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Abstract

In many applications time series are sequences of connected, distinct segments which are gen-
erated by their own individual mechanisms. To analyze such series it is necessary to split them into
these segments. If time series is generated by stochastic mechanisms, then the segmentation prob-
lem can be reduced to the classical change-point detection problem. However it is not the case for
deterministic or mixed mechanisms. A new approach to this problem based on the novel concept
of the complexity of a continuous function is proposed. The complexity of a continuous function
is defined as the fraction of the function values necessary to recover the original function via a cer-
tain fixed family of approximation methods without exceeding a given error. It is shown that the
dependence of the complexity of a function on the reconstruction error can be well approximated in
logarithmic coordinates by an affine function. Its parameters, calculated dynamically, are then used
as diagnostic sequences to find the change-points of the original time series. The effectiveness of
this procedure is verified in the case of several simulated time series and this approach is applied to
the EEG data.
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Introduction

In many applications we deal with non-homogeneous time series. We call a time series
non-homogeneous if it is a sequence of connected distinct segments, which are generated
by their own individual mechanisms. The generating mechanism can be stochastic as well
as deterministic. A sample path of the non-stationary random process is a time series
generated by a stochastic mechanism. An example of the non-homogeneous deterministic
time series is a trajectory of a non-linear dynamical system with varying coefficients.

To model such time series it is necessary to split them into certain homogeneous seg-
ments. For stochastic non-stationary time series the classical change-point detection algo-
rithms can achieve this segmentation.

Over the past 50 years the change-point detection problem of stochastic data spawned
a large mathematical statistics literature (see, e.g., reviews[1]). At the end of the 70’s
Darkhovsky(see[2]) suggested that the detection of changes in any probabilistic charac-
teristics of a random process (field) can be reduced to detection of changes in the mean
of some new random sequence (called the diagnostic sequence) formed from the original
data.

However, in practice, time series are not always stochastic. Moreover, use of proba-
bilistic tools in analysis of time series is often justified by the fact that the true phenomena
underlying generation of the data are unknown. Such is the case of the EEG recordings, and
the financial time series, where there are no generally accepted phenomenological models.

Even in the case when data are indeed generated by probabilistic mechanisms, there are
significant difficulties in the implementation of the segmentation procedures. In particular,
if the probabilistic characteristics responsible for the change of the generating mechanism
are unknown a priori, then, in principle, we have to go through all the (generally infinite) set
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of such characteristics to construct the diagnostic sequence. That, of course, significantly
complicates the analysis.

To address this problem we pose the following question: could we find an ”inner”
characteristic of the time series which, on the one hand, would permit segmentation of the
data, and on the other hand, would not depend on the type of the mechanism (probabilistic
or not) that generates the data? We believe that the concept of the complexity provides an
answer to the above question.

In this paper we assume that our data are values of continuous vector-valued functions
defined on a compact region in the Euclidean space. The complexity of a continuous func-
tion will be the measure used for segmentation purposes.

The idea of the quantitative estimation of the complexity of a continuous function was
first proposed by Darkhovsky in [3]. It was then pre-tested successfully on the human EEG
data [3]. In this paper we suggest an effective characterization of complexity of a continu-
ous function given on a unite cube in a finite dimensional space. In particular, we show that
for Hölder class functions the dependence of the function complexity on the reconstruction
error can be well approximated in logarithmic coordinates by an affine function. In other
words, complexity of the Hölder class of functions can be characterized by a pair of real
numbers. Based on this result we can formulate our main conjecture: complexity of an indi-
vidual function from the Hólder class can be characterized by two numbers. We call these
numbers the complexity coefficients. The above conjecture is supported in this paper by a
series of simulations. This simple characterization of the complexity of an individual func-
tion from the Hölder class allows us to develop a methodology for segmentation of time
series regardless the generating mechanism. We also conduct new change-point detection
experiments for real EEG data using the dynamically calculated complexity parameters as
the diagnostic sequences.

The paper is organized as follows. In Section 1 we give a brief review of the known
approaches to define complexity. In Section 2 we define the complexity of an individual
continuous function as well as the complexity of the functional class on a unit cube in the
Euclidean space and give its characterization. In Section 3 we present our main conjecture
and verify it on a series of simulations. In Section 4 we use simulations to verify effec-
tiveness of our approach to detection of the change-points and, in particular, we use our
segmentation procedure to identify sleep stages of neonates employing EEG records.

1. Complexity of an object - a brief review

The concept of the ”complexity” of an object is one of the fundamental scientific paradigms.
Numerous attempts have been made to apply it in practice. Let us briefly recall the basic
ideas associated with it.

One of the first efforts to provide a quantitative approach to the concept of the ”com-
plexity of a physical system” was made in the 1870s by Boltzmann, a physicist who intro-
duced the notion of the entropy in equilibrium statistical physics. Here the entropy Hf is
defined via the formula

Hf = lim
p→∞

logN(p)

p
,

where p is the number of degrees of freedom, and N(p) is the number of different system
configurations that have certain properties. The greater the entropy, the more ”complicated”
the system is.

In the 1940s Shannon developed the concept of entropy to measure the uncertainty
of a discrete random variable. The Shannon entropy Hs is defined as follows. Consider
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a sequences of n i.i.d. random variables with a finite number of values x1, . . . , xr, and
corresponding probabilities p1, . . . , pr. Then

Hs = −
r∑

i=1

p(xi) ln p(xi).

Again, we can say that more complex probability distributions have greater entropy.
From this point of view, the most ”complex” distribution is the uniform distribution as it
generates the greatest uncertainty.

In the 1950s Kolmogorov and Sinai (see, e. g., [5]) introduced the entropy concept to
the theory of dynamical systems. In fact, their definition was a generalization of Shannon’s
entropy. The entropy of a dynamical system is the coefficient of the asymptotic behavior of
the logarithm of the number of different types of trajectories of a dynamical system when
the time goes to infinity. Again, the entropy of a dynamical system may serve as a measure
of ”complexity”: the more ”complex” the system the richer the variety of its trajectories.

The main assumption of nonlinear dynamics (that is, the theory of dynamical systems,
including deterministic chaos theory) and, consequently, the basis for the application of the
concept of entropy to a dynamical system, is the assumption that the studied dynamical
system is stationary (i.e., it does not change its properties over time). Any violation of this
assumption makes the above approach inappropriate, but non-stationarity is, perhaps, the
main feature of the data generated by different mechanisms.

Note, that even for the stationary case the problem of a reconstruction of the full de-
scription of the dynamical system from its observed trajectory is very complicated and there
is no perfect solution to it (see, for example[6]).Thus, our conclusion is that the concept of
entropy of a dynamical system is not an appropriate tool for a study of non-stationary se-
quences.

At the beginning of the 1980s, Kolmogorov ([7]) suggested an algorithmic approach
to the notion of ”complexity” of an object. The main idea of his approach is as follows:
A ”complex” object requires a lot of information for its reconstruction and, for ”simple”
objects, little information is needed. He formalized this idea in the language of the theory
of algorithmic complexity. Roughly speaking, algorithmic complexity measures the length
of the program leading to the selection of the object from a set of objects. This idea is
the closest one to our approach to the complexity of a continuous function defined on a
compact set in a finite dimensional space.

2. Definition of function complexity and its characterization

2.1 Continuous variable

2.1.1 Complexity of an individual function

In this section, without loss of generality, we assume that a continuous vector-valued func-
tion is defined on the unit cube I in the space Rk . Here, we will define complexity as a
functional of a vector-valued function. Since we consider only vector-valued functions with
a finite number of components, it is sufficient to restrict our attention to a scalar continuous
function x(t), t ∈ I. On the set of such functions we introduce the norm ∥ · ∥. To be able
to compare the complexity of different functions, it is reasonable to assume that ∥x(t)∥=1,
i.e., to consider x(t)/∥x(t)∥ instead of x(t).

Let Zh be a k-dimensional grid with spacing h and Ih = I ∩ Zh. Assume that we only
know the values of x(t) at the points of the set Ih. With what precision can we reconstruct
the function x(t) utilizing only this information?
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Suppose we are given a set F of approximation methods. Using this set of methods we
recover missing function values using its values at Ih. Consider the approximation error

δ(h) = inf
F

∥x(t)− x̂(t)∥,

where x̂(t) is the approximation of the function constructed by one of the allowable meth-
ods of approximation. The infimum is taken over the whole set of allowable methods of
approximation.

We now construct the graph of the error function δ(h), increasing the value of h (i.e.,
reducing the amount of available data). It is clear that the function δ(h) must increase
monotonically, because the increase of the grid spacing means that we discard more and
more function values. Hence, its approximation becomes worse and worse assuming that
the set of approximation methods is fixed. Therefore, the error function δ(h) is a monotone
nondecreasing positive function of its argument. If we fix a certain ”acceptable” (user-
specified) level of approximation error, then we can determine the fraction of the function
values that could be discarded to reconstruct the original function via a certain fixed family
of approximation methods without exceeding a given error.

Note that the error of approximation should be related to the norm of the function, but
since we assume that the function is pre-normalized , δ(h) is actually the relative error.

Let

h∗(ϵ) =

{
inf{h ≤ 1 : δ(h) > ϵ}, if {h : δ(h) > ϵ} ̸= ∅
1 if the set is empty (1)

Thus the value h∗(ϵ) is the minimum grid spacing for which the error of the function
reconstruction from its values on the grid exceeds a given ϵ.

The value (h∗(ϵ))k is the fraction (in relation to the volume of the unit cube) of the
discarded function values.

It is clear that the value (1/h∗(ϵ))k estimates the number of points in the set Ih∗(ϵ). So,
it is natural to use 1

h∗(ϵ) as a measure of the function complexity.

Definition 1. The number

S(ϵ,F , ∥ · ∥) def
= S(ϵ) = log

1

h∗(ϵ)

is called the (ϵ,F , ∥·∥)-complexity of an individual function x(t) (or, briefly, the ϵ-complexity).

Thus, the complexity of a continuous function is the logarithmic fraction of the function
values necessary to be retained to recover the original function via a certain fixed family of
approximation methods with relative error not exceeding ϵ.

We will use this argument to analyze functions defined by their values at a discrete set
of points.

It is natural to assume that F contains a method of approximation utilizing affine func-
tions on Rk. It is easy to see that if x(t) is an affine function then for its error-free recovery
it is sufficient to use (k + 1) of its values. But ♯(Ih) ≥ (k + 1), for any 0 < h ≤ 1. There-
fore, according to (1), for an affine function, h∗(0) = 1, and therefore, the complexity S(0)
of any affine function is equal zero, which is intuitively clear.

It should be noted that the proposed complexity measure is an individual characteristics
of a particular function, rather than of a set of functions generated by the same mechanism;
the latter situation arises when one considers the entropy of a dynamical system.

Furthermore, this measure is not related to possible mechanisms of function generation
(so, for example, it does not depend on whether the function is a sample path of a random
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field/process or a trajectory of a dynamical system). In general, the proposed measure is
constructed with the view towards its practical usefulness, i.e., it is explicitly constructed
to make it easy to work with the discrete information about the function.

2.1.2 Complexity of a functional class

Let
ωx(h, θ) = max

(t,s)∈I,∥t−s∥≤h
|x(t)− x(s)|

be the modulus of continuity of the function x(t). Here, θ denotes a vector of parameters.
For example, functions from the Hölder class, with ω(h, θ) = L · hp, have the vector
parameter θ = (L, p).

Let us consider a class of functions Xω with a fixed, up to the parameter θ, modulus of
continuity ω(h) (in what follows we will omit the subscript θ) and investigate the question
of its ϵ-complexity Scl(ϵ).

In accordance with the general idea of the previous section we define the complexity
Scl as follows:

Definition 2.
Scl(ϵ) = log

(
1/h(ϵ)

)
, (2)

where h(ϵ) is the grid spacing such that the maximum (over all functions in the class) error
of the function recovery from its values on the grid with this spacing is equal ϵ in the case
of the best reconstruction.

Thus, to estimate Scl we have to find the minimax error of the function recovery from
the given class using its values on the grid with spacing h.

Theorem 1. Let the error ϵ of function recovery be measured in the standard norm of
the space of continuous functions C. Then, for functions in the class Xω, the following
relationship holds:

Scl(ϵ) = log

√
k

2ω−1(ϵ)
(3)

Proof. To prove the theorem, it is sufficient to find a maximal (over the class Xω) recovery
error for one cell of the grid in the unite cube. Let t0 = (t1, . . . , tk) and let ei, i = 1, . . . ,m
be k-dimensional vectors, whose components are equal to zero or one (here, m = 2k and
e1 = (0, 0, . . . , 0), . . . , em = (1, 1, . . . , 1)). Consider values of the function from this class

in a single cell of such grid, i.e., consider the set A0
t
def
= {x(ti)}mi=1, ti = t0 + hei, t0 ∈ Ih.

We pose the problem of estimating the value of the function from our class at an arbitrary
point τ inside the cell. In other words, In other words, we consider the problem of finding

inf
u∈R

sup |x(τ)− u| (4)

where the supremum is taken over all values of x(τ) ∈ Xω and over all admissible (in the
class Xω) values {x(ti)}. Let uopt be a solution of the problem (4).

Denote ∥τ − ti∥ = ri, ı = 1, . . . ,m. Then the set of all possible values of x(τ)
with the fixed set {x(ti)} is a segment that is formed by the intersection of the segments
[x(ti)−ω(ri), x(t

i)+ω(ri)], i = 1, . . . ,m, and the optimal solution for the problem (4)
under the same conditions (i.e., the minimax estimate of the function values at τ with the
fixed set {x(ti)}) is the midpoint of this segment.
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Taking into account the symmetry we find that the maximum (over the class Xω and the

set {x(ti)}) estimation error of x(τ) is equal to φ(τ)
def
= min1≤i≤m ω(∥τ − ti∥) ( unless

x(ti) = 0, , i = 1, . . . ,m; in that case in the problem (4), uopt = 0).
Due to the finite number of the grid cells, the maximum (over the class Xω) error

δcl(h) of the function’s approximation over the set I, in the case of the best reconstruction,
is equivalent to the error in one cell in a particular functional norm. Let τ∗ be the center of
the cell Ih. Then, we can obtain δcl(h) = φ(τ∗) = ω(

√
kh/2).

The following Corollary is an immediate consequence of Theorem 1.

Corollary 2. For the Hölder class functions, the complexity can be expressed as follows;

Scl(ϵ) = A+B log ϵ. (5)

In the case of a sufficiently rich set F , the complexity of an individual function x(t) ∈
Xω satisfies the inequality 0 ≤ Sx(ϵ) ≤ Scl(ϵ). This suggests that the complexity of an
individual function from the Hölder class satisfies (5) for some values of the coefficients A
and B.

2.2 Discrete variable

In the majority of applications, we have to deal with functions given by their values at a
discrete set of points (i.e., a finite sample). We still assume that they are the values of a
continuous function on the grid in the unite cube in a k-dimensional space. Let us discuss
how the definition of complexity has to be adjusted to this situation.

Let Nk be the number of values of a continuous function x(t) on the k-dimensional
grid in the unit cube. We discard a fraction [(1− α)Nk] , 0 < α < 1, of the given values (
[a] denotes the integer part of a) and reconstruct the function in the discarded points using
the set of approximation methods F and the values at remaining [αNk] points (since we
work in a finite-dimensional space, the choice of the approximation norm does not matter).
Let us consider the quantity h∗(ϵ) introduced in (1). If a k-dimensional unit cube has Nk

values of a continuous function, then the k-dimensional cube with side h∗(ϵ) has [h∗(ϵ)N ]k

values, i.e., the initial set of Nk values of the function is replaced by [Nk/[h∗(ϵ)N ]k]
values. In other words, the number of values, sufficient for the function reconstruction with
the relative error not exceeding ϵ is equal to n∗ = Nk/[h∗(ϵ)N ]k.

Therefore, in analogy with the case of the continuous variable, we can formulate the
following

Definition 3. The value

SN(ϵ) = log
Nk

[h∗(ϵ)N ]k
(6)

is called the ϵ-complexity of an individual function x(t), given by the set of its discrete
values.

From (6), it follows that the limN→∞ SN exists and we denote it S(ϵ). But the growth
of N means the growth in the sampling frequency if the domain of the function is fixed.
Therefore, in the case of a sufficiently high sampling frequency of the function, the com-
plexity of the sample calculated over the discrete set of values approaches the true com-
plexity.

Of course, the question arises what should be the sampling frequency to make this
difference sufficiently small, but in the case of data obtained with the same sampling fre-
quency, this question is not essential. In any case, we must bear in mind that the comparison

Section on Statistical Computing – JSM 2012

2464



of functions in the case of a discrete set of values can be performed only when the sampling
frequency is the same.

In view of the above comments, for the Hölder class functions (compare with (5)) we
have the following equality:

SN(ϵ) = A+ B log ϵ (7)

3. Algorithmic procedure to estimate complexity

3.1 The Main Conjecture

Suppose we are given an array of size N of the values of a function. Let us choose a
number 0 < S < 1, and discard from the array [(1 − S)N ] values. In the next step we
use the remaining [SN ] values to approximate the values of the function for all discarded
points using a collection F of approximation methods, and find the best approximation (the
approximation with the smallest error).

Two factors have to be taken into account. First, the remaining points should be dis-
tributed relatively uniformly. Second, since the error of the approximation depends on the
location of the remaining points, for the sake of the stability of the method it is expedient,
for a given percentage of removed points, to choose different selection schemes and aver-
age the corresponding minimal approximation errors over them. This allows us to smooth
out the unavoidable random errors in the calculations.

Thus, for given values of S we determine the value of minimal error ϵ of the function
recovery. It is obvious that, for any S > 0, the error of the function recovery tends to zero,
as N → ∞. On the other hand, if the sample size N is too small, then estimation of the
recovery error is affected by the calculation errors even for large values of S.

For this reason, and based on the previous discussion (see (5),(7)), we can state the
following main conjecture.

Conjecture 1. Let x(t) be a function from the Hölder class given by its discrete values. We
can chose the range of the data sizes so that within this range there exists an interval [α, β],
0 < α ≤ S ≤ β < 1 such that for all S within this interval the following relationship holds:

log ϵ = A+ B log S (8)

In what follows we call the parameters (A,B) complexity coefficients. Below we
present the algorithm of the complexity coefficients estimation and results of the simu-
lations.

3.2 Estimation procedure and simulations to verify conjecture

To verify the affine relationship (8) in the conjecture (1) we perform a series of the ex-
periments(simulations) using finite samples from deterministic continuous functions and
simulated stochastic processes.

For each case the experiment is conducted according to the following algorithm:

1. Select S, the fraction of the remaining points as follows: S1 = 50%, S2 = 33%,
S3 = 29%, S4 = 25%, S5 = 22%.

2. Discard the values of the functions at points which are placed uniformly, or almost
uniformly according to the following algorithm:.

Let x1, x2,x3, . . . , xn be the values of a function on a grid.
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(a) S1 = 50%: Values of x2, x4, . . . , x2i, . . . ; or x1, x3, . . . , x2i+1, . . . ; are dis-
carded. Notice we have two different ways to discard function values;

(b) S2 = 33% :Values of x1, x4, x7, x10, . . . ; or x2, x5, x8, x11, . . . ; or x3, x6, x9, x12, . . . ;
are discarded. We have three different placements of discarded values;

(c) S4 = 25% : Values of x1, x5, x9, x13, x17, . . . ; or x2, x6, x10, x14, x18, . . . ; or
x3, x7, x11, x15, x19, . . . ; or x4, x8, x12, x16, x20, . . . ; are discarded. We have
4 different placements of discarded values;

(d) The procedures are similar in the case S3 = 29%, and S5 = 22%.

3. For each Si, and a fixed placement of the discarded points we reconstruct function
values at the discarded points using the polynomial (up to the 5-th degree) approxi-
mation, and find the error of approximation for each degree of the polynomial.

4. Choose the method of function reconstruction which gives the smallest error.

5. Consider all possible placements of discard points and find the best reconstruction in
each case.

6. Find the mean reconstruction error over all placements. It is our estimation of ϵi in
the case of Si. Repeat the procedure for i = 1, . . . , 5.

7. Consider points (log(Si), log(ϵi)), and find the best linear fit log ϵ = A + B log S
using least square method.

The estimated values of A , and B are our estimates for the complexity coefficients.
Figures 1, and 2, present results of such simulations for a number of functions and

stochastic time series. In all figures the circles correspond to the points (log(Si), log(ϵi)),
and the line is the linear regression line. Also, we provide the relative error of the deviation
of the log(ϵi) from the regression line.

Notice that in our experiments we consider finite samples from continuous functions
and, therefore, due to the conjecture 1 we have to choose the right sample frequency and
sample size to get the affine dependence between (log(Si) and log(ϵi)). The sample size
used in each simulation is indicated in each plot title. The grid spacing of the function
argument is one unit (of time).

Below we are presenting some examples of our simulations.

1. Continuous functions. Figure 1 (top) shows the result of an experiment for the func-
tion x = sin(0.1t) + 2 cos(0.2t). We can see that the relative error is 0.15% and the
data points line up very closely to the straight line.

2. Continuous function with added noise.

(a) Figure 1 (middle) shows the results of simulations for the function x(t) =
sin(0.01t + 0.01e(t)). Here, e(t) are i.i.d. random variables with N (0, 1)
(normal with mean zero and variance one) distribution. The selected sample
size is 90 points and the relative error is 0.2%.

(b) Figure 1 (bottom) shows results of simulations for x(t) = G(t) sin((0.01 +
0.0001e(t))t), G(t) = 1/(1 + exp(−t)). The corresponding relative error is
0.2%.

3. Continuous functions, solutions of non-linear differential equations.
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Figure 1: Examples of the verification of the linear relationship 8 for the continuous func-
tions, and functions with added noise

(a) We consider a function x(t) which is a solution of the non-linear differential
equation

x′′ + 0.1x′ − x+ µx3 = 2 cos t, (9)

where 2.5 ≤ µ ≤ 4. In the case µ > 4.3, bifurcations can be observed. Figure
2 (top and middle) shows the results for the solutions of the equation 9 with
parameters µ = 3.5, and µ = 9, respectively.

(b) We consider a Bessel function of the second kind which is a solution of the
equation

tx′′ + tx′ + (t− ν)x = 0.

Figure 2 (bottom) shows the results of our experiment for the Bessel function
of the second kind with ν = 9.

In all cases we observe a good fit of (log(Si), log(ϵi)) by a linear function.

4. Sample paths of random processes such as ARMA, ARIMA and FARIMA [8]

(a) Figure 3 (top) shows results of an experiment for the simulated ARMA(p,q)
process. with parameters φ = (0.2, 0.3, 0.5) and θ = (0.1,−0.3, 0.5)

(b) Figure 3 (middle) corresponds to the results of simulations of the ARIMA(p,d,
q) process with parameters φ = (0.1, 0.4, 0.7, 0.2), θ = 0.01 and d = 1.

(c) Figure 3 (bottom) corresponds to the results of simulations of the FARIMA(p,d,q)
process, with parameters φ = (0.10.4), θ = (0.01, 0.2), d = 0.3.

The corresponding sample sizes are 100, 100, 90, and the corresponding relative
errors are 0.04, 0.04, 0.12.

The results of our simulations are consistent with conjecture 1; the affine relationship
(8) holds true.

3.3 Application of function complexity to the segmentation problem

For the sake of simplicity, we restrict ourselves to functions of a scalar argument (the argu-
ment of such function can be treated as time). Transition to the multidimensional case does
not cause fundamental difficulties.

If the interval of observations is large enough then it can be assumed that the time
series is generated by different mechanisms (stochastic as well as deterministic) in different
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Figure 2: Examples of the verification of the linear relationship 8 for the continuous func-
tions, solutions non-linear differential equations
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Figure 3: Examples of the verification of the linear relationship 8 for the processes ARMA
(top), ARIMA(middle), FARIMA (bottom)
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Figure 4: Simulation Results, Change point detection, sin with the added noise in the phase
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Figure 5: Simulation Results, Change point detection, Solutions of the non-linear equation

subintervals. For example, this is the case in the analysis of long EEG recordings, or long
(days, weeks, months) financial time series.

In these cases we can estimate complexity parameters dynamically using a sliding win-
dow, or split the record into disjoint segments. Then the sequences (A(t),B(t)) (see (8)),
t = 1, 2, . . . ,m (here m is the number of sliding windows or segments), can be used as
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diagnostic sequences for the change-point detection algorithm. Since such a diagnostic
procedure does not relate to the mechanism of data generation it creates possibilities to
devise novel segmentation schemes.

To detect change-points in diagnostic sequences in our experiments we use the non-
parametric method described in [2]. This methodology is based upon two main ideas. The
first idea relies on the observation that detection of changes in any probabilistic character-
istic can be reduced (with an arbitrary degree of accuracy) to detection of changes in the
mean value of some new, diagnostic sequence constructed from the original one.

The second idea of the non-parametric approach employs the following family of statis-
tics for detection of change-points in the mean

YN (n, δ) =
[(

1− n

N

) n

N

]δ [ 1

n

n∑
k=1

xN
k − 1

N − n

N∑
k=n+1

xN
k

]
, (10)

where 0 ≤ δ ≤ 1, 1 ≤ n ≤ N −1, XN :=
{
xNk

}N

k=1
, is a diagnostic sequence (see details

in [2]).

3.4 Simulations to detect change-points

Here we perform simulations to verify effectiveness of above approach to detect change-
points in non-homogeneous time series.

In each experiment we simulate four time series from the same type of processes but
with different parameters and concatenate them. The length of each component is 8000
with the total length of the simulated process being 32000. Then we separate each process
into segments of the length 200. We obtain 160 segments and estimate the complexity
coefficients A(t) and B(t), t = 1, . . . , 160. They form our new time series, our diagnostic
sequences, for which we detect the change-points. Notice that the points 40, 80, 120 of the
diagnostic sequence corresponds to the change-points of the original process. We applied
the non-parametric change-point detection procedure for these two sequences, A(t) and
B(t), and find the change-points. Then we plot the diagnostic sequences and means of the
diagnostic sequences within the intervals where the processes is homogeneous.

Examples of our simulations are presented below.

1. Figure 4 shows the results for the process x(t) = sin(Gjt + 0.0001e(t))), where
G1 = 0.05, G2 = 0.1, G3 = 0.04, G4 = 0.08, and e(t) are i.i.d. random variables
from N (0, 1). In this case both diagnostic sequences perfectly detect the change
points. Left figure corresponds to the coefficient A(t), right, to B(t).

2. Figure 5. Here we find solutions xi(t), i = 1, 2, 3, 4 of the non-linear differential
equation (9) with the corresponding parameters µ1 = 4, µ2 = 2.6, µ3 = 4.5, µ = 9.
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Figure 7: Example of the box-plots for the estimated complexity coefficients (A(t),B(t))
for fullterm neonate, characteristics A(left) and B (right) in active and quiet sleep stages

The diagnostic sequence B(t) perfectly detects the change-points, but we are unable
to distinguish automatically between cases µ3 = 4.5 and µ = 9 using the diagnostic
sequence A(t).

3. Figure 4 corresponds to the case of ARMA(3,2) processes with the following param-
eters ϕ1 = (−0.1, 0.3, 0.1), θ1 = (0.2, 0.1); ϕ2 = (0.5,−0.7, 0.9, θ2 = (0.5, 0.6);
ϕ3 = (0.4, 0.3, 0.4, θ3 = (0.1,−0.5); ϕ4 = (−0.2,−0.3,−0.8), θ4 = (0.2, 0.1).
We observe that both complexity coefficients allow us to detect change points.

3.5 Applications to the EEG data

As an example of EEG data we use data from the EEG sleep study of neonates. The goal of
that study is to identify sleep stages of neonates. We consider two main sleep stages, active
and quiet. The records for 20 fullterm, and 16 preterm, healthy neonates at the 40-week
post-conceptional age are available. Most of the fullterm neonate recordings were made on
the 3rd day after the baby was born; preterm neonate recordings were obtained at the same
post-conceptional age. Each recording collected signals on 14 EEG channels at a sampling
rate of 64Hz. Minute by minute manual scoring of the sleep stages by a clinician (Dr. M.
Scher of the Case Medical School at Case Western Reserve University) is also available.
The portions of the signals corresponding to the awake state and those caused by artifacts
(such as rapid physical movements) were removed from our data prior to analysis.

In this paper we are going to illustrate our methodology of sleep stage separation using
just the single channel 11:C4− Cz. A full analysis of the neonate sleep EEG data will be
published elsewhere.

Description of the algorithm and results. Our analysis proceeds in the following
three steps: In the First Step the signal for each of the 36 neonates in our study is divided
into 30-second segments, and the coefficients (A(t),B(t)) are estimated for each segment
thus providing us with what we call diagnostic sequences.

Figure 7 shows an example of the box-plots for the estimated coefficients (A(t),B(t))
for the 30 sec segments of active and quiet sleep stages correspondingly for a fullterm
neonate. We can see that the complexity coefficients can be used to separate sleep stages
utilizing the mean. Notice the existence of some outliers.

In the Second Step, the change-point detection algorithm is used to find the change-
points in the means of the above two parameters for each neonate.

We use the sequences (A(t);B(t))(see (8)), t = 1, 2, . . . as the diagnostic sequences
and the non-parametric change point detection algorithm is applied to each of them. Then
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Figure 8: Example of the agreement percentage of the automated and manual scores for
fullterm neonate(top) and preterm neonate (bottom).
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Figure 9: Agreement percentage by neonates, fullterm (top), preterm (bottom)

the original diagnostic sequence is replaced by its local means over the interval where the
mean remains constant. We call the latter the denoised diagnostic sequences.

In the Third Step, the sleep stage separation operation is carried out. We apply the
k-mean cluster analysis, with 2 clusters for 2-dimensional denoised diagnostic sequences
for each neonate (for details see [9, 10]). We assign the clusters to the active and quiet sleep
stages depending on whether mean(A(tactive)) < mean(A(tquiet)), or mean(B(tactive)) <
mean(B(tquiet)). Then the results are compared with the manual scores by a clinician. Fig-
ure 8 shows degree of the agreement of the automated and manual scores for the fullterm
(left) and preterm (right) neonates.

Figure 9 shows the performance (agreement percentage (AP)) of our automated sleep
stage separation algorithm using just one channel for all individuals involved in our study.
We observe that the mean agrement percentage (MAP) is 82.4% (standard deviation (sd) is
13.5%) for fullterm neonates, and 86.5% (sd=14.5%) for preterm neonates.The median AP
is 83.9% for fullterm and 92.2% for preterm neonates. We observe that 9 out of 20 fullterm
neonates and 12 out of 16 preterm neonates have AP > 85%. Notice that the average AP
between manual scores provided by different experienced physicians is 85 % ([11]).

4. Conclusions

In this paper we proposed a formal definition of the complexity of a continuous function
defined on the unite cube in a finite-dimensional space. This definition is consistent with the
idea of Kolmogorov complexity of objects and agrees with intuition. Roughly speaking,
the complexity of a continuous function can be estimated by the fraction of the function
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values which is required to reconstruct the function with a given accuracy and with a given
set of approximation methods.

We show that the complexity has an effective characterization, due to the detected affine
dependance. Function complexity can be characterized by a pair of real numbers, com-
plexity coefficients. It enables us to develop a novel approach to the important problem of
segmentation of time series. If the time series is generated by different mechanisms (either
probabilistic, or deterministic) in different time intervals, then we can detect change-points
using only the ”internal” characteristics of the function (i.e., the complexity), independently
of the actual mechanisms of data generation.

Our simulations and preliminary results of the EEG data analysis suggest that the pro-
posed methodology can be widely used.
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