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Abstract
Standard survival analysis methods, such as Kaplan Meier curves, log-rank test and Cox propor-

tional hazard model, are widely accepted tools to compare the cause-specific hazards when there is
only one event of interest and the time to event and time to censoring are independent. However,
competing risks are often encountered in clinical research, where multiple failure types exist and
one type of event either precludes the occurrence of another event or fundamentally alters the proba-
bility of occurrence of the other event. In the analysis of competing risks data, the standard analysis
methods may lead to biased results by treating the competing event as censored at the time this event
occurs. This way, it is assumed that the patients failing from a competing risk are no more or less
likely to fail from the cause of interest than the patients still at risk beyond this time. The newly
developed methods, such as Gray’s test and Pepe and Mori’s method, take into account of the com-
peting risks and provide different clues regarding the effect of a covariate. Gray proposed a class
of generalized linear rank statistics for testing equality of cumulative incidence functions. Pepe and
Mori proposed a different class of test statistics, not based on ranks, for comparing cumulative inci-
dence functions and conditional probability functions. In standard progression free survival (PFS)
analysis, patients who change their cancer therapy prior to progression will be labeled as censored
at the time of stopping randomized treatment. As changing cancer therapy alters the probability of
progression, it should be considered as a competing risk event and the newly developed methods
apply.

Key Words: Survival analysis; Kaplan Meier; Log-rank test; Competing risks; Cumulative inci-
dence function.

1. Introduction

It is challenging in the estimation of the probability of failure for time-to-event endpoints in
randomized clinical trials where the competing risk events are present. Gooley et al. (1999)
define the concept of competing risks as the event whose occurrence either precludes the
occurrence of another event under investigation, or fundamentally alters the probability of
occurrence of this other event. For example, cause-specific death due to prostate cancer
is the event of interest in a randomized clinical trial, whereas deaths due to other causes
(i.e. car accident) are competing risk events as ’death due to other causes’ precludes oc-
currence of ’death due to prostate cancer’. Patients who change their cancer therapy prior
to progression will be labeled as censored at the time of stopping randomized treatment in
the standard progression free survival analysis. Should changing cancer therapy prior to
progression be considered as a competing risk? Changing cancer therapy alters the proba-
bility of progression. When there is only one type of events, i.e. progression, the censoring
is assumed non-informative and the time to event and time to censoring are independent.
However, in the competing risk context such as changing cancer therapy, censoring due to
competing risks event is no longer non-informative and therefore time to event and time
to censoring are no longer independent. Therefore, this necessitates a carefully assessment
in regard to whether the standard approach of treating competing risk event as censored
observations introduces serious bias and whether the newer approaches recently developed
in dealing with competing risk can properly address this question.
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There are two estimators for probability of failure: the complement of a Kaplan-Meier
estimate (1-KM), and the cumulative incidence estimate (CI). (1-KM) is frequently misused
in the competing risks framework. To estimate (1-KM), the failures from a competing event
are treated as censored at the time this event occurs. This way, we assume that the patients
failing from a competing risk are no more or less likely to fail from the cause of interest
than the patients still at risk beyond this time point. A hypothetical probability assuming
the probability of failure from the event of interest would not change if the competing
risk event is removed. However, the cumulative incidence function is a function of the
hazards of all the competing events and not solely of the hazard of the event to which it
refers. Furthermore, the sum of all cumulative incidences has the nice feature that it equals
1 − S(t), the complement of the overall Kaplan-Meier estimate of survival considering
failures of any kind.

Standard methods (i.e. the logrank test and the Cox’s proportional hazards model) com-
pare the cause-specific hazards as if other types of events did not exist. It is a good way
to find the biological mechanisms underlying the specific event. In the presence of com-
peting risks, comparing cumulative incidence functions is more direct to the comparison of
probability of failure, which accounts for all types of events and does not assume indepen-
dence between the time to different types of events. It is worth noting that the cumulative
incidence function for event of interest can be low because risk of a competing risk is high,
hence there arises a need to compare cumulative incidence function for the competing risk
too.

In this paper we will discuss three competitive approaches in adjusting competing risk
events: (1) Gray’s test that is a modified log-rank score using the modified number at
risk; (2) Pepe and Mori’s method that compares the cumulative incidence functions of the
two treatment groups using a score function; (3) A conditional probability approach that
incorporates both the event of interest and the competing risk event. These methods are
applied to a real oncology trial example. In addition, a comprehensive simulation study is
conducted to evaluate the statistical performance of these three newer approaches and to
compare to the standard logrank test in terms of power and type I error rate.

2. DESCRIPTION OF METHODS

This work is motivated by a randomized oncology trial that compares an investigational
cancer treatment to the standard cancer therapy on progression free survival in patients
with prostate cancer. A total of 439 patients, 219 in the investigation treatment group and
another 219 in the standard treatment group, were randomized in the trial. The primary
event of interest is a composite endpoint of either progression or death, whichever comes
earlier. Since patients may change to other anti-cancer therapy prior to progression due
to either insufficient treatment effects or unfavorable side effects to the study medication,
progression or death occurred after the switch of cancer therapy cannot be used the same
way as data for patients who have not experienced any switch. In this trial, as shown in
Table 1, 185 patients either developed progression or died before study cut-off in the in-
vestigational treatment group, without interference of other anti-cancer therapy; whereas,
174 patients experienced progression/death in the standard treatment group. There are 22
patients in the investigational treatment group and 27 patients in the standard treatment
group who switched to another anti-cancer therapy prior to progression or death before the
study cut-off date. In addition, 12 patients in the investigational treatment group and 18 in
the standard treatment group did not progress or die or switch to other anti-cancer therapy
before study cut-off date and are deemed as truly non-informative censored observations.
Figure 1 depicts the traditional progression free survival censoring scheme that is com-
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monly deployed in the oncology arena, where changing cancer therapy prior to progression
or death is treated as regular censored observations as if these events are independent of
the primary event of interest, i.e. progression/death. However, as changing cancer therapy
alters the probability of progression and the underlying assumption of independence is no
longer valid. Therefore, newer approaches that properly deal with the competing risks are
evaluated below.

2.1 1 - KM versus CIF

1-KM is a function of the hazard of failure due to event of interest and does not depend
on the hazard of failure due to competing risk event. Whereas, CIF is a function of the
hazard of failure due to event of interest and competing risk event. Therefore, cumulative
incidence function is more appropriate in estimating the probability of failure due to event
of interest when competing risk events are present.

For the purpose of illustration, we assume that there are two types of events, namely
the even of interest and the competing risk event, represented by k = 2. Each patient will
experience one and only one of the following three outcomes: failure from event of interest,
failure from completing risk event, or survival from event of interest and competing risk
event, at the ordered time points such that t1 ≤ t2 ≤ ... ≤ tn.

The following notations are defined:
n : Number of patients who are initially at risk of failure;
ej : Number of patients who failed from event of interest at time tj ;
rj : Number of patients who failed from competing risk event at time tj ;
cj : Number of patients who are censored at time tj ;
nj : Number of patients who are at risk of failure beyond time tj ;
S(tj) : Probability of free of any kind of event at time tj ;
Se(tj) : Probability of free of event of interest at time tj .

Then the estimate of 1−KMe(t) for event of interest is expressed as

1− ˆKM e(t) =
∑

allj,tj<t

ej

nj
Ŝe(tj−1)

The estimate of CIF (Fe(t)) for event of interest is expressed as

F̂e(t) =
∑

allj,tj<t

ej

nj
Ŝ(tj−1)

It is easily shown that
F̂e(t) ≤ 1− ˆKM e(t)

.

2.2 Gray’s test

Gray’s k-sample test (1988) is a modified log-rank test, which compares the weighted av-
erages of the hazard function γi(t) for event of interest. γi(t) is the hazard of the sub-
distribution for the event of interest in treatment group i. Again, we assume k = 2 which
means there are two types of event: the event of interest and the competing risk event. And
t1 ≤ t2 ≤ ... ≤ tn are ordered time points of event.
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We further define
e1j : Number of patients who failed from event of interest for Group 1 at time tj ;
n1j : Number of patients who are at risk of failure for Group 1 beyond time tj ;

The modified log-rank score for Gray’s test can then be expressed as

Z1 =
n∑

i=1

(e1j −R1j
ej

Rj
)

Where Rj is the modified number at risk and can be expressed as

R1j = n1j
1− F̂1(tj−1)

Ŝ1(tj−1)

Rj = R1j + R2j

In comparison, the standard log-rank is formulated as

Z =
n∑

i=1

(e1j − n1j
ej

Rj
)

2.3 Pepe and Mori’s method

Pepe and Mori’s method compares the CIFs of the two groups using a score function s that
is the weighted area between the two CIFs. The score function s is defined as

s =

√
N1N2

N1 + N2

n∑
j=1

{W (tj)[F̂1(tj)− F̂2(tj)](tj+1 − tj)}

Where F̂i(t) denotes the cumulative incidence function of group i at time t and Ni

denotes the total number of patients in group i. The weight function W (tj) is defined as

W (tj) =
(N1 + N2)Ĉ1(tj−1)Ĉ2(tj−1)
N1Ĉ1(tj−1) + N2Ĉ2(tj−1)

Where 1− Ĉi(t) is the left continuous Kaplan-Meier estimator of the censoring distri-
bution function where events are censored or competing risk events in the ith group at time
t.

The score function s follows a normal distribution:

s ∼ N(0, σ)

2.4 Conditional probability approach

Pepe also proposed a conditional probability approach for comparing general functions,
which provides a way to incorporate 2 types of events, i.e. event of interest and competing
risk events. In general, it can be expressed as

CPi(t) = Prob(T ≤ t, C = i | no other type of event by time t)

Again, assume that there are two type of events: Type 1 event which is the event of
interest and Type 2 event which is the competing risk event. Therefore, the probability of
failure from the event of interest given there is no competing risk event by time t can be
expressed as

CP (t) =
P (T ≤ t, C = C1)

1− P (T ≤ t, C = C2)
=

F1(t)
1− F2(t)

Where CP (t) can be estimated using estimators for F1(t) and F2(t).
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2.5 Application

In order to illustrate the three newer approaches as described above within the framework
of competing risks, we apply these three methods along with the standard logrank approach
to the oncology example introduced earlier in the section where changing cancer therapy
is considered as a competing risk to the primary event of interest, i.e. progression or death
event, whichever occurs earlier. Figure 2 and Figure 3 provide visual representation of the
cumulative incidence functions by treatment group for the event of interest (progression
or death) and the competing risk event (changing cancer therapy prior to progression or
death), respectively. Figure 4 and Figure 5 depict the conditional probability functions by
treatment group for the event of interest and the competing risk event, respectively. The
results containing p-values for treatment comparisons between the investigational cancer
treatment and the standard cancer treatment after applying the four different methods are
summarized in Table 2. The first row shows that the p-value for the primary endpoint of
interest (progression/death) is 0.199 by using the standard logrank test; whereas, they are
0.235, 0.500 and 0.207, respectively, by using Gray’s test, Pepe and Mori’s method, and
the conditional probability approach. This indicates that there is no statistically signifi-
cant difference between the two treatment groups even with the application of the three
newer approaches that adjust for completing risk events. When using these three newer
approaches, it is important to compare cumulative incidence functions or conditional prob-
ability functions for competing risk as well. For this particular example, there is no statis-
tically significant difference between the two treatment groups for competing risk enpoint
with p-values equal to 0.424, 0.651, and 0.726, respectively for Gray’s test, Pepe and Mori’s
method, and the conditional probability approach. These results are fairly consistent with
each other as the incidence of competing risk events is relatively low in this example with
a rate of approximately 10% and are comparable between the two treatment groups.

3. SIMULATION STUDY

To compare the performance of the various methods (i.e. standard logrank test, Gray’s test,
Pepe & Mori’s method, and conditional probability approach) in different competing risk
settings, a simulation study is conducted to compare the power and type I error rate of the
various tests for detecting treatment differences in terms of the primary event of interest.
We consider a trial comparing a new therapy (treatment A) to a standard therapy (treatment
B) in the presence of two types of competing causes of failure where type 1 failure is the
primary event of interest and type 2 failure is the competing risk event. The simulation data
are generated using a bivariate exponential model for the latent failure times. A sample
size of n = 200 per arm is used in these simulations and 500 realizations for each param-
eter configuration are repeated to estimate the type I error rate and power of the different
approaches. Table 3 and 4 present power based on empirical rejection probability at the
two-sided 5% significance level under various different settings that correspond to differ-
ent combinations of the relative treatment effects between treatment A and treatment B on
the failure type 1 in the presence of failure type 2.

In Tables 3, the simulation results in terms of power are shown for the following six
scenarios:

(1) For treatment A, there is a large benefit on type 1 failure , and no benefit on type 2
failure. And the risk of type 2 failure is high;

(2) For treatment A, there is a large benefit on type 1 failure , and no benefit on type 2
failure. And the risk of type 2 failure is moderate;
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(3) For treatment A, there is a large benefit on type 1 failure , and no benefit on type 2
failure. And the risk of type 2 failure is low;

(4) For treatment A, there is a moderate benefit on type 1 failure , and no benefit on
type 2 failure. And the risk of type 2 failure is high;

(5) For treatment A, there is a moderate benefit on type 1 failure , and no benefit on
type 2 failure. And the risk of type 2 failure is moderate;

(6) For treatment A, there is a moderate benefit on type 1 failure , and no benefit on
type 2 failure. And the risk of type 2 failure is low.

For example, in the first setting of the table, the hazard rates of type 1 failures are 1 and
1.6 for treatment A and treatment B, respectively, which indicates a large treatment benefit
for treatment A as compared to treatment B. The hazard rates of type 2 failures are 1 and 1
for treatment A and B, respectively, which indicates there is no treatment benefit on type 2
failures for treatment A as compared to treatment B, while the amount of failure caused by
type 2 events are relatively high. The power based on the empirical rejection probability
are 0.948, 0.778, 0.198 and 0.904 for the standard logrank test, Gray’s test, Pepe & Mori’s
method and conditional probability method, respectively. The standard logrank test, which
compares the cause-specific hazards and treats the competing risk events as censored ob-
servations, demonstrates the highest power in detecting the treatment difference on type 1
failures, the primary events of interest. On the other hand, the Pepe & Mori’s method that
compares the cumulative incidence functions through a weighted score between the two
cumulative incidence curves, provides the lowest power among the four different methods.
Gray’s test that compares the cumulative incidence functions through a modified log-rank
score, and the conditional probability approach that compares the conditional probability
functions, both have reasonably good power property with that of the conditional probabil-
ity approach more close to that of the standard logrank approach. These results somehow
indicate that the standard logrank test may be useful in discovering the biological mech-
anisms that underly the specific event by ignoring the existence of other competing types
of events. While the three newer methods developed taking account of all types of events
through direct comparisons of the probability of failure or conditional probability of fail-
ure are more of the comprehensive and adjusted approaches; the only concern however
lies with Pepe & Mori’s method which seems to be extremely overly-adjusted and leads
to a substantial loss of power. In the second and third settings of the table, as the risk of
type 2 failures is decreasing while the other assumptions are held unchanged compared to
the first setting, the power performance is seemingly increasing for the standard log rank
test, Gray’s test and the conditional probability method, where the conditional probability
method is almost as powerful as the standard logrank test. Meanwhile, the Pepe & Mori’s
method remains to be a poor power performer. In settings 4, 5 and 6 of the table, where
there is only a moderate treatment benefit on type 1 failure and no benefit on type 2 fail-
ure for treatment A and the risk of competing events varies from high grade to low grade,
similar conclusions can be reached in terms of the power performance of these four various
approaches.

In Table 4, the simulation results in terms of power are shown for the following three
scenarios:

(7) For treatment A, there is no benefit on type 1 failure, and a moderate benefit on
type 2 failure;

(8) For treatment A, there is no benefit on type 1 failure, and a large benefit on type 2
failure;

(9) For treatment A, there is no benefit on type 1 failure, and a very large benefit on
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type 2 failure.

In the three settings demonstrated in Table 4, there is no treatment benefit on type 1
failures for treatment A, however, there are various degree of treatment benefit simulated
on type 2 failure data. It can be seen that Gray’s test is most sensitive in terms of power
when there is a larger benefit on competing risk events with power dramatically increasing
as the treatment difference on the type 2 failures is drastically increased between the two
treatments. As a comparison, the standard logrank rest is almost insensitive to the differ-
ence in competing risk events regardless of the magnitude of such difference. Whereas,
Pepe & Mori’s method and the conditional probability method provide a relatively moder-
ate adjustment on power when there is a larger benefit on the competing risk events.

In Table 5, the simulation results in terms of type I error rate are shown for the follow-
ing three scenarios:

(10) There is no benefit on either type 1 or type 2 failures. And the risk of type 2 failure
is high.

(11) There is no benefit on either type 1 or type 2 failures. And the risk of type 2 failure
is moderate.

(12) There is no benefit on either type 1 or type 2 failures. And the risk of type 2 failure
is low.

In the three settings presented in Table 5, there is no treatment benefit on either type
of failures for treatment A except that there are various degree of risk embedded on type 2
failure data. It can be seen that the standard logrank test causes slight inflation on Type I
error rate under all three scenarios. Whereas, the rest three methods that take into consid-
eration of the existence of the competing risk events control Type I error rate reasonably
well. In conclusion, when putting both power and type I error rate into the perspective,
Gray’s test and the conditional probability approach have relatively more robust profile and
therefore are recommended approaches in the competing risk framework based on this sim-
ulation work. Since it is also important to understand the underlying biological mechanism
of the specific event, it is always desirable to present the standard logrank analysis as a
complementary perspective.

4. Discussion

In this paper, three competing newer approaches are discussed and compared to the stan-
dard logrank test through simulations in the analysis of time-to-event endpoint when there
exists a confounding factor of the competing risk events. In particular, Gray’s k-sample test
(1988) compares the weighted averages of the γi(t) for the event of interest, where γi(t)
is the hazard of the sub-distribution for event of interest in treatment group i. This can
be interpreted as the probability of observing an event of interest in the next time interval
while knowing that either the event of interest did not happen until then or that a compet-
ing risk event was observed. Instead, Pepe & Mori (1993) proposed a different class of
test statistics, which were not based on ranks, for the comparison of cumulative incidence
functions and conditional probability functions. Of these, one uses a score function that
is a weighted area between the two cumulative incidence functions for treatment compar-
ison; another uses the concept of conditional probability that is simply the proportion of
patients who have experienced the event of interest among those surviving the competing
risk events, which has a rather straightforward interpretation.

Freidlin & Korn (2005) undertook a large number of simulations from correlated bi-
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variate exponential data and concluded that the cause-specific log-rank test is robust in the
sense of preserving the nominal level of the test and has good power properties for testing
the treatment differences. Their work however only recommended the use of the cumulative
incidence based approach as one of the components required for a comprehensive compar-
ison of treatment groups in the presence of multiple types of failure. Pintilie (2007) also
indicated that the standard logrank test and the cumulative incidence based approaches give
different information and thus it is necessary to do both. He viewed the the cause-specific
hazard modeling as providing information on how covariate influences the outcome of in-
terest in a laboratory setting where competing risks do not exist. On the other hand, the
modeling of the hazard of the sub-distribution gives the real effect seen in the dataset under
study. Gooley et al (1999) thought the logrank test is appropriate for inference in treatment
effect evaluation on the hazard of failure from the cause of interest, since it is a function
solely of the hazard of failure from the cause of interest and failures from the competing
risk can therefore be censored. However, if the interest lies on the comparison of the actual
probability of failure between two groups, it is appropriate to use tests based on cumulative
incidence functions, that is those that depend on the hazards of each type of failure. He
stressed the importance of understanding the relationship of treatment to the various causes
of failure in order to draw appropriate conclusions.

It has been demonstrated in our simulation work that when there is a large treatment
benefit on the event of interest, the standard logrank test, Gray’s test and the conditional
probability approach all provide reasonably good power properties when the risk of com-
peting events varies from low risk to high risk however are balanced between the two treat-
ment groups. Among these three, the power performance of the standard logrank test is the
best and that of the conditional probability approach is slightly lessened compared to the
standard logrank test. As a contrast, the power performance of Pepe & Mori’s method is
extremely unsatisfactory in all these simulation settings being studied. At the mean time,
when there is no treatment benefit existing for both the event of interest and the competing
risk event, the standard logrank test slightly inflates the type I error rate while the other
three methods provide slightly better control on the type I error rate. It is worth noting
that when there is no treatment benefit for the event of interest however there remains a
substantial difference in terms of the risk for competing events, Gray’s test would pick up
the difference caused by the competing risk and produces a very high power performance.
In comparison, the standard logrank test shows indifference to the impact of the competing
risk benefit. As a conclusion, when looking at the comprehensive statistical properties of
the various approaches, Gray’s test and the conditional probability approach show relatively
more robust profile in the competing risk framework based on simulations. However, the
importance of the standard logrank analysis should not be undermined, as it provides some
important clues to assist in the proper understanding of the underlying biological mecha-
nism of the specific event. Therefore, it is necessary to provide both the standard analysis
and the newer analysis approaches comparing either the cumulative incidence functions or
the conditional probability functions. In all occasions, Pepe & Mori’s method should be
used with extreme caution considering it’s unrealistically low power performances.

REFERENCES

Feidlin B, Korn EL (2005). ”Testing treatment effects in the presence of competing risks.” Statistics in
Medicine, Vol. 24: 1703-1712.

Gaynor JJ, Feuer EJ, Tan CC, Wu DH, Little CR, Straus DJ, Clarkson BD, Brennan MF (1993). ”On the use
of cause-specific failure and conditional probabilities: examples from clinical oncology data.” Journal of
the American Statistical Association., Vol. 88, No. 422: 400-409.

Gooley TA, Leisenring W, Crowley J, Storer BE (1999). ”Estimation of failure probabilities in the presence of

Biopharmaceutical Section – JSM 2012

598



competing risks: new representation of old estimators.” Statistics in Medicine, Vol. 18: 695-706.
Gray RJ (1988). ”A class of k-sample tests for comparing the cumulative incidence of a competing risk.”

Annals of Statistics, Vol. 16: 1141-1154.
Kim HT (2007). ”Cumulative Incidence in competing risks data and competing risks regression analysis.”

Clinical Cancer Research , Vol. 13, No. 2: 559-565.
Pintilie M (2007). ”Competing Risks, A practical Perspective.” Wiley.
Pepe MS, Mori M (1993). ”Kaplan-Meier, marginal or conditional probability curves in summarizing compet-

ing risks failure time data?” Statistics in Medicine, Vol. 12: 737-751.
Pintilie M (2002). ”Dealing with competing risks: testing covariates and calculating sample size.” Statistics in

Medicine, Vol. 21: 3317-3324.

Biopharmaceutical Section – JSM 2012

599



Table 1: Progression free survival data presentation for the oncology trial example.

Progression Death Switching cancer treatment Censored observations

Investigational therapy 185 22 12
Standard therapy 174 27 18

Traditional PFS censoring scheme

Event

Yes

No

Further

No Further

Further > Event
or 

No Further

Further <= Event

Date = min(Cutoff, Last before Further) 

Date = min(Cutoff, Last) 

Date = min(Cutoff, Last before Further) 

Date = LastB

 

before event Event-LastB

 

>= 84

Excluded 
from analysis 

Event-LastB

 

< 84

Date = Event 

Cutoff <= Event

Cutoff > EventLastB

 

= last valid TA date if event=death;

 
= the TA date before the last valid TA if event=PD.

Event: Death or PD date

 
Cutoff: Study cutoff date

Last: Last valid TA date

 
Further: Further cancer therapy date

: Censored

 
: Event

Figure 1: Traditional progression free survival censoring scheme
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Figure 2: Cumulative incidence function for event type I by treatment group

Figure 3: Cumulative incidence function for event type II by treatment group
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Figure 4: Conditional probability for event type II by treatment group

Figure 5: Conditional probability for event type II by treatment group
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Table 2: Oncology example - results of the standard logrank test and the three newer approaches

Logrank test Gray’s test Pepe & Mori’s method Conditional probability

Progression or death 0.199 0.235 0.500 0.207
Switching cancer treatment 0.424 0.651 0.726

The first row contains p-values of applying the four different methods for comparing the investigational cancer treatment to the standard cancer

treatment for the primary event of interest - progression or death, whichever is earlier.

The second row contains p-values of applying the four different methods for for treatment comparison for the competing risk event - switching

cancer treatment prior to progression/death.

Table 3: Simulation results in terms of power when there is moderate to large benefit on Type 1 failure, and no benefit on Type 2 failure

Logrank test Gray’s test Pepe and Mori’s Conditional probability

(1) λA
1 = 1, λB

1 = 1.6, λA
2 = 1, λB

2 = 1 0.948 0.778 0.198 0.904
(2) λA

1 = 1, λB
1 = 1.6, λA

2 = 0.5, λB
2 = 0.5 0.980 0.848 0.154 0.960

(3) λA
1 = 1, λB

1 = 1.6, λA
2 = 0.3, λB

2 = 0.3 0.988 0.886 0.156 0.982

(4) λA
1 = 1, λB

1 = 1.2, λA
2 = 1, λB

2 = 1 0.278 0.200 0.010 0.250
(5) λA

1 = 1, λB
1 = 1.2, λA

2 = 0.5, λB
2 = 0.5 0.324 0.184 0.002 0.304

(6) λA
1 = 1, λB

1 = 1.2, λA
2 = 0.3, λB

2 = 0.3 0.342 0.222 0.002 0.332

λA
1 and λB

1 are hazard rates of type 1 failure for Treatment A and B, respectively. λA
2 and λB

2 are hazard rates of type 2 failure for Treatment A and B, respectively.
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Table 4: Simulation results in terms of power when there is no benefit on Type 1 failure, and moderate to very large benefit on Type 2 failure

Logrank test Gray’s test Pepe and Mori’s Conditional probability

(7) λA
1 = 1, λB

1 = 1, λA
2 = 1, λB

2 = 1.2 0.066 0.118 0.010 0.058
(8) λA

1 = 1, λB
1 = 1, λA

2 = 1, λB
2 = 1.6 0.066 0.494 0.046 0.144

(9) λA
1 = 1, λB

1 = 1, λA
2 = 0.5, λB

2 = 1.6 0.054 0.990 0.396 0.468

λA
1 and λB

1 are hazard rates of type 1 failure for Treatment A and B, respectively. λA
2 and λB

2 are hazard rates of type 2 failure for Treatment A and B, respectively.

Table 5: Simulation results in terms of Type I error rate

Logrank test Gray’s test Pepe and Mori’s Conditional probability

(10) λA
1 = 1, λB

1 = 1, λA
2 = 1, λB

2 = 1 0.066 0.054 0.000 0.056
(11) λA

1 = 1, λB
1 = 1, λA

2 = 0.5, λB
2 = 0.5 0.054 0.054 0.000 0.046

(12) λA
1 = 1, λB

1 = 1, λA
2 = 0.3, λB

2 = 0.3 0.070 0.060 0.000 0.056

λA
1 and λB

1 are hazard rates of type 1 failure for Treatment A and B, respectively. λA
2 and λB

2 are hazard rates of type 2 failure for Treatment A and B, respectively.
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