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Abstract
Finite mixture models are useful for data that exhibit heterogeneity from unobserved

sources. Such models can assign observations into a set of latent classes, and may be
helpful in understanding the nature of the heterogeneity. In this paper, the finite mixture
of multinomials model is applied to an injury dataset in order to study the probabilities of
several injury types common among emergency service providers. Computational techniques
from (Raim et al., 2012) are used to determine the number of mixing components, obtain
estimates, and compute standard errors and confidence intervals. We find that three classes
provides an adequate model for the data, and that the class compositions differ by geography
and gender.

Key Words: Multinomial; Finite mixture, Maximum likelihood, Fisher informa-
tion matrix, Fisher scoring.

1. Introduction

This paper presents an analysis of injury data which was first explored in the Mas-
ter’s thesis of Fleming (2012). The dataset consists of injuries reported to a national
database maintained by an ambulance service company. Records are associated with
emergency service providers such as EMTs, paramedics, and firefighters, along with
adjunct workers such as secretaries, mechanics, and administrators. For the rest of
this work, we will refer to all workers collectively as emergency service providers.
Fleming’s analysis focuses on the injury counts of individuals in the data, and the
issue of estimating the number of individuals having zero counts (which are not ob-
served). Poisson, truncated Poisson, and related models are considered in carrying
out the analysis. In this work, we analyze the counts of several types of injuries
commonly suffered by emergency service providers. We consider multinomial and
finite mixture of multinomial models using computational techniques discussed in
(Raim et al., 2012). Our interest is in the probabilities of several common types of
injuries. Finite mixtures are considered to account for heterogeneity in the data.

The remainder of this paper is organized as follows. Section 2 describes the
dataset. Section 3 discusses the finite mixture of multinomials model and recalls
the computational methods from (Raim et al., 2012). Section 4 presents a model
selection for the number of mixing components in the data; an approximation to
the Fisher information matrix is used to carry out the study. In section 5, a more
accurate approximation is proposed so that standard errors and confidence intervals
can be obtained. The completed analysis is given in section 6 and concluding
remarks are made in section 7.
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2. Description of the data

In its original form, the data consists of 6,691 individual injuries. Variables include
the type of injury, the location of the injury (arm, leg, etc.), the occupation (EMT,
firefighter, accountant, etc.), the ambulance unit or station for which the injured
person worked, the person’s gender, and information about lost wages. Table 1
shows the complete set of variables available. Of the 6,691 reported injuries, there
are 4,623 unique people. Figure 1a shows a bar plot of the frequency in which a
person reported one, two, etc. injuries. There are 450 distinct ambulance units;
Figure 1b shows the frequency in which (0, 10], (10, 20], etc. injuries were reported
per unit. There are 55 types of injuries reported, ranging from nausea, to seizure,
to death; Table 2 reports the 20 most frequent injury types. There are 600 unique
occupations given in the data.

In this study, we are interested in estimating the probabilities of specific injury
types, given that an injury occurs. For simplicity, we will collapse the 55 observed
injury types into ten: strain, contusion, sprain, puncture, laceration, torn carti-
lage/ligament/tendon (abbreviated C/L/T from here on), fracture, inflammation,
respiratory, and other. Figure 2a plots the relationship between the two most fre-
quent injuries: strain and contusion. We see that a majority of ambulance units
have a higher proportion of reported sprains than contusions. Figure 2b shows a
plot of the proportion of strains among ambulance units. There appear to be mul-
tiple modes in this plot, which is an indication that the standard binomial would
not fit well.

It is reasonable to assume that the injury probabilities vary with occupation;
for example, a firefighter faces vastly different risks than an accountant. We may
wish to imagine the presence of latent factors, associated with each occupation,
which influence the probabilities of the injury types. However, there are difficulties
in using the CLMNT_OCCUP variable directly. The entry of the occupation labels has
not been completely systematic, yielding many small variations or misspellings of
the same occupation. For example, the values “PARAMEDIC”, “PARADEMIC”,
“PARAMADIC”, “PARAMDEIC”, and “PARA-MEDIC” are all present in the
data. There are also entries such as “EMT FIREFIGHTER”, which blurs the
distinction between EMT and firefighter. In addition to the variation by occupation,
it is reasonable to assume that the probabilities vary between individuals as well,
based on factors such as carefulness/carelessness on the job and pre-existing medical
conditions. However, such data has not been collected for this study.

Consider the injury count for each ambulance unit, which is the sum of the
injury counts from all workers in that unit. This provides a natural clustering of
the individual injuries, with UNITNAME_5 as the variable defining the clusters. Hence
the data becomes a multinomial sample of 450 observations, each having a count
vector with ten categories. Note that individual injuries sharing the same value
of UNITNAME_5 will be similar geographically; this suggests that they were subject
to similar safety standards on the job and similar regional hazards such as crime
and weather. Due to variations not modeled explicitly in the analysis (such as by
occupation and individual, discussed earlier), we anticipate a heterogeneity in the
probabilities of the ten injury types among observations. This motivates the choice
of the mixture of multinomials model for our analysis. Several covariates can be
made available at the cluster level, such as “proportion of females” and “average
age”, but we have opted not to use these in our analysis.
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(a) Frequency of individuals in the dataset with one injury, two injuries, etc.
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(b) Frequency of ambulance units in the dataset with 1–10 injuries, 11–20 injuries, etc.

Figure 1: Histograms of injury frequencies.
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Table 1: All variables in injury dataset.

Variable Category Variable Name Description

Patient Information ID Unique person ID based on SSN, BIRTH_DATE, and CLMNT_SEX

CLAIM_NUM Unique ID for the injury
SSN Last four digits of Social Security number
BIRTH_DATE Date of birth
CLMNT_SEX Gender
CLMNT_OCCUP Occupation
UNITNAME_5 Ambulance unit / station for which the person was working
ACC_STATE State (in the U.S.A.)
CLM_STATUS Claim status

Injury Information ACC_DATE Date of injury
LOSS_DESC Free-form text description of injury cause
NL_DESC_BI A classification of the injury type (strain, burn, etc.)
POB_DESC Location of the injury on the body (neck, head, etc.)
SRCE_DESC Source of Injury
TYPE_DESC Type of injury

Loss Wage Information TOT_LWD

RTW_DATE

WC_MED_IND

NET_PD_LOS

NET_PD_EXP

REM_RS_LOS

REM_RS_EXP

TOT_EXPER

Table 2: Observed frequencies of top 20 injuries.

Rank Injury Name Frequency

1 Strain 2785
2 Contusion, bruise 653
3 Sprain 554
4 Not Otherwise Classified 530
5 Puncture 292
6 Laceration, open wound 279
7 No physical injury 197
8 Multiple physical injuries 170
9 Torn cartilage / ligament / tendon 114

10 Fracture 105
11 Foreign body 104
12 Inflammation / irritation of joint / nerve 103
13 Respiratory disorders 102
14 Herniation, rupture 85
15 Scratch, abrasion 78
16 Communicable Disease 71
17 Occupational health disorder, NOC 49
18 Burn (heat) 47
19 Bite or sting 39
20 Allergic Reaction 31

ALL OTHERS 303
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(a) Scatter plot of proportion of strains vs. proportion of contusions
among the n = 450 multinomial observations. Some jitter has been
added to help distinguish points.
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(b) Histogram of strains among the n = 450 multinomial observa-
tions.

Figure 2: Marginal plots of strain vs. contusion and density of strains.
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3. Mixture of Multinomials

Denote Yi = (Yi1, . . . , Yik) as the vector of injury counts for the ith ambulance
unit, for i = 1, . . . , n and n = 450. Here, k = 10 since there are ten injury types
under consideration. Denote mi =

∑k
j=1 Yij as the corresponding cluster size. We

will assume the mixture of multinomials model, denoted Yi
ind∼ MultMix(θ,mi) for

i = 1, . . . , n, which suggests the likelihood

L(θ) =
n∏
i=1

{
s∑
`=1

π`

[
mi!

yi1! . . . yik!
pyi1`1 . . . pyik`k

]}
, (1)

with θ = (p1, . . . ,ps,π). The number of mixing components s corresponds to
a number of latent classes, where observations belonging to a class have similar
probabilities for the k injury types. The value of s is not known, and must be
inferred from the data.

Maximum likelihood estimates θ̂ are desired under the likelihood (1). As is
usually the case in finite mixture distributions, closed form expressions for θ̂ are
not available, and iterative techniques must be used to maximize the likelihood.
Several methods are considered in Raim et al (2012), which we will recall here. Let
Im(θ) denote the (sk − 1) × (sk − 1) Fisher information matrix, with respect to
a single multinomial observation with cluster size m, evaluated at θ. The Fisher
information matrix will hereafter be referred to as the “FIM” or “exact FIM”. Define
the (sk − 1)× (sk − 1) matrix

Ĩm(θ) := Blockdiag (π1F1, . . . , πsFs,Fπ) ,where (2)

F` = m
[
diag(p−1

`1 , . . . , p
−1
`,k−1) + p−1

`k 11
T
]
, ` = 1, . . . , s,

Fπ = diag(π−1
1 , . . . , π−1

s−1) + π−1
s 11T .

where 1 denotes a vector of ones of the appropriate dimension. Note that the F` are
(k−1)× (k−1) matrices corresponding to the FIM of the Mult(p`,m) distribution,
and Fπ is a (s − 1) × (s − 1) matrix which is the FIM of Mult(π`, 1). Raim et al
(2012) justify Ĩm(θ) as a large cluster approximation (as m → ∞) to Im(θ). We
will denote the information matrix and its approximation for the entire sample as

I(θ) = Im1(θ) + · · ·+ Imn(θ) and Ĩ(θ) = Ĩm1(θ) + · · ·+ Ĩmn(θ)

respectively.
Recall that the Fisher scoring algorithm is written as

θ(g+1) = θ(g) + I−1(θ(g))S(θ(g)), g = 1, 2, . . . , (3)

where iterations are repeated, given an initial starting value θ(0), until some con-
vergence criterion is reached. Here we take the criterion to be∣∣∣logL(θ(g+1))− logL(θ(g))

∣∣∣ < ε (4)

for some given ε > 0. An approximate Fisher scoring algorithm (AFSA) can be
formulated by replacing I(θ) with Ĩ(θ) in (3) to obtain the iterations

θ(g+1) = θ(g) + Ĩ−1(θ(g))S(θ(g)), g = 1, 2, . . . . (5)
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Raim et al (2012) show that AFSA is approximately equivalent to a standard
Expectation-Maximization algorithm used for the finite mixture of multinomials
model; similar estimates are obtained at a similar convergence rate. They demon-
strate that AFSA and EM are more robust to the choice of initial value θ(0) than
standard Fisher scoring. However, the matrix Ĩ(θ) is not recommended to be used
in place of I(θ) for inference (e.g. to compute standard errors), unless the cluster
size is large. To address this, a hybrid Fisher scoring algorithm is proposed, where
AFSA iterations are used from an initial θ(0) until some preliminary tolerance ε0 is
reached on (4). Then, exact Fisher scoring iterations are used to reach the desired
tolerance ε. This is a more general version of the “one additional step” estimator
proposed by Neerchal and Morel (2005), where just a single iteration of exact Fisher
scoring is used. Hybrids between EM and Fisher scoring have also been considered;
see (McLachlan and Peel, 2000).

4. Selecting the Number of Classes

A complication in fitting finite mixture models is the choice for the number of
mixing components s (McLachlan and Peel, 2000). One possibility for selecting s
is to consider commonly used information criteria such as the Akaike information
criterion (AIC) and Bayesian information criteria (BIC). Consider

AIC = −2 logL(θ̃) + 2q and BIC = −2 logL(θ̃) + q log n,

where q = sk − 1 is the total number of parameters, and the log-likelihood is eval-
uated at the AFSA estimate θ̃. AFSA has been used because of its computational
convenience, as opposed to exact Fisher scoring. In section 5, we will more con-
cretely discuss the difficulty in computing I(θ) under the likelihood (1), and propose
a better approximation than Ĩ(θ). Figure 3 shows the AIC and BIC values using
AFSA when s = 1, . . . , 10 mixing components are used. Note that 20 randomly cho-
sen initial values were used for each setting of s, except for s = 1 which corresponds
to the standard multinomial. Of those, the run with the largest log-likelihood was
selected to compute AIC and BIC for that s. Note that not all initial values led
to convergence; particularly in the case that s = 10, only 6 of 20 runs converged.
Under BIC, three mixing components appears to be reasonable. Under AIC, four to
eight components appears reasonable. To keep interpretations as simple as possible,
we will use the choice s = 3 suggested by BIC. Denote bjj as the diagonal elements

of Ĩ−1(θ̃). Table 3 shows AFSA estimates under this model, along with standard
errors given by

√
bjj , and (1−α) confidence intervals computed by θ̃j ± zα/2

√
bjj

with α = 0.05.

5. A Closer Approximation for the Exact Fisher Information Matrix of
a Sample with Varying Cluster Sizes

In the previous section, the FIM approximation Ĩ(θ) was used to formulate AFSA
iterations so that a preliminary estimate θ̃ could be computed, and a study of AIC
and BIC could easily be carried out. The matrix Ĩ(θ) may not provide accurate
standard errors for small to moderate cluster sizes, as discussed earlier. However, the
matrix I(θ) is difficult to compute exactly. Note that the basic EM elgorithm does
not yield standard errors. Computation of an exact FIM using the EM estimator
is one way to obtain standard errors; other methods are discussed in (McLachlan
and Peel, 2000). In this section we propose an obvious improvement to the FIM
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Table 3: Estimates, standard errors, and confidence intervals using AFSA estima-
tor θ̃ with s = 3.

95% CI
Class Param Description Estimate SE Lower Upper

1 π1 Mixing 0.5347 0.0235 0.4886 0.5808
p11 Strain 0.4783 0.0084 0.4619 0.4947
p12 Contusion 0.1025 0.0051 0.0926 0.1124
p13 Sprain 0.0981 0.0050 0.0884 0.1078
p14 Puncture 0.0342 0.0030 0.0282 0.0402
p15 Torn C/L/T 0.0349 0.0031 0.0289 0.0409
p16 Laceration 0.0144 0.0020 0.0105 0.0183
p17 Fracture 0.0105 0.0017 0.0072 0.0138
p18 Inflammation 0.0116 0.0018 0.0081 0.0151
p19 Respiratory 0.0088 0.0016 0.0057 0.0119

2 π2 Mixing 0.3961 0.0231 0.3509 0.4413
p21 Strain 0.2940 0.0088 0.2767 0.3113
p22 Contusion 0.0743 0.0051 0.0643 0.0843
p23 Sprain 0.0598 0.0046 0.0508 0.0688
p24 Puncture 0.0624 0.0047 0.0532 0.0716
p25 Torn C/L/T 0.0588 0.0046 0.0498 0.0678
p26 Laceration 0.0178 0.0026 0.0128 0.0228
p27 Fracture 0.0298 0.0033 0.0233 0.0363
p28 Inflammation 0.0128 0.0022 0.0085 0.0171
p29 Respiratory 0.0059 0.0015 0.0030 0.0088

3 p31 Strain 0.3364 0.0220 0.2933 0.3795
p32 Contusion 0.1311 0.0157 0.1003 0.1619
p33 Sprain 0.0423 0.0094 0.0240 0.0606
p34 Puncture 0.0550 0.0106 0.0342 0.0758
p35 Torn C/L/T 0.0394 0.0090 0.0217 0.0571
p36 Laceration 0.0333 0.0083 0.0169 0.0497
p37 Fracture 0.0108 0.0048 0.0014 0.0202
p38 Inflammation 0.0500 0.0101 0.0301 0.0699
p39 Respiratory 0.0879 0.0132 0.0621 0.1137
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Figure 3: AIC and BIC for s = 1, . . . , 10 using AFSA estimator.

approximation Ĩ(θ) for the sample, where clusters with smaller mi are computed
with an exact FIM instead. This yields a matrix closer to I(θ), but which is more
easily computed, and will provide more accurate computation of standard errors
and confidence intervals than those obtained from Ĩ(θ).

Suppose the observed cluster sizes are ordered m1 ≤ · · · ≤ mn, without loss of
generality. The exact FIM for the sample is computed as

I(θ) =
n∑
i=1

Imi(θ) =
n∗∑
i=1

Fi Iri(θ), (6)

where r1 ≤ . . . ≤ rn∗ are the distinct values of {m1, . . . ,mn} with n∗ ≤ n, and
F1, . . . , Fn∗ are the corresponding freqencies. Using the definition of expectation,
the terms in (6) can be computed exactly as

Im(θ) =
∑
x∈Ω

{
∂

∂θ
log f(x;θ,m)

}{
∂

∂θ
log f(x;θ,m)

}T
f(x;θ,m) (7)

but recall that there are
(
m+k−1
m

)
elements in the multinomial sample space Ω. This

number may be quite large, making the naive calculation of the FIM in (7) infeasible
in practice. The FIM approximation Ĩ(θ) discussed in section 3 was intended for
the scenario for when m is large, which is one way that

(
m+k−1
m

)
may be made large.

Denote Ĩm(θ) as the FIM approximation for a single multinomial observation with
cluster size m; then the FIM approximation for the entire sample would be

Ĩ(θ) =

n∑
i=1

Ĩmi(θ). (8)

Raim et al (2012) find that Ĩm(θ) is not an accurate approximation to I(θ) unless m
is large. Therefore, we would expect to obtain a better approximation by identifying
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the Ĩmi(θ) in (8) with small cluster sizes, and replacing them with Imi(θ). To
formalize this idea, let

I∗(θ, C) =
∑

i:mi≤C
Imi(θ) +

∑
i:mi>C

Ĩmi(θ)

=
∑
i:ri≤C

Fi Iri(θ) +
∑

i:mi>C

Fi Ĩri(θ) (9)

where C ∈ [0,mn] is a tuning parameter. Selecting C to be large will ensure that
I∗(θ, C) ≈ I(θ), but the amount of computation will be close to that of the exact
FIM. On the other hand, if C is selected to be small the amount of computation
will be dramatically reduced, but I∗(θ, C) will be closer to the approximation Ĩ(θ).
Note that the matrix Ĩm(θ) can easily be transformed to another cluster size m∗

— recall the expression given in (2), simply transform F` to (m∗/m)F`. Hence,
computation of Ĩ(θ) is quite convenient.

We would like to find a value of C such that the Frobenius norms

‖I∗(θ, C)− I(θ)‖ =

∥∥∥∥∥∥
∑

i:mi>C

Fi

(
Ĩri(θ)− Iri(θ)

)∥∥∥∥∥∥ , and (10)

‖I∗−1(θ)− I−1(θ)‖ =
∥∥∥I∗−1(θ)

[
I∗(θ, C)− I(θ)

]
I−1(θ)

∥∥∥
=

∥∥∥∥∥∥I∗−1(θ)

 ∑
i:mi>C

Fi

(
Ĩri(θ)− Iri(θ)

) I−1(θ)

∥∥∥∥∥∥ (11)

are small, but the amount of computation for I∗(θ̃, C) is not too intensive. In (11),
we have used the identity B−1−A−1 = A−1(A−B)B−1 for non-singular matrices
A and B. Notice that the difference I∗(θ, C)−I(θ) depends only on those clusters
with mi > C. To measure the amount of computation needed, let

NC,k =
∑
i:ri>C

(
ri + k − 1

ri

)
(12)

be the number of iterations of (7) needed to compute the exact FIM terms of the
“Hybrid FIM” proposed in (9). Note that NC,k does not depend on θ, but only on
the sample and the given C.

A small study was carried out to empirically determine a good value of C. We
have fixed θ to θ̃, the AFSA estimator using s = 3, which was found to be an
appropriate number of classes for the injury data in section 4. Figure 4a shows the
number of compute steps NC,k required to compute I∗(θ̃, C) for C = 0,m1, . . . ,mn.
Both k = 4 and k = 10 are shown on the log-base-10 scale. Computing the exact
FIM for k = 10 is intractible using the naive method, requiring a summation over
more than 1015 terms. Because of this, we evaluate the selection of C under the
more modest sample space generated at k = 4.

Figure 4b shows the norms given by (10) and (11). Rather than plotting the
norms directly, the proportions

pC =
‖I∗(θ̃, C)− I(θ̃)‖
‖Ĩ(θ̃)− I(θ̃)‖

and qC =
‖I∗−1(θ̃, C)− I−1(θ̃)‖
‖Ĩ−1(θ̃)− I−1(θ̃)‖

are plotted for C = 0,m1, . . . ,mn. Note that C = 0 maximizes the distance
‖I∗(θ, C) − I(θ)‖ over C, and that I∗(θ, C = 0) ≡ Ĩ(θ). From Figure 4b, we
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Figure 4: Number of compute steps and proportion of errors as C varies.

see that the sequences pC and qC are very similar. For k = 4, the choice C = 50
appears to give a good balance between computability and accuracy. However,
for k = 10, the number of compute steps becomes highly impractical after about
C = 20. Therefore, we proceed with C = 20 for our injury data analysis using
ten multinomial categories, with some assurance that I∗(θ, C) will provide more
accurate inference than Ĩ(θ).

6. Data Analysis using Mixture of Multinomials

Starting with the AFSA estimate θ̃ from section 4 and using C = 20, we apply the
“one additional step” iteration

θ̂ = θ̃ + I∗−1(θ̃, C)S(θ̃)

discussed in section 3 to obtain final estimates for the injury dataset. The diagonal
elements of I∗−1(θ̂, C), denoted djj , are used to compute asymptotic standard errors

via
√
djj , and level (1−α) confidence intervals are computed by θ̂j±zα/2

√
djj using

α = 0.05. Table 4 displays these results. We note that the estimates themselves
are very close to those in Table 3, hence the additional Fisher scoring iteration
did not move θ̂ far from θ̃. The standard errors in Table 4 are larger than the
corresponding values in Table 3, indicating that those derived from the matrix Ĩ(θ̃)
are too optimistic. However, note that many of the differences are quite small;
larger differences can be seen in standard errors with respect to the parameters π1

and π2.
There are two large classes in the population — classes 1 and 2 having estimated

proportions 53.47% and 39.62% — and one small class — class 3 having estimated
proportion 6.91%. Notice that the mixing proportions π1 and π2 have the high-
est standard errors among all parameters, giving the fairly wide 95% confidence
intervals π1 ∈ [0.4539, 0.6154] and π2 ∈ [0.3179, 0.4744]. Observations in class 1
have higher probabilities of strain and sprain than those in classes 2 and 3. On
the other hand, observations in class 2 have higher probability of fracture than the
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Figure 5: Boxplots for classified data.

other classes. Finally, observations in class 3 have higher probabilities of contusion,
laceration, inflammation, and respiratory problems than the other two classes.

We assign the observations y1, . . . ,yn into these three classes using the posterior
probability rule

Class for ith observation = argmax
`

π̂`f(yi | p̂`,mi)∑s
a=1 π̂af(yi | p̂a,mi)

.

and find that there are 265 observations in class 1, 172 in class 2, and 13 in class
3. Within these multinomial clusters, there are 4,382 individual injuries in class 1,
1,762 in class 2, and 547 in class 3. Using the classified data on individual injuries,
some interesting comparisons can be made between classes. The proportion of
females is 47.92% in class 1, 48.26% in class 2, but only 30.77% in class 3. Figure 5a
shows that the majority of ages are about the same for all three classes, but with
less younger individuals in group 3. (Note that ages such as 0 and 100+ are likely
data entry issues). Figure 5b compares the value of TOT_EXPER, which involves lost
wages, between groups at the log-base-10 scale. Before the log is taken, 0.01 is added
to prevent taking log of zero. Again the majority of values are about the same, but
with class 2 having more large values than classes 1 and 3. Figure 6 shows the
distribution of individual injuries across states in the U.S.A. for each class. Class 1
contains significantly more injuries in New York than the other two classes, while
class 2 has large counts in Arizona and Texas, and class 3 has many of its injuries
in Florida and Georgia. Note that multinomial observations may contain injuries
from multiple states.

7. Conclusions

Using the computational methods discussed in (Raim et al., 2012), we have carried
out a mixture of multinomials analysis on an injury dataset. AIC and BIC were
used in model selection to select an appropriate number of mixing components. The
AFSA algorithm was helpful in carrying out this computation efficiently. To obtain
standard errors, a “one additional step” estimator was computed. Rather than
using the exact FIM, a “better approximation” (than the matrix used in AFSA
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Table 4: Final estimates, standard errors, and confidence intervals using “one
additional step” estimator θ̂.

95% CI
Class Param Description Estimate SE Lower Upper

1 π1 Mixing 0.5347 0.0412 0.4539 0.6154
p11 Strain 0.4783 0.0089 0.4608 0.4958
p12 Contusion 0.1025 0.0053 0.0920 0.1130
p13 Sprain 0.0981 0.0052 0.0879 0.1083
p14 Puncture 0.0343 0.0033 0.0278 0.0407
p15 Torn C/L/T 0.0349 0.0033 0.0285 0.0414
p16 Laceration 0.0144 0.0021 0.0102 0.0186
p17 Fracture 0.0105 0.0019 0.0069 0.0142
p18 Inflammation 0.0115 0.0019 0.0078 0.0153
p19 Respiratory 0.0088 0.0017 0.0054 0.0121

2 π2 Mixing 0.3962 0.0399 0.3179 0.4744
p21 Strain 0.2940 0.0097 0.2749 0.3130
p22 Contusion 0.0743 0.0055 0.0635 0.0851
p23 Sprain 0.0598 0.0050 0.0500 0.0696
p24 Puncture 0.0624 0.0050 0.0526 0.0721
p25 Torn C/L/T 0.0588 0.0048 0.0493 0.0683
p26 Laceration 0.0178 0.0027 0.0124 0.0232
p27 Fracture 0.0298 0.0035 0.0230 0.0366
p28 Inflammation 0.0128 0.0024 0.0082 0.0174
p29 Respiratory 0.0059 0.0017 0.0027 0.0091

3 p31 Strain 0.3363 0.0247 0.2879 0.3848
p32 Contusion 0.1310 0.0174 0.0969 0.1652
p33 Sprain 0.0422 0.0106 0.0215 0.0630
p34 Puncture 0.0550 0.0118 0.0319 0.0782
p35 Torn C/L/T 0.0394 0.0101 0.0196 0.0593
p36 Laceration 0.0333 0.0092 0.0153 0.0513
p37 Fracture 0.0109 0.0054 0.0002 0.0215
p38 Inflammation 0.0500 0.0110 0.0284 0.0716
p39 Respiratory 0.0879 0.0144 0.0597 0.1161
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Figure 6: Counts of classified individuals plotted by state.
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iterations) was formulated. We conducted a small study to obtain a reasonably
accurate approximation to the FIM using a tolerable amount of computation. The
“one additional step” estimator provided final estimates and standard errors, as
well as a classification of the clustered multinomial observations and the individuals
within those clusters. We found that three classes fit well to the data, with each class
responding differently to the ten injury types under consideration. Some interesting
contrasts were found between classes, such as the proportion of females, and the
distribution of injuries across the U.S.A.
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