
quency could be an ”alias” of a non-seasonal frequency.) To detect trading day effects, the
equispaced λk closest to the main and secondary trading day frequencies, .348 and .432
respectively, are replaced by the latter frequencies.

In X-12/13, to detect seasonality, either in the original series or its log transform (after
adjustment for regression effects) first differencing, i.e. (1−B), is usually applied and, in
the software’s default setting, the AR model is estimated from the last 8 years of data. The
same approach is used to residual seasonality in the adjusted series or its log transform.
The results of LFB discussed in Section 3, indicates that the longest available data span is
usually advantageous for confirming seasonality in the unadjusted data. We present results
in Section 4 showing that the 8 year span is better for detecting residual seasonality in a
seasonally adjusted series, also for FM .

2.2 The Periodogram

With

In (λ) =
1

n− d

∣∣∣∣∣∣
n∑

t=d+1

xte
−i2πtλ

∣∣∣∣∣∣
2

, (3)

the periodogram diagnostic pdg(λ) is defined as

pdg (λ) = 10 log10 In (λ) (4)

at the 61 values used for arspec (λ.)
Under assumptions too restrictive for our application, hypothesis test statistics for de-

tecting periodic components in correlated series are available for this diagnostic see Priest-
ley (1980). Therefore, the same v.s. criterion is used by the software, with the 8 year span
length as default.

2.3 An Example

Here we look at several diagnostic graphs for series 45291, Sales of Warehouse Clubs and
Superstores, after preadjustment for effects estimated by the regression component of a
regARIMA model and removed before seasonal factor estimation (the B 1 series in the
X-11 nomenclature). This is the series graphed in Figure 1. Figures 2 and 3 show the v.s.
seasonal spectral peaks of arspec and pdg confirming seasonality in this series, after log
transformation and first differencing. Figures 4 and 5 show v.s. peaks indicating residual
seasonality in the last 8 years of the similarly transformed seasonal adjusted series obtain
with the x11 spec command seasonalma=stable. This causes each calendar month’s
seasonal factors to remain constant over these years. There are no such v.s. peaks in
these spectra (not shown), when the seasonal adjustment filter is chosen automatically with
seasonalma=msr.

Figure 6 shows an overlay of the seasonal factors of 45291 by calendar month, centered
around their calendar month averages. For about half of the months, these averages are
substantially different from the averages of the factors over the last eight years. This reveals
why removing fixed seasonality like that produced by seasonalma = stable, whose factors
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(not shown) are quite close the averages in the Figure, leaves residual seasonality in the
later years.

Figure 7 shows that the constant seasonal factors for 45291 obtained by the seasonalma
= stable setting in the x11 spec of X-13A-S are very close to the stable seasonal fac-
tors estimated by variable = seasonal. This reveals that the FM test discussed
next is effectively testing if the average seasonality in each calendar month is zero. In con-
junction with Figure 6, this shows why FM must be calculated from the last eight years to
detect the residual seasonality revealed by arspec and pdg.

3. The FM Test Statistic for Stable Seasonality

The FM statistic of LFB tests the joint significance of the coefficients of the monthly
indicators for January, ... , November in contrast with December, so that they sum to 0 over
the year. That is, they are the Mj,t defined for months j = 1, . . . , 11 as follows. When
t = h+ 12 (m− 1), i.e. month h of year m, then

Mj,t =


1 h = j

−1 h = 12
0 h ̸= j, 12

. (5)

Denote by χ̂2 = β̂′
[
v̂ar

(
β̂
)−1

]
β̂ the estimated chi-square statistic of the maximum

likelihood estimates of the regression coefficient of an estimated regARIMA model whose
with k regressors, with coefficient vector β = (β1, . . . , βk)

′, include the eleven Mj,t. LFB
shows via simulations that

FM =
χ̂2

11
× n− d− k

n− d
, (6)

approximately follows an F11,n−d−k distribution when there is no stable seasonality.
They conclude from their analyses that FM is better than other X-11-ARIMA F-statistics

and that the significance text with FM from 20 year span much more reliable that the ”vi-
sual significance” (v.s.) criterion of the AR(30) spectral density of the last 8 years of the
series. They that find v.s. improves substantially with a 20 year span, but even then FM

remains substantially better.
However, our study indicates that when looking for residual seasonality, in X-12/13A-

S, the FM -statistic should be obtained from only the last 8 years of the seasonally adjusted
and zero-weighted extreme value adjusted series (X-11 Table E 2) via commands of the
form

series {file =”series.E2” modelspan = (2000.jan,) .... }
regression {variables = (seasonal)

automdl {}

In our study, the input series for testing for the presence of stable seasonality in the
original series was the log transform of the regression-adjusted series (X-11 Table B 1).

4. Detection of Residual Seasonality

To study residual seasonality properties of the diagnostics, deliberately inadequate seasonal
adjustments (SA’s) of 28 U.S. Service Sector series were obtained by removing the esti-
mates of a stable (unchanging) seasonal pattern using the x11 option seasonalma=stable.
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As the table below shows,and Subsection 2.3 illustrated, this option left residual seasonal-
ity, confirmed by at least two diagnostics, in the last eight years of all but 6 series, based
on diagnostics calculated for the last 8 years.(For the full seasonally adjusted series, the

p-value of FM is .98 for two series and 1.0 on the rest, because the X–11 filters remove
stable seasonality, exactly for additive adjustments, see Bell (2010) and effectively for mul-
tiplicative adjustment as this result shows. spectrum finds residual seasonality in 17, with
2+ peaks in 10.)

For the 28 SA’s obtained with the better, automatic option seasonalma=msr, none
has a ”visually significant” seasonal spectral peak or an FM with a p-value at or below
.05. Results from last-10-year spans are also presented to address the question of whether
a longer span improves overall diagnostic performance. Overall, it degrades performance.

In the table below ar = arspec; pdg = Periodogram; F = FM ; (p-value) shows p > .05
when ar or pdg indicate seasonality; and ? signifies a seasonality indication unconfirmed
by another diagnostic.

5. Performance with Stationary Seasonal AR(1) Series

All of the diagnostic considered above are motivated by their properties with data having a
perfectly repeating (i.e. periodic) component, whereas most economic time series that are
seasonally adjusted monthly have estimated seasonal factors that evolve over time, rather
than being periodic. So what are the diagnostics responding to? It is clear that the AR(30)
spectrum can have peaks at frequencies with stationary AR data that has strong correlations
at lags 2,3,4,5, 6 and 12, but how strong does the correlation need to be. What about FM?
The size studies of LFB only considered series that did not have correlations beyond lag 13.
The power simulations studies of LFB only considered series whose seasonality. When, if
ever, is it appropriate to seasonally adjust series lacking a stable seasonal component? To
what extent do the spectral and F-tests (mis)identify such series? We investigated these
issues using simulated series xt of lengths from 84 to 288 satisfying

xt = Φxt−12 + et, (7)

with normal i.i.d. et. The lag j autocorrelations of such xt are ρj = Φk for |j| =
12k, k = 0, 1, . . . and ρj = 0 otherwise We considered Φ = 0.1,... , 0.4, . . . 0.8, 0.9.
For example,

(ρ12, ρ24, ρ36) =

{
(0.4, 0.16, 0.064) , Φ = 0.4
(0.9, 0.81, 0.648) , Φ = 0.9

. (8)
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Table 1. Residual Seasonality Diagnostics for the Final 8- and 10-year Spans
Stable SA ar-8yr pdg-8yr F-8yr ar-10yr pdg-10yr F-10yr

44000 s2,s4 s2,s4 .00 s1,s4 s1,s2 .00
44100 s5 s2,s5 (.14)
44130 (.15) s4? (.67)
441x0 s5 s2,s5 (.20)
44200 (.11) s1? (.25)
44300 s2,s4 s2,s4 .00 s2,s4 .03
44312 s2 .05 s1,s3 (.82)
44400 s2 s1 .04 s2 s1 (.59)
44410 (.34) s1? (.23)
44500 s4? (.13) s4? (.68)
44510 s1 s1 (.13) s1? (.72)
44530 s2? (.30)
44600 s2 s5 (.31) (.63)
44611 .00? s2? (.55)
44700 s1? .00
44800 s1,s3 s1,s2 .00 s1,s3 .00
44811 s2 s1,s2 .00 s1,s2 s1,s2 .02
44812 s1,s3 s1 .00 s1,s3 .03
44820 s2 .02 s4 s2 (.29)
45100 .00?
45200 s1,s2,s3 s1,s2 .00 s1,s2,s3 s1 (.45)
45210 s1 .00 s2 s1 .04
45291 s1,s2,s5 s2,s5 .00 s1,s2,s3 s2 (.11)
45299 s1 s1 (.18) s1? (.46)
45300 s1? (.13) s2 s1 (.27)
45400 s2 s1,s2 .00 s1,s2 s1,s2 .01
45410 s1,s2 s1,s2 .00 s1,s2 s1,s2 .01
72200 s1,s2 - .02 s1,s2 s1 .00
Totals 18/1? 16/2? 15/2? 15/4? 11/2? 9/0?

We present graphs and simulation results for 1000 series from each of Φ = 0.4, 0.9
with series lengths n = 84, 288. Figures 8 and 9 show SEATS and X-11 seasonal factors
and their seasonal adjustments for a realization with Φ = 0.4 for which the diagnostics
indicated seasonality. Figures 10 and 11 do the same for Φ = 0.9. For the graphs, the
n = 288 realizations are assigned to January, 1990 – December 2013. In the Tables 2
and 3, the second column (1+ peaks) and third column (2+ peaks) indicate the proportion
of realizations with arspec has one or more, respectively, 2 or more v.s. peaks. The FM

.05

column shows the proportion for which the value of FM is significant at this level. The
final column, 2+ peaks; FM

.05, indicates the proportion with both this property and two or
more v.s. peaks from arspec. The term Type I error is correct for FM

.05 in the literal sense
that none of the series has a fixed seasonal component.
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Table 2. Simulated Proportions of v.s. Peaks and Type I Errors of FM
.05 for Φ = 0.4

n Model for FM 1+ peaks 2+ peaks FM
.05 2+ peaks; FM

.05

84 Automdl + S 0.529 0.130 0.642 0.116
84 (1,0,0)12 + S 0.536 0.128 0.388 0.083
84 (0,0,1)12 + S 0.537 0.128 0.384 0.085
84 (0,0,0)12 + S 0.537 0.129 0.624 0.116

288 Automdl + S 0.520 0.125 0.382 0.056
288 (1,0,0)12 + S 0.519 0.126 0.141 0.021
288 (0,0,1)12 + S 0.519 0.126 0.297 0.048
288 (0,0,0)12 + S 0.519 0.126 0.661 0.084

(9)

Table 3. Simulated Type I Errors of arspec and FM
.05 for Φ = 0.9

n Model 1+ peaks 2+ peaks FM
.05 2+ peaks; FM

.05

84 Automdl + S 0.982 0.865 1.000 0.865
84 (1,0,0)12 + S 0.981 0.860 0.930 0.811
84 (0,0,1)12 + S 0.983 0.856 1.000 0.856
84 (0,0,0)12 + S 0.984 0.864 1.000 0.864

288 Automdl + S 0.987 0.890 0.999 0.889
288 (1,0,0)12 + S 0.987 0.889 0.669 0.599
288 (0,0,1)12 + S 0.988 0.886 0.999 0.885
288 (0,0,0)12 + S 0.989 0.900 1.000 0.900

With the correct model, FM
.05 more often correctly identifies that there is no fixed sea-

sonal component. We are now starting to look at other diagnostics including stability di-
agnostics to learn what values of Φ tend to produce adjustments that many would find
unacceptable.

6. Stationary Seasonal AR Factors from Incorrect ARMA Models.

At its simplest, the ARIMA model-based method implemented in TRAMO-SEATS and
X-13ARIMA-SEATS uses and ARIMA model for a series Xt to derive ARIMA or ARMA
models for the components of signal plus noise decomposition,

Xt = St +Nt. (10)

With correct differencing operator δ (B) = δS (B) δN (B) and using ϑ̃ (B), ϕ̃N (B), and
ϕ̃S (B) to denote the correct total MA and correct signal and noise AR polynomials, with
others polynomials being possibly incorrect, the model for the stationarized signal estima-
tor δS (B) Ŝt from bi-infinite data is{

ϑ (B) ϕ̃N (B)
} [

ϕ̃S (B)ϑ (F )
]
δS (B) Ŝt = (11)

σ2
b

σ2
a

{
ϑ̃ (B)ϕN (B)

}
δN (F ) at. (12)

If Nt is the seasonal component and St is the seasonally adjusted series, then a non-
constant ϕ̃N (B) will be seasonal (and a non-constant ϕ̃S (B) will be non-seasonal). So,
with an incorrect model, if ϕ̃N (B) ̸= ϕN (B), for example if ϕN (B) = 1, then δS (B) Ŝt =
(1−B)d+D Ŝt can be expected to have autocorrelation at the main seasonal lag 12 that is
induced by ϕN (B) /ϕ̃N (B). Differences, if there are any, in the seasonal factors of of
ϑ̃ (B) and ϑ (B) are another source of seasonal lag autocorrelation, through ϑ̃ (B)/ϑ (B).

Business and Economic Statistics Section – JSM 2012

1072



References

[1] Akaike, H. and M. Ishiguro (1980), BAYSEA, A Bayesian Seasonal Adjustment Pro-
gram, Computer Science Monographs No. 13, Tokyo: The Institute for Statistical
Mathematics.

[2] Bell, W. R. (1984), “Signal Extraction for Nonstationary Time Series”. Annals of
Statistics 12, 646-664.

[3] Bell, W. R. (2011),“Unit Root Properties of Seasonal Adjustment and Re-
lated Filters (revised 8/30/2011),” Research Report RRS2010-08, Center
for Statistical Research and Methods, U.S. Census Bureau, available at
http://www.census.gov/srd/papers/pdf/rrs2010-08.pdf.

[4] Caporello, G. and A. Maravall (2004) Program TSW: Revised Manual, Documentos
Ocasionales 0408, Bank of Spain.

[5] Burman, J. P. (1980) “Seasonal Adjustment by Signal Extraction,” Journal of the
Royal Statistical Society A,143, 321–337.

[6] Dagum, E. B. (1980). The X-11-ARIMA Seasonal Adjustment Method, Statistics
Canada.

[7] Findley, D. F. (2012). “Uncorrelatedness and Other Correlation Options for Dif-
ferenced Seasonal Decomposition Components of ARIMA Model Decomposi-
tions,”. Center for Statisical Research and Methodology Research Report Se-
ries, Statistics #2012-06, Washington, D.C. U.S. Census Bureau, available at
http://www.census.gov/ts/papers/rrs2012-06.pdf
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Figure 1: Series 45291 from January, 1992 through December, 2007 is strongly seasonal,
with seasonal amplitudes increasing in proportion to the level.

Figure 2: Arspec detects v.s. peaks at the seasonal frequencies s2, ... , s5 in the first
difference of the logs of the original series.

Figure 3: pdg also detects v.s. peaks at the seasonal frequencies S2, ... , S5 in the first
difference of the logs of the original series.
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Figure 4: In the adjusted series from stable seasonal factors, arspec for the last 8 years
detects residual seasonality from v.s. peaks at S1 and S2, and a v.s. trading day peak at the
second Trading Day frequency.

Figure 5: In the adjusted series from stable seasonal factors, pdg for the last 8 years detects
residual seasonality from a v.s. peak at S2.

Figure 6: Note the many calendar months for which the seasonal factors of the last
eight years are consistently above or consistently below their average over the last sixteen
years(horizontal lines). The X-11 stable seasonal adjustment of the full span essentially
divides the calendar months by latter averages, and thus leaves residual seasonality in these
months.
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Stable Seasonals for Sales of Warehouse Clubs and Superstores
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Figure 7: Continuous line graph connecting the constant seasonal factors of 45291for the
12 calendar months from seasonalma=stable (blue) and those implied by the fixed seasonal
regressors used for the FM test. The factors are quite close.

Figure 8: With Φ = 0.4 data, the SEATS seasonal factors are very erratic. For example,
the months with the largest and smallest seasonal factors are rarely the same from one year
to the next. The more limited set of X-11 seasonal filters results in less erratic factors, but
for a given calendar month, they also change direction one or more times over the data
span.
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Figure 9: SEATS seasonal adjustment via very erratic factors does much more smoothing
than the X-11 filters, but what has it removed from the series?

Figure 10: With Φ = 0.9 data, both methods seasonal factors are much more consistent
from year to year.

Figure 11: With Φ = 0.9 data, the series looks clearly seasonal, and both seasonal adjust-
ments seem credible. For example, for the X-11 filter adjustment, the Q and M statistics
have values less than one. But other diagnostics need to be considered also, a future re-
search project.
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