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Abstract
In a recent publication by Molenberghs and Demétrio (2011)a general modeling framework was

proposed to model non-Gaussian data that are hierarchically structured and are overdispersed in the
sense that the distributional mean-variance relationshipis not fulfilled. The modeling framework
extends the Generalized Linear Models with two random effects, one normally distributed random
effect to accommodate the correlation in the data due to the hierarchy and one conjugate random
effect to account for the overdispersion. The main difficulty with this kind of models is the computa-
tional complex estimation due to the intractable multivariate integrals, as is the case for Generalized
Linear Mixed Models that involves such integrals with no analytic expression. Different estimation
methods for these models were already proposed: estimationusing partial marginalization, estima-
tion in the bayesian framework, and an approximate estimation based on pseudo-likelihood. In this
manuscript, we will investigate the use of Gaussian variational approximation methods as a compu-
tationally fast estimation method for the combined model. Arange of over-dispersed non-gaussian
mixed models are investigated.

Key Words: Gaussian variational approximation, Gamma Frailty, Weibull normal, Poisson-Normal,
Hierarchical model, Random effect, Weibull model

1. Introduction

Generalized linear models are the most common class of regression models used to analyze
different types of variables, including binary, counts andcontinuous outcomes (Nelder and
Wedderburn 1972, McCullagh and Nelder 1989, Agresti 2002).The exponential family dis-
tribution provides an elegant specification of the models. The most well-known examples
include linear regression, logistic regression and Poisson regression. An important exten-
sion of these models are the generalized linear mixed model by the inclusion of a normally
distributed random effect, allowing to account for a multilevel structure in the data (Molen-
beghs and Verbeke 2005)). A common issue with non-Gaussian data is overdispersion in
the sense that the variability in the data is not well described by the distributional mean-
variance relationship (Hinde and Demétrio 1998). This canhappen both in the univariate or
in the multi-level setting. One approach to account for overdispersion in a univariate gener-
alized linear mixed model is by the use of a conjugate random effect, such as, for example
the negative binomial (Breslow 1984, Lawless 1978) and beta-binomial model (Skellam
1948, Kleinman 1973). Molenberghs and Demétrio (2011) proposed a similar approach
to account for overdisperion in a multilevel setting, by theuse of two random effect, one
normally distributed random effect to accommodate for the hierarchy and one strongly con-
jugate random effect to account for the overdispersion in the data. This introduces a new
general modeling framework for the analysis of overdispersed multilevel data, and is often
referred to as thecombined model (Molenberghs et al 2007, Molenberghs et al 2010).

A difficulty in inference of these models is often encountered in both the bayesian
and likelihood framework, due to the intractable multivariate integrals in the likelihood
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and posterior densities. This can already be problematic for the generalized linear mixed
models (GLMM), because of the integrals in the marginalizedlikelihood with no analytic
expression which need a numerical approximations. Often itis dealt with by numerical
integration using adaptive and gaussian adaptive quadrature, series expansion methods in-
cluding penalized quasi-likelihood and marginal quasi-likelihood, laplace approximation,
etc. Different estimation techniques have been employed inmodeling the combined model,
commonly it is done through partial marginalization in which the conjugate random ef-
fect are first integrated out leaving the normal effects untouched and then obtain the fully
marginal by numerical integration of the normal random effect using adaptive gaussian
quadrature in standard software such as the SAS procedure NLMIXED (Molenberghs et al
2007, Molenberghs et al 2010), in the bayesian framework using MCMC (Ghebretinsae et
al 2011) and pseudolikelihood estimation (Achmad et al 2011).

In this paper, another estimation method for the combined model is proposed, provid-
ing a fast estimation method as an alternative to the existing methods. Ormerod and Wand
(2012) recently introduced variational approximation in the statistical modeling framework.
Variational Inference have their roots in the statistical physics and are used to approximat-
ing intractable computations (Blei and Jordan 2006). The key idea is to introduce a set of
approximating densities to the posteriors and to introducethem in such a way as to make
their evaluation tractable. These approximations are thenoptimized so as to minimize
the discrepancy between the approximation and the true posterior using some measure of
the difference. The optimization is carried out by varying the functional parameters of
these approximations, thus giving the approximation its name. While different variational
approximations exist, we focus on Gaussian variational approximations, in which the con-
ditional distribution of the random effects given the data are approximated by Gaussian
distributions. Hall, Ormerod and Wand (2011) studied the properties of Gaussian varia-
tional approximations in the setting of generalized linearmixed models.

The general idea of variational approximation is to approximate the likelihood so that
the integral problem is either fully or partially solved. Itis therefore basically an approxi-
mation of the integrand. When the integral problem is fully solved, it results in optimization
of the resulting approximate likelihood. When the integralproblem is not completely erad-
icated, like e.g. in a binary GLMM as will be shown later, it isstill useful in reducing
the dimension of the integral to one. But approximation of the integral of the new likeli-
hood/integrand is still required using adaptive gaussian quadrature.

The paper is organized as follows. In section 2, three datasets to illustrate the pro-
posed methodology are introduced, namely the comet data, epilepsy data and EG data. The
combined model for non-Gaussian data is introduced in Section 3. The Gaussian varia-
tional approximation estimation technique is reviewed in Section 4. Their properties are
investigated via three examples, including an extended random-effects Weibull, Poisson
and logistic model in Section 5, 6 and 7.

2. Motivating Examples

In this section, motivating datasets used in this manuscript are presented.

2.1 Epileptic Data

The first data considered here is obtained from a randomized,double-blind, parallel group
multi-center study for the comparison of placebo with anti-epileptic drug (AED), in com-
bination with one or two other AED’s. The study is described in full detail in Faught et al
(1996) and it is used in Molenberghs et al (2007). The randomization of epilepsy patients
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took place after a 12-week baseline period that served as a stabilization period for the use
of AED’s, and during which the number of seizures were counted. After that period, 45 pa-
tients were assigned to the placebo group, 44 to the active (new) treatment group. Patients
were then measured on a weekly basis during 16 weeks, after which they were entered into
a long term open extension study. Some patients were followed for up to 27 weeks. The
outcome of interest is the number of epileptic seizures experienced during the last week,
i.e, since the last time the outcome was measured. The key research question is whether or
not the additional new treatment reduces the number of epileptic seizures. As a summary of
the data, the subject-specific profiles for 12 randomly selected individuals in each treatment
arm is presented in the upper panel of Figure 1. It is a skewed distribution with a largest
observed value equal to 73 seizures in one week time.

2.2 Comet Assay Data

The second data resulted from a comet assay study and have been studied in Ghebretinsae
et al (2011). The comet assay is a single cell microgel electrophoresis method detecting
DNA damage in any target tissue or organ of which a single cellsuspension can be pre-
pared. Exposure to high alkali (pH> 13.0) allows expression of single strand breaks and
subsequent alkaline electrophoresis ensures migration ofDNA fragments out of the nu-
cleus. Visualization of this DNA migration (typical comet-like structures) is performed by
a fluorescent dye. An image analysis system coupled to a microscope permits quantifi-
cation of DNA damage at the single cell level. Here, the data refer to four groups of six
male rats that received a daily oral dose of a compound in three dose levels (low, medium,
and high) or vehicle control. On the day of necropsy, an extragroup of three animals re-
ceived a single dose of a positive control (200 mg/kg ethyl methanesulfonate, EMS, PC).
The animals were sacrificed 3 hours after the last dose administration, their liver was re-
moved and processed for the comet assay. For each animal, a cell suspension is prepared.
From each cell suspension, three replicate samples were prepared for scoring. Fifty ran-
domly selected, non-overlapping cells per sample were thenscored for DNA damage using
a semi-automated scoring system. A total of 150 liver cells were thus scored per animal.
DNA damage was assessed by the software system by measuring tail migration, % tail in-
tensity, and tail moment. The interest here is to see the toxicity of 1,2-Dimethylhydrazine
dihydrochloride at the different dose levels (low, medium,and high) based on tail length.
Generally, the toxicity level increase with the dose level.A summary of the data is pre-
sented in the lower left panel of Figure 1. We observe some extreme values at all dose
levels.

2.3 Ethylene Glycol (EG) Data

The third dataset is from toxicology study of Ethylene glycol. Ethylene glycol (EG) also
called 1,2-ethanediol is a high-volume industrial chemical with diverse applications. It
is used to make antifreeze and de-icing solutions for cars, airplanes and boats, to make
polyster compounds, and is used as a solvent in the paint and plastic industries. It is also
used as an ingredient in photographic developing solutions, hydraulic brake fuids and in
the formulation of several types of inks and many more. WhileEG may not be hazardous
to humans in normal industrial handling, it can become dangerous when used at elevated
temperatures or when ingested. Exposure to large amounts ofethylene glycol can damage
the kidneys, heart, and nervous system. In addition, ingestion of antifreeze products, which
consist for approximately 95 % of EG, is toxic and may result in death. The data resulted
from a study in which timed-pregnant CD-1 mice were dosed by gavage with EG in distilled
water as described by Price et al. (1985). Dosing occurred during the period of major
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organogenesis and structural development of the foetuses (gestational days 6 through 15).
The doses were at 0, 750, 1500 or 3000 mg/kg/day, with 25, 24, 23 and 23 timed-pregnant
mice randomly assigned to each of these dose groups, respectively. The interest here is to
assess the toxicity of this chemical at the different dose levels based on a binary outcome,
whether the foetus is malformed or not. Summary of the data ispresented in the lower right
panel of Figure 1. We observe a general trend of increasing toxicity with dose level.
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Figure 1: 1. Top: The distribution of the response and the average profile for the two
treatment groups over time for Epilepsy data 2.Bottom left:box plot for comet data 3.
Bottom right: scatter plot for EG data.

3. Combined Model

Molenberghset al (2010) proposed an exponential family model with two randomeffect
to accommodate simultaneously the clustering and overdispersion effects. It extends the
generalized mixed model by the use of conjugate random effect for overdispersion. The
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general model family proposed for modeling overdispersed and correlated data is given by:

fi(yij|bi, θij , ξ) = exp
{

φ−1[yijλij − ψ(λij)] + c(yij , φ)
}

, (1)

for outcomeyij on subjecti = 1, . . . , N at occasionj = 1, . . . , ni. The unknown param-
etersλij andφ are often termed natural parameter and scale parameter, respectively. The
termc(yij , φ) is the normalizing constant. The functionψ(·) is a known function with the
property thatE[yij |bi, θij, ξ] = ψ′(λij) and var(yij|bi, θij , ξ) = φψ′′(λij). Model specifi-
cation proceeds by assuming that the conditional mean ofyij is given by

E[yij |θij, bi] = µcij = θijκij , (2)

whereθij ∼ Gij(ξij, σ
2
ij) for some distributionGij with meanξij and varianceσ2ij and

κij = g(ηij) = g(x′ijξ + z′ijbi) for some link functiong andbi ∼ N(0,D). The random
variableθij is used to account for the overdispersion in the data, while the random effect
in κij accounts for the clustered or hierarchical structure of thedata. The two parameters
ηij andλij refer to the linear predictor and/or the natural parameter.The basic difference
is thatλij encompasses the random variablesθij, whereasηij refers to the ‘GLMM part’
only.

Most often, but not strictly necessary, it is assumed that the two sets of random ef-
fects,θi andbi, are independent of each other (see Molenberghset al (2010) for further
discussion).

Parameterization(2) such that the random effectsθij capture overdispersion, and are
formulated directly at the mean scale, whereasκij can be considered as the generalized
linear mixed model component. The relationship between mean and natural parameter now
is

λij = h(µcij) = h(θijκij). (3)

Standard GLM ideas can be applied to derive the mean and variance, combined with
iterated-expectation-based calculations. For the mean, it follows that

E[yij ] = E[θij ]E[κij ] = E[h−1(λij)]. (4)

An important concept in regard to computational difficulty/efficiency isconjugacy, in
the sense of Cox and Hinkley (1974, p. 370) and Lee, Nelder, and Pawitan (2006, p. 178).
Conjugacy refers to the fact that the hierarchical and random-effects densities have similar
algebraic forms. Conjugate distributions produce a general and closed-form solution for the
corresponding marginal distribution. Molenberghset al (2010) adapted conjugacy to the
situation where both normal and overdispersion random effects are included. For detailed
explanation on the combined model we refer to Molenberghset al (2010).

In this case three types of outcomes are considered: time to event, count and binary. A
Weibull model will be considered for the time to event outcome, a Poisson model for the
count and a Logistic model for the binary outcomes.

4. Gaussian Variational approximation using density transformation

This section reviews the GVA approximation method using density transformation, as de-
scribed by Ormerod and Wand (2012) and Hall, Ormerod and Wand(2011).
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4.1 Deriving GVA lower bound likelihood

Ormerod and Wand (2012) considered the generalized mixed model of the form:

f(yij|bi) = exp{yijλij − ψ(λij) + c(yij)}

with,

λij = ηij = xij
′ξ + zij

′bi
and bi ∼ N(0,D)

It is a reduced form of( 1) in that theθij is omitted here and the scale parameter
φ fixed to one. Letyi = (yi1, . . . , yini

)′; xi = (xi1, . . . ,xini
)′; ξ = (β1, . . . , βp)

′; zi =
(zi1, . . . ,zini

)′ andq be the dimension of the random effectbi.The corresponding marginal
likelihood is,

l(ξ,D) =
N
∑

i=1

{yi
′x′

iξ + 1′ic(yi)} −
N

2
log |D| −

Nq

2
log(2π)

+
N
∑

i=1

log

∫

exp{yi
′z′

ibi − ψ(x′
iξ + z′

ibi)−
1

2
bi

′D−1bi}dbi (5)

The maximum likelihood estimates of the fixed effectsξ and covariance matrixD of
the GLMM are obtained by maximizing (5). The problem in maximizing this likelihood is
the presence ofN integrals over theq-dimensional random effectsbi. Gaussian variational
approximation method tackles this issue by introducing an extra pair of variational param-
etersµi,Λi for each subjecti, 1 ≤ i ≤ N , whereµi is aq-dimensional vector andΛi is
q × q positive definite matrix. And new density functionsq(bi) are introduced and are as-
sumed to be Multivariate Gaussian density distribution with meanµi and covariance matrix
Λi. In principle these densities can take any functional form.In this case, the marginalized
likelihood can be re-written in terms of theq(bi) densities:

l(ξ,D) = log

∫

p(y|bi)p(bi)dbi,

= log

∫

p(y|bi)p(bi)
q(bi)

q(bi)
dbi,

= logEbi∼N(µi,Λi)

[

p(y|bi)p(bi)

q(bi)

]

In this expression,Ebi∼N(µi,Λi)
(.) is the expected value with respect tobi ∼ N(µi,Λi).

By Jensen’s inequality and concavity of the logarithm function, we then have

l(ξ,D) ≥ Ebi∼N(µi,Λi)

[

log

(

p(y|bi)p(bi)

q(bi)

)]

= l(ξ,D,µ,Λ)

wherel(ξ,D,µ,Λ) is a lower boundary of the loglikelihood functionl(ξ,D), the approx-
imated likelihood. Alternatively the same inequality can be seen from the Kullback Leibler
divergence point of view (Ormerod and Wand, 2012; Hall, Ormerod and Wand,2011). The
accuracy of the approximate likelihood depends on the distance betweenq(bi) andp(bi|y),
measured by the Kullback Leibler distance.

The idea of GVA is to approximate the posterior distributionp(bi|y) which contains
integral difficulty by q(bi) in such a way that the likelihoood/integrand is integrable or
easier. The integral problem is not always completely removed after applying GVA. In
some cases the integral problem exists partially; however,it may still have computational
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advantage although numerical approximation is required. We will see this in detail in the
next section.

The variational lower bound of the log-likelihood simplifies to,

l(ξ,D,µ,Λ) =
Nq

2
−
N

2
log |D|+

N
∑

i=1

{y′i(x
′
iξ + ziµi) + 1′ic(yi)−

1′iT (x
′
iξ + ziµi,diag(z

′
iΛizi))−

1

2
(log|Λi| − µ′iD

−1µi − tr(D−1Λi)}

where

T (µ, σ2) =

∫

ψ(µ + σx)φ(x)

andφ is the standard normal with mean0 and variance1.
The variational lower bound contains the original parameter (ξ,D) and additional vari-

ational parameters(µ,Λ). The ML estimates are the(ξ,D) parameters obtained by maxi-
mizing the new lower likelihood,l(ξ,D,µ,Λ).

5. GVA for General Frailty Models

In this section, four hierarchical models are presented fortime to event data:

• Weibull-Gamma frailty model;

• Weibull-Normal random intercept model;

• Weibull-Normal-Normal random intercepts model; and

• Weibull-Gamma-Normal hierarchical model.

For each of these models, a gaussian variational approximation is derived.

5.1 Weibull-Gamma frailty model

Let us consider the Weibull-Gamma model. It is well known that Weibull and Gamma
distributions are conjugate. This property simplifies the computations, because the gamma
frailty can be integrated out to obtain the marginal likelihood. The conditional likelihood
and frailty densities are give by the following expression:

f(yi|θij) =
ni
∏

j=1

λρθijy
ρ−1
ij exij

′ξe−λyρ
ij
θije

xij
′ξ

(6)

f(θij) =
1

(

1
α

)α
Γ(α)

θα−1
ij e−αθij (7)

Where (6)corresponds with a Weibull(λθije
xij

′ξ, ρ) distribution, and (7) with a Gamma(α, 1α)
distribution. The marginal likelihoodl(ξ, α) is obtained by integrating the gamma random
effect.

l(ξ, α) = log f(y) = log

∫

f(y|θ)f(θ)dθ,

As a result, the marginal density can be expressed as:

l(ξ, α) = log p(y) = log(λρ) + (ρ− 1) log(yij) + xij
′ξ

+(α+ 1) log(α)− (α+ 1) log(α+ λρyρije
xxij ′ξ ).

The required parameter of interest are obtained by maximizing this function.
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5.2 Weibull-Normal Random Intercept Model

If however a normal random effect is used, instead of the conjugate gamma frailty, which
we call the Weibull-Normal model.

f(yij|bi) ∼ Weibull(λeηij , ρ)

ηij = xij
′ξ + bi

f(bi) ∼ Normal(0, d)

the marginal likelihood becomes:

L(ξ, d) = f(y) =

∫ N
∏

i=1

f(yi|bi)f(bi)dbi,

l(ξ, d) = log

∫ N
∏

i=1

ni
∏

j=1

λρyρ−1
ij exij

′ξ+bie−λyρ
ij
exij

′ξ+bi

f(bi)dbi.

TheN integrals of thebi random effects do not have a tractable solution. Applying
Gaussian variational approximation technique , lead to theGaussian variational approxi-
mate likelihoodl(ξ, d,µ,Λ),

l(ξ, d, µ,Λ) =
N
∑

i=1

ni
∑

j=1

[

log(λ) + log(ρ) + (ρ− 1) log(yij) + (xij
′ξ + µi)

−λyρije
xij

′ξ+µi+
1

2
Λi

]

−
N

2
log(d)−

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi).

5.3 Weibull-Normal-Normal Random Intercepts Model

So far we considered just one hierarchical random effect. Extending to two or more hier-
archical random effect, e.g. Weibull-Normal-Normal, is straight forward. Given the (two)
random effects are independent, GVA approximation is applied to each random effect sep-
arately.

l(β, d1, d2, µ,Λ) =
N
∑

i=1

M
∑

j=1

nij
∑

k=1

[log(λ) + log(ρ) + (ρ− 1) log(yijk)+

(x′
ijkξ + µi + µij)− λyρijke

x′
ijk
ξ+µi+µij+

1

2
Λi+

1

2
Λij

]

−

N

2
log(d1)−

N
∑

i=1

1

2d1
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi)−

NM

2
log(d2)

−
N
∑

i=1

M
∑

j=1

1

2d2
(µ2ij + Λij) +

N
∑

i=1

M
∑

j=1

1

2
log(Λij).

5.4 Weibull-Gamma-Normal Hierarchical Model

Now let us extend to Weibull-Gamma-Normal. Omitting the gamma random effect lead to
the Weibull-Normal model and excluding the normal random effect leads to the Weibull-
Gamma (6) model. This model can be expressed as:

f(yij|θij, bi) = λρθijy
ρ−1
ij eηije−λyρ

ij
θije

ηij

,
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ηij = xij
′ξ + bi,

f(θij) =
1

(

1
α

)α
Γ(α)

θα−1
ij e−αθij ,

f(bi) =
1

(2π)1/2|d|1/2
e−

1

2d
b2
i

In this model,bi is the subject-specific normal random effects to account forthe clustering
of observations andθij is the gamma random effects to accommodate for overdispersion.

Here, we have one additional gamma random effect,θij , in contrast to Weibull-Normal
model. One option is to approximate the posterior density ofthe gamma random effect and
similar to the normal random effect in such a way that the integral problem is totally eradi-
cated. Approximation of the posterior density of Gamma random effectsθij by Gamma and
lognormal distribution was attempted in which the integralproblem was solved however it
did not lead to good approximation. The alternative way is tofirst integrate the gamma
random effect; Hence, the Gamma frailty with normal random effect embedded in it and
then apply Gaussian variational approximation (GVA) for the normal random effect. After
integrating the gamma random effectθij, we have:

f(yij|bi) =
λρyρ−1

ij exij
′ξαα+1

(α+ λρyρije
xij

′ξ)α+1
.

Applying GVA leads to,

l(β, d,µ,Λ) =

∫

log

(

p(y, bi)

q(bi)

)

q(bi)dbi

=
N
∑

i=1

ni
∑

j=1

[

log(λ) + log(ρ) + (ρ− 1) log(yij) + (xij
′ξ + µi)+

(α+ 1) log(α)] −
N

2
log(d)−

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi)− (α+ 1)

N
∑

i=1

∫

log(α+ λρexij
′ξ+bi)q(bi)dbi

5.5 Illustration on Comet data

This method was applied to the comet assay data. Three modelsnamely Weibull-Normal,
Weibull-Normal-Normal and Weibull-Gamma-Normal models were considered. For the
Weibull-Normal, the model is given as:

ηijk = β0 + β1Lijk + β2Mijk + β3Hijk + β4PCi + bi + bij,

with bi ∼ N(0, d1) andbij ∼ N(0, d2). Lijk, Mijk, Hijk andPCijk are the indica-
tors for low dose, medium dose, high dose, and positive control groups respectively. The
random interceptbi corresponds to the rat-specific effect whereasbij corresponds to the
slide-specific effectj of rat i.

Estimation was done using both GVA approximation and numerical approximation us-
ing adaptive gaussian approximation in PROC NLMIXED taken as exact/ golden standard
estimate (named as exact estimate). Standard softwares like SAS PROC NLMIXED do
not allow for more than one hierarchical random effect. For aspecific case of single di-
mensional random effect at each hierarchical level, it can be modeled by using some trick.
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Table 1: Exact and GVA estimation for Weibull-Normal and Weibull-Gamma-Normal
Models

Weibull Normal
Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)
Veh. β0 -13.7574( 0.2270) -13.7575(0.2270)
Low vs. veh. β1 -3.8319(0.2180) -3.8316(0.2179)
Med.vs. veh. β2 -3.9243(0.2181) -3.9241(0.2180)
High vs. veh. β3 -4.1268(0.2185) -4.1266(0.2183)
Pos.C.vs. veh. β4 -2.9399(0.2653) -2.9402(0.2652)
Weib. shape ρ 4.3293(0.0477) 4.3293(0.0477)
Var. d 0.1334(0.0384) 0.1333(0.0384)
-2l 30476 30502.6
Duration 70 sec. 7 sec.

Weibull Gamma Normal
Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)
Veh. β0 -30.9295(0.7264) -30.92917(0.7264)
Low β1 -42.8673(1.0005) -42.86688(1.0004)
Med. β2 -43.0847(1.0045) -43.08429(1.004)
High β3 -43.5321(1.0122) -43.53161(1.0121)
Pos.C β4 -40.5714(0.9768) -40.57099(0.9767)
Weib. shape ρ 10.7070(02473) 10.7070(02473)
Var1. d1 0.9764(0.1698) 0.9764(0.1698)
OD Par. α 0.8932(0.0463) 0.8932(0.04625)
-2l 28069 28069.24
Duration 60 sec. 35 sec.

This is done by considering the subclusters as the random effect at the cluster level and
specifying the same variance for the sub-clusters. However, it is applicable in specific case
when we have few sub-clusters and single dimensional randomeffect at each hierarchical
level (random intercept model).

The estimates using both GVA and exact method are given in Table 1 and 2. Implemen-
tation of Weibull-Normal-Normal model in PROC NLMIXED had convergence problem.
We considered 10% of the data, to be able to evaluate the performance of Gaussian vari-
ation approximation. Interestingly, we get the result in few minutes (just using standard
optimization) while using PROC NLMIXED for the small data itwas taking hours. In
terms of the accuracy, the parameter estimates as well as thestandard error using GVA es-
timate were almost the same as the golden standard estimate for both Weibull-Normal and
Weibull-Gamma-Normal models. It was both fast and accurate.

6. GVA for Poisson Models

6.1 Poisson-Gamma, Poisson-Normal, Poison-Gamma-Normal

A Poisson with gamma random effect, it is just a negative binomial model. If we con-
sider Poisson-Normal model (Poisson mixed model), the marginal likelihood contains an
intractable integral. Applying GVA approximation resultsin a new lower bound likelihood
with no integral problem which is similar to Weibull-Normal.

Yij ∼ Poisson(λij)

λij = exp(xij
′ξ + bi)
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Table 2: Exact and GVA estimation for Weibull-Normal-Normal

Weibull Normal Normal
Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)
Veh. β0 -19.2239(0.9048) -19.1356(0.8970)
Low vs. veh. β1 -6.9489(0.4468) -6.9170(0.4426)
Med.vs. veh. β2 -7.1410(0.4555) -7.1063(0.4512)
High vs. veh. β3 -7.4521(0.4670) -7.4168(0.4627)
Pos.C.vs. veh. β4 -5.5195(0.4650) -5.4933(0.4602)
Weib. shape ρ 6.4192(0.2885) 6.3898(0.2861)
Var1. d1 7.5943E-07(0.00026) 4.8067E-06(0.00017)
Var2. d2 0.7184(0.1689) 0.6962(0.1644)
Duration 2 hr and 30 min. 10 min.

bi ∼ Normal(0, d)

(8)

The lower bound is:

l(ξ, d, µ,Λ) =
N
∑

i=1

ni
∑

j=1

[

yij(x
′
ijξ + µi)− ex

′
ij
ξ+µi+

1

2
Λi − log(yij!)

]

−
N

2
log(d) −

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi).

Also here, extending to more hierarchical random effect is straight forward by applying
GVA to all hierarchical random effects independently/separately.

l(ξ, d1, d2,µ,Λ) =
N
∑

i=1

M
∑

j=1

nij
∑

k=1

[

yijk(x
′
ijkξ + µi + µij)− e(x

′
ijk
ξ+µi+µij+

1

2
Λi+

1

2
Λij)

− log(yijk!)]−
N

2
log(d1)−

N
∑

i=1

1

2d1
(µ2i +Λi) +

N
∑

i=1

1

2
log(Λi)

−
NM

2
log(d2)−

N
∑

i=1

M
∑

j=1

1

2d2
(µ2ij +Λij) +

N
∑

i=1

M
∑

j=1

1

2
log(Λij).

For outcomeyijk of clusteri = 1, . . . , N in subclusterj = 1, . . . ,M measured at occasion
k = 1, . . . , nij . d1 andd2 are the variances of the first (at cluster level) and second (at
subcluster) hierarchical random effects.

When an Overdispersion gamma random effect is added to the Weibull-Normal model
in (8), it leads to Poisson-Gamma-Normal model of Molenberghs et al (2007), a model for
repeated Poisson data with overdispersion. The gamma random effect is first integrated out
and Gaussian variation approximation is applied to the normal random effect. In general,
The Weibull and Poisson models have similar form.

Yij ∼ Poi(λij)

λij = θij exp(xij
′ξ + bi),

θij ∼ Gamma(α, β),

whereYij is thejth outcome measured for subjecti, i = 1, . . . , N , j = 1, . . . , ni. The
lower bound is given by:

l(ξ, d,µ,Λ) =
N
∑

i=1

ni
∑

j=1

[log((yij + α− 1)!) − log((α − 1)!)− log(yij!) + yij log(β)
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Table 3: Exact and GVA estimation for Poisson-Normal model and Poisson-Gamma-
Normal (Combined model)

Poisson-Normal
Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)
Intercept Placebo β00 0.8179(0.1677) 0.8179(0.1675)
Slope Placebo β01 -0.0143(0.0044) -0.0143(0.0044)
Difference in Intercept β10 − β00 -0.1703(0.2387) -0.1704(0.2385)
Difference in Slope β11 − β01 0.0023(0.0062) 0.0023(0.0062)
Variance of RE d 1.1568(0.1844) 1.1543(0.1839)
-2 Loglikelihood -6810 -6808.87
Duration 11 sec. 4 sec.

Poisson Gamma Normal (Combined)
Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)
Intercept Placebo β00 -2.9862(0.1965) -2.9856(0.1759)
Slope Placebo β01 -0.0248(0.0077) -0.0248(0.0077)
Difference in Intercept β10 − β00 -0.2557(0.2500) -0.2556(0.2498)
Difference in Slope β11 − β01 0.0130(0.0107) 0.0130(0.0107)
Var.of RE d 1.1290(0.1850) 1.1274(0,1847)
OD par. α 2.4640(0.2113) 2.4625(0.0324)
-2 Loglikelihood -7664 -7664.17
Duration 60 sec. 50 sec.

+yij(x
′
ijξ + µi)− (yij + α)

∫

log(1 + βex
′
ijξ+bi)q(bi)dbi

]

−
N

2
log(d)−

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi).

6.2 Illustration on Epilepsy data

Both the Poisson-Normal and Poisson-Gamma-Normal are applied to the epilepsy data.
The model for Poisson-Gamma-Normal is given by:

log(λij) =

{

(β00 + bi) + β01tij if placebo
(β10 + bi) + β11tij if treated

The result for Poisson-Normal and Poisson-Gamma-Normal isgiven in Table 3. For
Poisson-Normal it was fast and accurate and for Poisson-Gamma-Normal which still re-
quire numerical approximation to the resulted GVA, it was also fast and fairly accurate.
Although the approximation using both methods was fast, approximation using GVA was
faster and the gain in computational time is seen in the Jimmainfant data which is presented
in Table 5.

7. GVA for Logistic Models

7.1 Logistic-Normal and Logistic-beta-Normal Models

For Logistic model, we have:

Yij ∼ bernoulli(πij)
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πij
1− πij

= exp(x′
ijξ + bi)

bi ∼ Normal(0, d)

(9)

Applying GVA results in the lower boundl(ξ, d, µ,Λ). Unlike Poisson-Normal and Weibull-
Normal, the GVA likelihood has still non-tractable likelihood.

l(ξ, d, µ,Λ) =
N
∑

i=1

ni
∑

j=1

[

yij(x
′
ijξ + µi)−

∫

log(1 + ex
′
ijξ+bi)q(bi)dbi

]

−
N

2
log(d) −

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi).

Considering an extended model of (9),a model combined with beta distribution/random
effect:

Yij ∼ binary(πij)

πij = θij
exp(x′

ijξ + bi)

1 + exp(x′
ijξ + bi)

θij ∼ Beta(α, β)

The lower bound is given by:

l(ξ, d, α, β, µ,Λ) =
N
∑

i=1

ni
∑

j=1

[

yij log(α) − log(α+ β)−

∫

log(1 + ex
′
ij
ξ+bi)q(bi)dbi +

yij(x
′
ijξ + µi) + (1− yij)

∫

log(α+ β + βex
′
ij
ξ+bi)q(bi)dbi

]

−
N

2
log(d)−

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi).

For identifiability problem, we fixα/β = c. The lower bound is then given by:

l(ξ, d, c,µ,Λ) =
N
∑

i=1

ni
∑

j=1

[

− log(1 + c)−

∫

log(1 + ex
′
ij
ξ+bi)q(bi)dbi +

yij(x
′
ijξ + µi) + (1− yij)

∫

log(1 + c+ cex
′
ij
ξ+bi)q(bi)dbi

]

−
N

2
log(d)−

N
∑

i=1

1

2d
(µ2i + Λi) +

N
∑

i=1

1

2
log(Λi).

We see that the GVA for Weibull-Gamma-Normal, Poisson-Gamma-Normal and Logistic
models, have similar algebraic form which still needs numerical approximation.

7.2 Illustration on EG data

We applied to the EG data. The model is given by:

Logit(yij = 1) = β0Cij + β1Lij + β2Mijk + β3Hijk + bi,

The result is presented in Table 4. The performance of the GVAinterms of the accuracy
of the parameter estimate as well as the standard error for the Logistic models was slightly
lower as compared to the Weibull and Poisson Models.
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Table 4: Exact and GVA estimation for Logistic-Normal and Logistic-Beta-Normal (Com-
bined model)

Logistic-Normal
Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)
Control β0 -6.2344(0.8860) -6.1592(0.8543)
Low β1 -3.8615(0.5420) -3.8011(0.5190)
Medium β2 − β00 -1.7370(0.4332) -1.6984(0.4121)
High β3 − β01 1.5695(0.4693) 1.5274(0.4466)
Var. of RE d 3.9988(1.0977) 3.5808(0.9360)
Duration 18 sec. 6 sec.

Logistic-Beta-Normal
Exact GVA

Effect Parameter Estimate(s.e.) Estimate(s.e.)
Control β0 -6.2344(0.8860) -6.1592(0.8543)
Low β1 -3.8615(0.5420) -3.8011(0.5190)
Medium β2 − β00 -1.7370(0.4332) -1.6984(0.4121)
High β3 − β01 1.5695(0.4693) 1.5274(0.4466)
Var. of RE d 1.3860(0.2745) 1.2756(0.2614)
OD par. β/α 1.2957E-07(0.00011) 2.6822E-09(0.00001)
Duration 35 sec. 40 sec.

8. Discussion and Conclusion

Generalized mixed models often involve intractable integrals. Different approximating
techniques exist which can be broadly categorized as approximating the integrand, the data
or the integral itself. Gaussian variational approximation approximate the integrand by
introducing a set of variational densities (to the posterior densities) in such a way that
their evaluation is tractable. It is applicable for both bayesian and likelihood. In this
paper, we focus on the likelihood frame work by approximating the posterior density of
the normal random effect (by a set of normal densities). We considered three families of
GLMM models; 1) The Weibull models: Weibull-Normal, Weibull-Normal-Normal and
Weibull-Gamma-Normal; 2) Poisson models: Poisson-Normal, Poisson-Normal-Normal
and Poisson-Gamma-Normal; 3) Logistic models.

The GVA approximation was applied to the comet data for Weibull models, epilepsy
data for Poisson models and EG data for Logistic model. Estimate using adaptive nu-
merical gaussian approximation in SAS Proc-nlmixed was taken as exact/golden standard
estimate (named as exact estimate). For Weibull-Normal andPoisson-Normal, estimation
using GVA was faster and very accurate (in contrast with the exact estimate). For models
with higher hierarchical random effect (Weibull-Normal-Normal), normally standard soft-
ware SAS Proc-nlmixed does not accommodate , it is only possible with the use of some
modeling trick for cases of small number of sub-clusters. Applying to the comet data, we
were having problem in convergence. Thus we were forced to deal with the reduced data
yet it was taking very long time to converge. Estimating using GVA was much faster and
fairly accurate. Considering Overdispersed hierarchicalmodels (Weibull-Gamma-Normal,
Poisson-Gamma-Normal and logistic models), applying GVA approximation still requires
numerical approximation. It was also fast and fairly accurate for the parameters of interest.

In general, it can be a good approximation technique especially when the numerical
approximation using standard software fails/very restrictive, either take long time, problem
in convergency or when it doesn’t allow to accommodate such futures. For instance when
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Table 5: Overview of computational efficiency, duration for convergence

Models Datasets Exact GVA
Weibull Normal Comet 70 sec. 7 sec.
Weibull Gamma Normal Comet 1 min. 35 sec.
Poisson Normal Epilesy 11 sec. 4 sec.
Poisson Gamma Normal Epilepsy 1 min. 50 sec.
Poisson Normal Jimma 45min. 3 min.
Poisson Gamma Normal Jimma 4 hr. and 40 min. 5 min.
Logistic Normal EG 18 sec. 6 sec.
Logistic Normal EG 35 sec. 40 sec.

we have more than two hierarchical levels where and when we have higher dimension
of random effect. Table 5 gives overview of the computational efficiency in terms of the
duration to convergence.
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