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Gaussian Variational Approximation for Overdispersed Generalized Linear
Mixed Models

Aklilu H. Ghebretinsag Christel Fae$ Geert Molenbergh$

Abstract

In a recent publication by Molenberghs and Demétrio (2GLgEneral modeling framework was
proposed to model non-Gaussian data that are hierarghstalictured and are overdispersed in the
sense that the distributional mean-variance relationshiyt fulfiled. The modeling framework
extends the Generalized Linear Models with two random &ffeme normally distributed random
effect to accommodate the correlation in the data due to igratchy and one conjugate random
effect to account for the overdispersion. The main diffizulith this kind of models is the computa-
tional complex estimation due to the intractable multiggiintegrals, as is the case for Generalized
Linear Mixed Models that involves such integrals with nolgtia expression. Different estimation
methods for these models were already proposed: estimagiog partial marginalization, estima-
tion in the bayesian framework, and an approximate estimdtased on pseudo-likelihood. In this
manuscript, we will investigate the use of Gaussian vanati approximation methods as a compu-
tationally fast estimation method for the combined modetaAge of over-dispersed non-gaussian
mixed models are investigated.

Key Words: Gaussian variational approximation, Gamma Frailty, Weilermal, Poisson-Normal,
Hierarchical model, Random effect, Weibull model

1. Introduction

Generalized linear models are the most common class ofsggremodels used to analyze
different types of variables, including binary, counts aodtinuous outcomes (Nelder and
Wedderburn 1972, McCullagh and Nelder 1989, Agresti 2008 exponential family dis-
tribution provides an elegant specification of the modelse most well-known examples
include linear regression, logistic regression and Paisegression. An important exten-
sion of these models are the generalized linear mixed mgdileninclusion of a normally
distributed random effect, allowing to account for a metitél structure in the data (Molen-
beghs and Verbeke 2005)). A common issue with non-Gaussitmisl overdispersion in
the sense that the variability in the data is not well degckiby the distributional mean-
variance relationship (Hinde and Demétrio 1998). Thislwappen both in the univariate or
in the multi-level setting. One approach to account for diggrersion in a univariate gener-
alized linear mixed model is by the use of a conjugate randifectesuch as, for example
the negative binomial (Breslow 1984, Lawless 1978) and-bi&tamial model (Skellam
1948, Kleinman 1973). Molenberghs and Demétrio (2011ppsed a similar approach
to account for overdisperion in a multilevel setting, by tise of two random effect, one
normally distributed random effect to accommodate for fieegnichy and one strongly con-
jugate random effect to account for the overdispersion éndéita. This introduces a new
general modeling framework for the analysis of overdispemaultilevel data, and is often
referred to as theombined model (Molenberghs et al 2007, Molenberghs et al 2010).

A difficulty in inference of these models is often encountene both the bayesian
and likelihood framework, due to the intractable multieéei integrals in the likelihood
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and posterior densities. This can already be problematithtBogeneralized linear mixed
models (GLMM), because of the integrals in the marginalildeglihood with no analytic
expression which need a numerical approximations. Ofténdealt with by numerical
integration using adaptive and gaussian adaptive quadratearies expansion methods in-
cluding penalized quasi-likelihood and marginal quasiihood, laplace approximation,
etc. Different estimation techniques have been employetbideling the combined model,
commonly it is done through partial marginalization in whithe conjugate random ef-
fect are first integrated out leaving the normal effects ucied and then obtain the fully
marginal by numerical integration of the normal random effigsing adaptive gaussian
quadrature in standard software such as the SAS proceduvdXD (Molenberghs et al
2007, Molenberghs et al 2010), in the bayesian framewomrgusiCMC (Ghebretinsae et
al 2011) and pseudolikelihood estimation (Achmad et al 2011

In this paper, another estimation method for the combinedehis proposed, provid-
ing a fast estimation method as an alternative to the egistiathods. Ormerod and Wand
(2012) recently introduced variational approximationha statistical modeling framework.
Variational Inference have their roots in the statistidaygics and are used to approximat-
ing intractable computations (Blei and Jordan 2006). Theid#tea is to introduce a set of
approximating densities to the posteriors and to introdheen in such a way as to make
their evaluation tractable. These approximations are th@imized so as to minimize
the discrepancy between the approximation and the truemastising some measure of
the difference. The optimization is carried out by varyihg functional parameters of
these approximations, thus giving the approximation ite@aWhile different variational
approximations exist, we focus on Gaussian variationata@mations, in which the con-
ditional distribution of the random effects given the data approximated by Gaussian
distributions. Hall, Ormerod and Wand (2011) studied thapprties of Gaussian varia-
tional approximations in the setting of generalized linmixed models.

The general idea of variational approximation is to apprate the likelihood so that
the integral problem is either fully or partially solved.idttherefore basically an approxi-
mation of the integrand. When the integral problem is futlived, it results in optimization
of the resulting approximate likelihood. When the integnadblem is not completely erad-
icated, like e.g. in a binary GLMM as will be shown later, itssll useful in reducing
the dimension of the integral to one. But approximation & ititegral of the new likeli-
hood/integrand is still required using adaptive gaussisadcature.

The paper is organized as follows. In section 2, three dtdasellustrate the pro-
posed methodology are introduced, namely the comet ddtapsy data and EG data. The
combined model for non-Gaussian data is introduced in @& The Gaussian varia-
tional approximation estimation technique is reviewed étt®n 4. Their properties are
investigated via three examples, including an extendedomreffects Weibull, Poisson
and logistic model in Section 5, 6 and 7.

2. Motivating Examples

In this section, motivating datasets used in this manusargpresented.

2.1 Epileptic Data

The first data considered here is obtained from a randomdmdle-blind, parallel group
multi-center study for the comparison of placebo with aptileptic drug (AED), in com-
bination with one or two other AED’s. The study is describeduill detail in Faught et al
(1996) and it is used in Molenberghs et al (2007). The randatiain of epilepsy patients
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took place after a 12-week baseline period that served abdization period for the use
of AED’s, and during which the number of seizures were cailingdter that period, 45 pa-
tients were assigned to the placebo group, 44 to the acta)(meatment group. Patients
were then measured on a weekly basis during 16 weeks, aftehwiey were entered into
a long term open extension study. Some patients were fotldaeup to 27 weeks. The
outcome of interest is the number of epileptic seizures apeed during the last week,
i.e, since the last time the outcome was measured. The kegradsquestion is whether or
not the additional new treatment reduces the number offdjulseizures. As a summary of
the data, the subject-specific profiles for 12 randomly seteiadividuals in each treatment
arm is presented in the upper panel of Figure 1. It is a skewstdkdition with a largest
observed value equal to 73 seizures in one week time.

2.2 Comet Assay Data

The second data resulted from a comet assay study and havstioded in Ghebretinsae
et al (2011). The comet assay is a single cell microgel ephtiresis method detecting
DNA damage in any target tissue or organ of which a single sedpension can be pre-
pared. Exposure to high alkali (pH 13.0) allows expression of single strand breaks and
subsequent alkaline electrophoresis ensures migratidbN# fragments out of the nu-
cleus. Visualization of this DNA migration (typical comigte structures) is performed by
a fluorescent dye. An image analysis system coupled to a stiope permits quantifi-
cation of DNA damage at the single cell level. Here, the dafarrto four groups of six
male rats that received a daily oral dose of a compound irttiose levels (low, medium,
and high) or vehicle control. On the day of necropsy, an egtoaup of three animals re-
ceived a single dose of a positive control (200 mg/kg ethyihaweesulfonate, EMS, PC).
The animals were sacrificed 3 hours after the last dose astmgition, their liver was re-
moved and processed for the comet assay. For each animdllsasgension is prepared.
From each cell suspension, three replicate samples wepangie for scoring. Fifty ran-
domly selected, non-overlapping cells per sample wereshered for DNA damage using
a semi-automated scoring system. A total of 150 liver cetlsenthus scored per animal.
DNA damage was assessed by the software system by meaaitinggration, % tail in-
tensity, and tail moment. The interest here is to see theitgxf 1,2-Dimethylhydrazine
dihydrochloride at the different dose levels (low, mediwmd high) based on tail length.
Generally, the toxicity level increase with the dose lewdlsummary of the data is pre-
sented in the lower left panel of Figure 1. We observe somesimd values at all dose
levels.

2.3 Ethylene Glycol (EG) Data

The third dataset is from toxicology study of Ethylene glydathylene glycol (EG) also
called 1,2-ethanediol is a high-volume industrial chemigith diverse applications. It
is used to make antifreeze and de-icing solutions for carglaaes and boats, to make
polyster compounds, and is used as a solvent in the paintlasticpndustries. It is also
used as an ingredient in photographic developing solutibpdraulic brake fuids and in
the formulation of several types of inks and many more. WEi may not be hazardous
to humans in normal industrial handling, it can become demgewhen used at elevated
temperatures or when ingested. Exposure to large amousthyléne glycol can damage
the kidneys, heart, and nervous system. In addition, ifggesf antifreeze products, which
consist for approximately 95 % of EG, is toxic and may resuliéath. The data resulted
from a study in which timed-pregnant CD-1 mice were doseddwage with EG in distilled
water as described by Price et al. (1985). Dosing occurrethgithe period of major
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organogenesis and structural development of the foetgessational days 6 through 15).
The doses were at 0, 750, 1500 or 3000 mg/kg/day, with 25,24nd 23 timed-pregnant

mice randomly assigned to each of these dose groups, regbecThe interest here is to

assess the toxicity of this chemical at the different dogeléebased on a binary outcome,
whether the foetus is malformed or not. Summary of the dgtesisented in the lower right

panel of Figure 1. We observe a general trend of increasixigity with dose level.
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Figure 1. 1. Top: The distribution of the response and the averagéleifor the two
treatment groups over time for Epilepsy data 2.Bottom leftx plot for comet data 3.
Bottom right: scatter plot for EG data.

3. Combined M odél
Molenberghset al (2010) proposed an exponential family model with two randaffact

to accommodate simultaneously the clustering and overdigm effects. It extends the
generalized mixed model by the use of conjugate randomtdfie@verdispersion. The
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general model family proposed for modeling overdisperseticarrelated data is given by:
fi(Yij|bi, 045, &) = exp {¢_1[yij)\z'j = (Nij)] + e(yijs ¢)} ; (1)

for outcomey;; on subject = 1,..., N at occasiory = 1,...,n;. The unknown param-
eters)\;; and¢ are often termed natural parameter and scale parameteecte®ly. The

termc(y;;, ¢) is the normalizing constant. The functigr(-) is a known function with the
property thatE'[y;;|bi, 0i5, €] = ¥'(\ij) and vaty;;|bi, 0i5, &) = ¢"(Ni;). Model specifi-

cation proceeds by assuming that the conditional mea); @ given by

Elyij0ij,bi] = pij = 03k, &)

wheref;; ~ Gi;(&i;,07;) for some distributiong;; with mean¢;; and variancer;; and
wij = g(nij) = g(z};€ + z{;b;) for some link functiong andb; ~ N (0, D). The random
variablef;; is used to account for the overdispersion in the data, whierandom effect
in x;; accounts for the clustered or hierarchical structure oftdte. The two parameters
n;; and\;; refer to the linear predictor and/or the natural paramétbe basic difference
is that\;; encompasses the random variallgs whereas;;; refers to the ‘GLMM part’
only.

Most often, but not strictly necessary, it is assumed thatttbo sets of random ef-
fects, 8; andb;, are independent of each other (see Molenbergtat (2010) for further
discussion).

Parameterizationi2) such that the random effedfls; capture overdispersion, and are
formulated directly at the mean scale, wheregscan be considered as the generalized
linear mixed model component. The relationship betweemraed natural parameter now
is

Aij = h(pg;) = h(0sjki5). 3)

Standard GLM ideas can be applied to derive the mean andneatiacombined with
iterated-expectation-based calculations. For the meésildws that

Elyij] = E[0i;]Elrij] = B[R~ (Ag)]- (4)

An important concept in regard to computational difficudfficiency isconjugacy, in
the sense of Cox and Hinkley (1974, p. 370) and Lee, NelderPawitan (2006, p. 178).
Conjugacy refers to the fact that the hierarchical and ramdffiects densities have similar
algebraic forms. Conjugate distributions produce a géa@closed-form solution for the
corresponding marginal distribution. Molenberghisal (2010) adapted conjugacy to the
situation where both normal and overdispersion randontisffere included. For detailed
explanation on the combined model we refer to Molenbesglas (2010).

In this case three types of outcomes are considered: timeetd,ecount and binary. A
Weibull model will be considered for the time to event outegra Poisson model for the
count and a Logistic model for the binary outcomes.

4. Gaussian Variational approximation using density transfor mation

This section reviews the GVA approximation method usingsitgriransformation, as de-
scribed by Ormerod and Wand (2012) and Hall, Ormerod and &01L).
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4.1 Deriving GVA lower bound likelihood
Ormerod and Wand (2012) considered the generalized mixelkihodthe form:

fizlbi) = exp{yiiAij — v(Nij) + c(viz) }
with,

Aij = nij = xij'§ + 2i5'b;
and b ~ N(0,D)

It is a reduced form of 1) in that thed;; is omitted here and the scale parameter
10} fixed to one. Letyl = (yila c ,ymi),; xT; = (:Bil, c ,:liim)/; 5 = (51, c ,Bp)/; zZ; =
(zi1,- - -, zin;) @ndgq be the dimension of the random effécfThe corresponding marginal
likelihood is,

N N Ngq
(¢, D) = > {yi'zi&+ Lic(y:)} — 5 log |D| — T3 log(2m)
=1

N
1,
+ log / exp{yi' 2ib; — Y(xl€ + 2b;) — 5b/D b}db;  (5)
i=1

The maximum likelihood estimates of the fixed effe§tand covariance matri¥ of
the GLMM are obtained by maximizing (5). The problem in maizimg this likelihood is
the presence aV integrals over the-dimensional random effects. Gaussian variational
approximation method tackles this issue by introducing>aragair of variational param-
etersu,;, A; for each subject, 1 < i < N, wherey; is ag-dimensional vector and; is
g % q positive definite matrix. And new density functiop&;) are introduced and are as-
sumed to be Multivariate Gaussian density distributiorhwiteanu; and covariance matrix
A;. In principle these densities can take any functional fdmthis case, the marginalized
likelihood can be re-written in terms of tla€b;) densities:

1€, D)

log. | plulbp(bi)db,

q(b;)
log/p(ylbi)p(bi)q(bi)

_ p(y|bi)p(bi)
= log EbiNN(/,LZ-,Ai) [ Q(bi)

db’i’

In this expressionEbiNN(u, Ai)(') is the expected value with respectito~ N (p;, A;).
By Jensen’s inequality and concavity of the logarithm fiorgtwe then have

(y|bi)p(b:)
UED) > By i, ag o8 (PL05 )| = e Do)

wherel(&, D, u, A) is a lower boundary of the loglikelihood functidt¢, D), the approx-
imated likelihood. Alternatively the same inequality candeen from the Kullback Leibler
divergence point of view (Ormerod and Wand, 2012; Hall, Owodeand Wand,2011). The
accuracy of the approximate likelihood depends on themlistdetweern(b;) andp(b;|y),
measured by the Kullback Leibler distance.

The idea of GVA is to approximate the posterior distributjgib;|y) which contains
integral difficulty by ¢(b;) in such a way that the likelihoood/integrand is integrable o
easier. The integral problem is not always completely resdaoafter applying GVA. In
some cases the integral problem exists partially; howéveray still have computational
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advantage although numerical approximation is required. Wil see this in detail in the
next section.
The variational lower bound of the log-likelihood simplgito,

Ng N N
(& D,p,A) = 5 3 log |D| + > {yi(2i€ + zip:) + Lie(y:) —
i=1
1
LT (x€ + zipui, diag(2iAiz1)) — 5 (log|Ai] — D~ gy — tr(DTTAY)}
where
T(n,o?) = [ i+ ow)o()

and¢ is the standard normal with me@rand variancd.

The variational lower bound contains the original paramggeD) and additional vari-
ational parameter§u, A). The ML estimates are th&, D) parameters obtained by maxi-
mizing the new lower likelihoodi(&, D, p, A).

5. GVA for General Frailty Models

In this section, four hierarchical models are presentediriue to event data:
e Weibull-Gamma frailty model;

e Weibull-Normal random intercept model;
e Weibull-Normal-Normal random intercepts model; and

¢ Weibull-Gamma-Normal hierarchical model.
For each of these models, a gaussian variational apprarimiatderived.

5.1 Weibull-Gamma frailty model

Let us consider the Weibull-Gamma model. It is well knownt teibull and Gamma
distributions are conjugate. This property simplifies theputations, because the gamma
frailty can be integrated out to obtain the marginal liketd. The conditional likelihood
and frailty densities are give by the following expression:

i ’ oL’
Filty) =TT Mobiguly 'S eMitue e (6)
j=1
J05) = byt )
R (l)al“(a) Y

Where (6)corresponds with a Weibb; ; eTij'€ , p) distribution, and (7) with a Gamn(a, é)
distribution. The marginal likelihood(&, «) is obtained by integrating the gamma random
effect.

l(€&.0) = log f(y) = log [ £(y16)f(6)d.
As a result, the marginal density can be expressed as:
(&) = logp(y) =log(Ap) + (p — 1) log(yy) + zi;€
+(a+1)log(a) — (a+ 1) log(a + )\pyfjexwijl’s).

The required parameter of interest are obtained by maxagithis function.
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5.2 Weibull-Normal Random Intercept M odel

If however a normal random effect is used, instead of theugatpe gamma frailty, which
we call the Weibull-Normal model.

Flysslb) ~ Weibull(xe, p)
mij = i §+bi
f(b;)) ~ Normal(0,d)

the marginal likelihood becomes:

N
Led) = )= [ ILftbsa

N n;

Lij
I(€,d) = log / IR 1,5 &4 = Myp;e " e f(b;)db;.

i=1j=1

The N integrals of theb, random effects do not have a tractable solution. Applying
Gaussian variational approximation technique , lead toGhassian variational approxi-
mate likelihoodl (¢, d, s, A),

N n;
W& d,p, A) = Y [log(A) +log(p) + (p — 1) log(yij) + (i€ + pe)
i=17=1
NP eTij Ermit i Nl d - 1 2 AL S 11 A
—AY;ij¢ }—;og() ;ﬁ(ﬂi—F z)+;§ og ().

5.3 Weibull-Normal-Normal Random I ntercepts Model

So far we considered just one hierarchical random effecterigling to two or more hier-
archical random effect, e.g. Weibull-Normal-Normal, isagiht forward. Given the (two)
random effects are independent, GVA approximation is agdlh each random effect sep-
arately.

3

ij
[log(A) +log(p) + (p — 1) log(yijr)+
1

M=

l(/ﬁadladQ):U’a Z

—

1

-
B
Il

J
/ pYT T E it i+t 3 A
(31€ + i + pij) — Ayjipe” -

N

glog(ah) Z%(MZ—I—A -I—Z log(A;) —

=1 zl

N M
ZZ d HZ]+AZ] +ZZ_10g z]

i=1j= i=17=1

M
log(da)

5.4 Waeibull-Gamma-Normal Hierarchical M odel

Now let us extend to Weibull-Gamma-Normal. Omitting the gaarandom effect lead to
the Weibull-Normal model and excluding the normal randofeafleads to the Weibull-
Gamma (6) model. This model can be expressed as:

s
/\ny Gije lij

Fisl0is, b)) = Npbyyli temie M ,
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nij = xi &+,
f(0:) = ;9{%716—&05]‘
T E)Te
1 —57b?
flbi) = We 2d 7

In this model b; is the subject-specific normal random effects to accounth®clustering
of observations and;; is the gamma random effects to accommodate for overdigpersi

Here, we have one additional gamma random effggtin contrast to Weibull-Normal
model. One option is to approximate the posterior densith®@famma random effect and
similar to the normal random effect in such a way that thegireteproblem is totally eradi-
cated. Approximation of the posterior density of Gamma caneéffects);; by Gamma and
lognormal distribution was attempted in which the integmadblem was solved however it
did not lead to good approximation. The alternative way i§irs integrate the gamma
random effect; Hence, the Gamma frailty with normal randdfacé embedded in it and
then apply Gaussian variational approximation (GVA) fa ttormal random effect. After
integrating the gamma random effégf, we have:

Aoyl 125§ ot

(o Apyljeid Syt

f(yijlbi) - =
Applying GVA leads to,

(B, d,p,A) = / log (p((]zébzb )

- ) ab)a,

N n;
= > ) [log(A) +log(p) + (p — 1) log(ys;) + (xi;'€ + )+
i=1 1
Jj= N 1
(@ + 1) log(a )]——log =D gyl + )+

=1

N
Z log(A;) — (e +1) Z / log(a + Ape®i" &+ )q (b;)db,
=1 =1

5.5 [Illustration on Comet data

This method was applied to the comet assay data. Three muaelsly Weibull-Normal,
Weibull-Normal-Normal and Weibull-Gamma-Normal modelsres considered. For the
Weibull-Normal, the model is given as:

Nijk = Bo + B1Lijk + BaMiji + BsH;ji + BaPCi + b; + byj,

with b; ~ N(0,d;) andb;; ~ N(0,d2). Liji, Miji, Hij, and PC;j, are the indica-
tors for low dose, medium dose, high dose, and positive abgtoups respectively. The
random intercepb; corresponds to the rat-specific effect wherégscorresponds to the
slide-specific effecy of rati.

Estimation was done using both GVA approximation and nucaédapproximation us-
ing adaptive gaussian approximation in PROC NLMIXED taksmexact/ golden standard
estimate (named as exact estimate). Standard softwaeeSAS PROC NLMIXED do
not allow for more than one hierarchical random effect. Fgpecific case of single di-
mensional random effect at each hierarchical level, it @ambdeled by using some trick.
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Table 1: Exact and GVA estimation for Weibull-Normal and Weibula@ma-Normal

Models

Weibull Normal

Exact

GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)
Veh. Bo -13.7574(0.2270) -13.7575(0.2270)
Low vs. veh. 51 -3.8319(0.2180) -3.8316(0.2179)
Med.vs. veh. Ba -3.9243(0.2181) -3.9241(0.2180)
High vs. veh. B3 -4.1268(0.2185) -4.1266(0.2183)
Pos.C.vs. veh. 3, -2.9399(0.2653) -2.9402(0.2652)
Weib. shape p 4.3293(0.0477) 4.3293(0.0477)
Var. d 0.1334(0.0384) 0.1333(0.0384)
-2 30476 30502.6
Duration 70 sec. 7 sec.

Weibull Gamma Normal

Exact GVA

Effect Par. Estimate(s.e.) Estimate(s.e.)
Veh. Bo -30.9295(0.7264) -30.92917(0.7264)
Low B1 -42.8673(1.0005) -42.86688(1.0004)
Med. Ba -43.0847(1.0045) -43.08429(1.004)
High B3 -43.5321(1.0122) -43.53161(1.0121)
Pos.C B4 -40.5714(0.9768) -40.57099(0.9767)
Weib. shape p 10.7070(02473) 10.7070(02473)
Varl. dl 0.9764(0.1698) 0.9764(0.1698)
OD Par. « 0.8932(0.0463) 0.8932(0.04625)
-2 28069 28069.24
Duration 60 sec. 35 sec.

This is done by considering the subclusters as the randozotedt the cluster level and
specifying the same variance for the sub-clusters. Howévsrapplicable in specific case
when we have few sub-clusters and single dimensional rareffeut at each hierarchical
level (random intercept model).

The estimates using both GVA and exact method are given ile Tadnd 2. Implemen-
tation of Weibull-Normal-Normal model in PROC NLMIXED hadwvergence problem.
We considered 10% of the data, to be able to evaluate therpefee of Gaussian vari-
ation approximation. Interestingly, we get the result iw fminutes (just using standard
optimization) while using PROC NLMIXED for the small datavitas taking hours. In
terms of the accuracy, the parameter estimates as well asath@ard error using GVA es-
timate were almost the same as the golden standard estiandteth Weibull-Normal and
Weibull-Gamma-Normal models. It was both fast and accurate

6. GVA for Poisson Models

6.1 Poisson-Gamma, Poisson-Normal, Poison-Gamma-Nor mal

A Poisson with gamma random effect, it is just a negative toilad model. If we con-
sider Poisson-Normal model (Poisson mixed model), the margikelihood contains an
intractable integral. Applying GVA approximation resuiltsa new lower bound likelihood
with no integral problem which is similar to Weibull-Normal

Yi; ~ Poissoii\;;)

Nij = exp(@y'€+by)
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Table 2: Exact and GVA estimation for Weibull-Normal-Normal

Weibull Normal Normal

Exact GVA
Effect Par. Estimate(s.e.) Estimate(s.e.)
Veh. Bo -19.2239(0.9048) -19.1356(0.8970)
Low vs. veh. B1 -6.9489(0.4468) -6.9170(0.4426)
Med.vs. veh. B -7.1410(0.4555) -7.1063(0.4512)
High vs. veh. B3 -7.4521(0.4670) -7.4168(0.4627)
Pos.C.vs. veh. Ba -5.5195(0.4650) -5.4933(0.4602)
Weib. shape p 6.4192(0.2885) 6.3898(0.2861)
Varl. dl 7.5943E-07(0.00026) 4.8067E-06(0.00017)
Var2. d2 0.7184(0.1689) 0.6962(0.1644)
Duration 2 hr and 30 min. 10 min.

b; ~ Normal0,d)
(8)

The lower bound is:

nq

& di &) = S0 [l + i) — BN log(ys)]
i—1 j—1

~

N 1, N1
—~ log(d) — > g Hi T4 + > 5 log(Ai).
i=1 i=1

Also here, extending to more hierarchical random effedr&ght forward by applying
GVA to all hierarchical random effects independently/safely.

N M nij

/ ) oy LA LA
(€ di,do,p, A) = D> > [yijk(w;jkg i+ pigg) — e EinE A Ay)
i=1j=1k=1
Mo
— log(yiju)] — —108; (d1) Z o0 (12 + A) +Z log(A;)
=1 = 1
NM N M
log(da) — 227 ,uzj—i—AU +ZZ log(Ajj).
i=1j5=1 i=1j= 1
For outcomey;;, of clusteri = 1,..., NV insubclusterj = 1,..., M measured at occasion
k =1,...,n;. di andd, are the variances of the first (at cluster level) and second (a

subcluster) hierarchical random effects.

When an Overdispersion gamma random effect is added to titmilMormal model
in (8), it leads to Poisson-Gamma-Normal model of Molenbsret al (2007), a model for
repeated Poisson data with overdispersion. The gammamaafiect is first integrated out
and Gaussian variation approximation is applied to the abrandom effect. In general,
The Weibull and Poisson models have similar form.

}/ij ~ POZ()\Z])
)\ij = eij exp(:cij'E + bz),
0;; ~ Gammaa, ),

wherey;; is the j** outcome measured for subject = 1,...,N,j =1,...,n;. The
lower bound is given by:
N n;
(& dyp, A) = D [og((ysy + a— 1)) —log((a — 1)) — log(yis!) + vij log(8)
i=1j=1
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Table 3: Exact and GVA estimation for Poisson-Normal model and stmsGamma-

Normal (Combined model)

Poisson-Normal

Exact

GVA

Effect Parameter  Estimate(s.e.) Estimate(s.e.)
Intercept Placebo Boo 0.8179(0.1677) 0.8179(0.1675)
Slope Placebo Bo1 -0.0143(0.0044) -0.0143(0.0044)
Difference in Intercept 510 — Boo  -0.1703(0.2387) -0.1704(0.2385)
Difference in Slope B11 — Por 0.0023(0.0062) 0.0023(0.0062)
Variance of RE d 1.1568(0.1844) 1.1543(0.1839)
-2 Loglikelihood -6810 -6808.87
Duration 11 sec. 4 sec.
Poisson Gamma Normal (Combined)
Exact GVA

Effect Parameter  Estimate(s.e.) Estimate(s.e.)
Intercept Placebo Boo -2.9862(0.1965) -2.9856(0.1759)
Slope Placebo Bo1 -0.0248(0.0077) -0.0248(0.0077)
Difference in Intercept 510 — Boo  -0.2557(0.2500) -0.2556(0.2498)
Difference in Slope B11 — Por 0.0130(0.0107) 0.0130(0.0107)
Var.of RE d 1.1290(0.1850) 1.1274(0,1847)
OD par. e’ 2.4640(0.2113) 2.4625(0.0324)
-2 Loglikelihood -7664 -7664.17
Duration 60 sec. 50 sec.

el ) = (s + ) [ log(1+5eTHE (b

N 1, N1
5 log(d) =) ﬁ(ui A+ 3 log(A;).
=1 i=1

6.2 lllustration on Epilepsy data

Both the Poisson-Normal and Poisson-Gamma-Normal areeapfu the epilepsy data.
The model for Poisson-Gamma-Normal is given by:

if placebo
if treated

) (Boo + bi) + Porti;
log(Aij) = { (Bio + b;) + 5117%‘]]‘

The result for Poisson-Normal and Poisson-Gamma-Normgivean in Table 3. For
Poisson-Normal it was fast and accurate and for Poissonr@zaMormal which still re-
quire numerical approximation to the resulted GVA, it wasodlast and fairly accurate.
Although the approximation using both methods was fastramation using GVA was
faster and the gain in computational time is seen in the Jimfaat data which is presented
in Table 5.

7. GVA for Logistic Models

7.1 Logistic-Normal and L ogistic-beta-Normal Models

For Logistic model, we have:

Yi; ~ bernoulli(;;)
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- ’ .
1— 7 = eXp(«’BZ]E + bi)
b; ~ Normal0,d)
)

Applying GVA results in the lower bound€, d, 11, A). Unlike Poisson-Normal and Weibull-
Normal, the GVA likelihood has still non-tractable liketibd.

N n;

g dp ) = > Y [yw ;€ + i) /log (1 + @€+ g (by)db,

i=1j=1
N

N 1
=5 log(d) = > o= (i + Ai) +Z—10g i)
=1 i=1

Considering an extended model of (9),a model combined wétla blistribution/random
effect:
Yij ~ binary(m;)
B exp(z;;€ + b;)
Y1+ exp(a];€ + by)
Hz‘j ~ Beta(a,ﬂ)

The lower bound is given by:

N n;

Ie,da, B, A) = S {y] log(a) — log(a + ) — / log(1 + €& q(b,)db; +

i=1j=1
yzy( ZJE + Mz) + (1 - yzy /log o+ /3 + 661: ngrbi)Q(bi)dbi

N N1
— —log(d Z—,uZ—I—A +Z—log i)
2 z:12d =1

For identifiability problem, we fixx/5 = ¢. The lower bound is then given by:

N n;

(& dyc,p, A ZZ{ log(1 +¢) — /1og (14 &+ )q(by)db; +

i=1j=1

yz]( 135 + Nz) + (1 —Yij /log 1 +c+ Cew j£+bi)Q(bi)dbi

=z

N 1
— S log(d) = 3 = (4 + A §:—1 Ay).
5 log(d 25 pi+ z)+i:12 og(A;)

We see that the GVA for Weibull-Gamma-Normal, Poisson-GarNormal and Logistic
models, have similar algebraic form which still needs nuocatapproximation.
7.2 lllustration on EG data
We applied to the EG data. The model is given by:
Logit(yij = 1) = BoCij + P1Lij + BoMiji + B3 Hyji + bi,

The result is presented in Table 4. The performance of the &tms of the accuracy
of the parameter estimate as well as the standard errorddrdabistic models was slightly
lower as compared to the Weibull and Poisson Models.
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Table 4. Exact and GVA estimation for Logistic-Normal and LogisBeta-Normal (Com-
bined model)

Logistic-Normal

Exact GVA
Effect Parameter Estimate(s.e.) Estimate(s.e.)
Control Bo -6.2344(0.8860) -6.1592(0.8543)
Low 51 -3.8615(0.5420) -3.8011(0.5190)
Medium B2 — Poo -1.7370(0.4332) -1.6984(0.4121)
High B3 — Po1 1.5695(0.4693) 1.5274(0.4466)
Var. of RE d 3.9988(1.0977) 3.5808(0.9360)
Duration 18 sec. 6 sec.

Logistic-Beta-Normal

Exact GVA
Effect Parameter Estimate(s.e.) Estimate(s.e.)
Control Bo -6.2344(0.8860) -6.1592(0.8543)
Low 51 -3.8615(0.5420) -3.8011(0.5190)
Medium B2 — Poo -1.7370(0.4332) -1.6984(0.4121)
High B3 — Po1 1.5695(0.4693) 1.5274(0.4466)
Var. of RE d 1.3860(0.2745) 1.2756(0.2614)
OD par. B/ 1.2957E-07(0.00011) 2.6822E-09(0.00001)
Duration 35 sec. 40 sec.

8. Discussion and Conclusion

Generalized mixed models often involve intractable irdégr Different approximating
techniques exist which can be broadly categorized as appating the integrand, the data
or the integral itself. Gaussian variational approximatapproximate the integrand by
introducing a set of variational densities (to the postedensities) in such a way that
their evaluation is tractable. It is applicable for both ésign and likelihood. In this
paper, we focus on the likelihood frame work by approxintatihe posterior density of
the normal random effect (by a set of normal densities). Wesicered three families of
GLMM models; 1) The Weibull models: Weibull-Normal, Weibdlormal-Normal and
Weibull-Gamma-Normal; 2) Poisson models: Poisson-NoyrRaisson-Normal-Normal
and Poisson-Gamma-Normal; 3) Logistic models.

The GVA approximation was applied to the comet data for Weilmodels, epilepsy
data for Poisson models and EG data for Logistic model. Ed@nusing adaptive nu-
merical gaussian approximation in SAS Proc-nImixed wasriaks exact/golden standard
estimate (named as exact estimate). For Weibull-NormalRaisison-Normal, estimation
using GVA was faster and very accurate (in contrast with teeeestimate). For models
with higher hierarchical random effect (Weibull-Normabi#thal), normally standard soft-
ware SAS Proc-nimixed does not accommodate , it is only plessgiith the use of some
modeling trick for cases of small number of sub-clustersplging to the comet data, we
were having problem in convergence. Thus we were forced abwig¢h the reduced data
yet it was taking very long time to converge. Estimating gsBVVA was much faster and
fairly accurate. Considering Overdispersed hierarchivadlels (Weibull-Gamma-Normal,
Poisson-Gamma-Normal and logistic models), applying G@praximation still requires
numerical approximation. It was also fast and fairly actaifar the parameters of interest.

In general, it can be a good approximation technique edhegviien the numerical
approximation using standard software fails/very resteag either take long time, problem
in convergency or when it doesn't allow to accommodate sutlrés. For instance when
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Table 5: Overview of computational efficiency, duration for corgence

Models Datasets Exact GVA

Weibull Normal Comet 70 sec. 7 sec.
Weibull Gamma Normal Comet 1 min. 35 sec.
Poisson Normal Epilesy 11 sec. 4 sec.
Poisson Gamma Normal Epilepsy 1 min. 50 sec.
Poisson Normal Jimma 45min. 3 min.
Poisson Gamma Normal Jimma 4 hr.and 40 min. 5 min.
Logistic Normal EG 18 sec. 6 sec.
Logistic Normal EG 35 sec. 40 sec.

we have more than two hierarchical levels where and when we hegher dimension
of random effect. Table 5 gives overview of the computatiaificiency in terms of the
duration to convergence.
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