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Abstract
Penalized M-estimators have garnered much attention in recent years for their use in estimating

regression parameters in high dimensional linear models. A large amount of work as been done
to produce efficient algorithms and code for solving the underlying optimization problems of these
methods and extending results to related applied topics (e.g., graphical models, generalized linear
models). Unfortunately, these optimization schemes have not been paired with recent theoretical in-
novations in order provide maximum utility to practitioners. Current R packages, for instance, tune
models with inconsistent cross validation procedures rather than easy to compute choices based on
analytical properties of the penalized estimator. The package hdlm rectifies this gap by using tun-
ing parameters which guarantee asymptotic consistency as well calculating valid p values, standard
errors, ANOVA tables, and producing useful graphical outputs. We pay particular attention to com-
putational speed and memory issues which arise as a result of the resampling required to produce
empirical p values and standard errors.

Key Words: penalized estimation, resampling methods, tuning parameters, two-stage methods

1. Overview

High dimensional model selection algorithms such as the lasso and orthonormal matching
pursuit have garnered much attention in recent years. A large number of R packages for
conducting high-dimensional regression exist but each concentrates on solving penalized
minimization problems and bypass methods for producing regression tables. This can be
frustrating for end-users as the lack of useful measurements of standard deviations and
confidence intervals makes applied data analyses difficult.

Fortunately, this deficiency is not due to a lack of relevant theory but rather a lack of cor-
responding implementations. A two stage approach which pairs a generic high-dimensional
model selection procedure and standard low-dimensional estimator was studied by [18] for
the purpose of obtaining asymptotically valid high dimensional p values. This theory was
further extended by [14] through the use of successive bootstraps and false discover rate
techniques. Bayesian solutions where posterior distributions can be used for calculating
measurements of standard errors, p values, and confidence intervals have also been sug-
gested by, for instance, [8], [11], and [10]. With the exception of the work done by [8],
where a basic MCMC sampling procedure is given, these theoretical frameworks have been
presented without code.

The package hdlm provides a unified, optimized, and easy to use implementation of
the two-stage frequentist approach as well as several hierarchical Bayesian models for pro-
ducing regression tables. In addition, the returned objects are supported by a complete set
of S3 methods; these mimic the methods provided for standard linear models and gener-
alized linear models. This set includes methods for plotting, extracting coefficients, and
summarizing the fitted model’s output.

We have taken the philosophy that the package should be both easy to use out of the
box as well as quickly adapted to as wide a range of options as possible. As the frequen-
tist method requires a generic high-dimensional model selector, we have incorporated as
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a default the highly optimized package glmnet [7]. The use of this popular point estima-
tor, along with the fact that we have written our code in the same general syntax as the
standard lm function, allows users to quickly obtain reasonably good output from a high
dimensional regression using the functions found within package hdlm. Instead of boxing
the function with several popular variants, we have designed a system which allows for the
user to define custom functions to override defaults. In fact, our implementation of hdglm
(for generalized linear models) is essentially a wrapper to the standard hdlm routine with
linking functions passed in the required format.

The remainder of this article is organized as follows: Section 2 gives a brief overview of
the theory behind frequentist high dimensional regression tables. Section 3 gives the high-
level architecture of the package and a basic overview of options. Section 4 gives explicit
examples of how various default options can be altered to incorporate new point estimation
techniques. Section 5 illustrates the computational speed of the default algorithms. Finally,
Section 6 closes with an outline of proposed future work.

2. Regression tables in high dimensions

2.1 Multi-stage methods and theory

Recent advancements in the theory of sparse high dimensional regression have largely con-
cerned the convergence rates of point estimation procedures. The lack of research in the
study of confidence intervals, standard errors, and other measurements of uncertainty stems
in part from the fact that it is provenly hard to analyze model selection and inference
which have been done either simultaneously or sequentially on the same dataset. Leeb
[12], Pötscher [13], and Yang [20] have shown that there is in fact no generic procedure
which uniformly estimates the conditional or unconditional distribution of post-model se-
lection inference procedures. For a detailed discussion of what this means in data analysis,
see the recent paper by [4].

A simple way to avoid these problems is to partition the observations, using part of the
data for model selection and the other part for an independent (low-dimensional) parameter
estimation on the selected model. More explicitly, the proposal by [18] to construct such
an estimator first randomly splits the data observations into three groups: D1, D2, and D3.
Using the first subset, a series of methods are used to fit a number of sparse models:

bλ := ϕλ(D1), λ ∈ Λ (1)

Once these models have been fit, the following prediction error is calculated over the second
subset of data:

eλ :=
∑
i∈D2

(yi − x⊤i bλ)
2 (2)

The goal is to determine which of the set of models fit in the first stage best predict the
second set of data. This splitting methodology is a very simple version of cross validation.
Using these estimates, an initial conservative guess of the support T is made:

Ŝn := support
{
argmin

λ∈Λ
(eλ)

}
(3)

It is assumed, at this point, that there is a very high probability that Ŝn contains the true
model; in fact, this probability should tend to zero as the sample size limits to infinity. Un-
der reasonable assumptions, this rate will fall off exponentially for popular model selection
methods.
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Figure 1: Distribution of p values in a simple simulation with p = 50, n = 25, and
βt = (1, 0, . . . , 0), over 2000 trials. The lasso is used, with 10-fold cross validation to
select the tuning parameter. The left plot shows the p values resulting from the single-split
method, whereas the right plot shows p values resulting from the multi-split method with
10 bootstrap runs and p values combined via the discussed FDR procedure.

Now, with the final set of data D3, ordinary least squares regression is run on the
variables contained in Ŝn. The final trimming is done by screening p values, and creating
T̂n from those variables with a p value less than the desired level α. If the model selection
in the first two steps is truly conservative, this should correctly control the component-wise
probability of a Type-I Error.

In our implementation, the first stage of the method has been abstracted out of the basic
design. We only split the data into two groups D1 ∪ D2 and D3; the first set being used
to select a model and the second set to fit a low dimensional regression. This modification
allows for a wider range of model tuning techniques such as n-fold cross validation and
information criteria based methods.

2.2 Bootstrapping multistage p-values

The p values of the multi-stage method of Wasserman and Roeder can be quite sensitive
to the choice of the random splitting of data. Figure 1 shows the distribution of p values
for one variable given different partitions of the dataset into the model selection step and
the parameter estimation step. The random nature of the output makes it at best difficult
to analyze and at worse a rather useless statistical method. Fortunately, a proposal by [14]
provides a method for obtaining p values which bootstraps over many splits of the dataset
and intelligently pastes the results together We refer to their method as the ‘multi-split
method’, and the former by the ‘single-split method’.

The major difficulty of the multi-step method is determining how to combine the p val-
ues from each run into a single set of p values. Consider just one column of the data matrix
X and let {Pb}b∈B be the set of p values for this one variable across all bootstrap runs b in
B. This set can be viewed as a multiple hypothesis testing problem, with the strange prop-
erty that the null hypothesis in each test is the same: H0 : βj ̸= 0. In multiple hypothesis
testing there are essentially two forms of error which can be controlled. The family-wise
error rate (FWER) concerns the chance of making any Type-II errors, whereas the false dis-
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covery rate (FDR) concerns the proportion of Type-II errors to rejected hypotheses. While
not stressed in the Meinshausen paper, for our setting where all of the hypothesis tests have
the same null hypothesis, these two rates will be exactly the same. What differs is the power
of the generic methods for controlling these two error rates, when applied to our specific
situation.

The classic method for control the family-wise error rate is the Bonferroni correction.
Here p values are ‘adjusted’ by multiplying by the total number of hypothesis tests. Null
hypotheses are rejected if the corresponding adjusted value is less than the desired family-
wise error rate. A modification by Sture Holm, which is uniformly more powerful and still
valid for any pattern of independence or dependence amongst the hypothesis, is to sort the
p values from smallest P(1) to largest P(|B|) and then adjust as:

P̃(k) := min

(
1, max

j≤k
P(j) · (|B| − j + 1)

)
, (4)

Where |B| is the total number of hypothesis tests. The adjusted values are again compared
to the maximum desired error rate and rejected accordingly.

The control of the false discovery rate is done in a similar fashion, as proven by Yosef
Hochberg, Yoav Benjamini, and (in the case of dependent hypotheses) Daniel Yekutieli
[1, 3]. Ordering again the p values, find the smallest k such that:

P(k) ≤
αk

|B| · c(|B|)
(5)

Where α is the desired maximum false discovery rate and c(|B|) is one in the case of
independent or positively correlated tests and

∑|B|
i i−1 ≈ log(|B|) + 0.57721 in the case

of any other dependence structure. All tests corresponding to p values less than this P(k)

have their null hypotheses rejected at the given level. Notice that Equation 5 does not
necessarily behave monotonically, and it is possible for instance to have P(2) not follow the
above inequality even when P(3) does. In this case both null hypotheses are still rejected. It
is possible to also write the FDR procedure in equivalent terms using adjusted p values. In
our case, the hypothesis tests can certainly be negatively correlated and therefore we need
to use the most conservative formulation.

The proposal by Meinshausen et al. is a slight modification of FWER and FDR rates.
For some γ ∈ (0, 1) they define:

Q(γ) = min
{
1, qγ

{
P(j)/γ; j = 1, . . . , |B|

}}
(6)

Where qγ is the empirical γ-quantile function. For a fixed value of γ this value serves as a
valid adjusted p value; as the power of this procedure depends greatly on the choice of the
quantile, a great improvement can be given by adaptively searching over a range of quan-
tiles. It has been shown that this gives valid p values with the addition of a extra constant.
Specifically, by fixing a minimum value γmin define the following adjusted p value:

Q′ = min

{
1, (1− log γmin) min

γ∈(γmin,1)
Q(γ)

}
. (7)

We refer to this as the QA (quantile adjusted) p value. The authors suggest setting γmin

equal to 0.05, which gives a multiple of just less then 4. An easy way to relate this pro-
cedure to the others is to consider a set of possible values of γ consisting of {j/|B|, j =
1, . . . , |B|}. Then, a slightly less powerful version of the above Q′ is given as:

Q′′ = min

{
1, (1 + log |B|)min

j

P(j)

j

}
(8)
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In this form, the QA proposal appears similar to that of the FDR rate. The former has a
slightly higher constant multiple, but benefits from continuously moving between observed
p values. A true difference between these two methods comes when the number of boot-
straps is large, so that one may reasonably pick γmin to be larger than |B|−1. The authors
suggest a minimum value of gamma around 0.05, so this becomes a true factor when using
more than a few dozen bootstrap replicates. Given the similarities, however, we lump FDR
and QA together in the following discussion.

In our setting we care only if we choose to reject at least one or none of the hypotheses,
as the null hypotheses are all the same. Notice that there is not a uniformly better choice
between FWER and FDR/QA methods in this case. Consider for instance testing m hy-
potheses and getting the first p value to be some small value q and the other m−1 tests give
a value of 1. We will reject the first hypothesis using FWER at the α level if q ≤ α/m and
using FDR/QA if q ≤ α/(mc(m)). Obviously the FWER will have a higher power (the
same power is given by the FDR method if we were able to assume the tests were indepen-
dent) in this case. In contrast, consider having all m of the p values being equal to some
value q. The FWER will again only reject if q ≤ α/m whereas FDR/QA rejects as long
as q ≤ α/c(m). Given that the function c(m) can be approximated by log(m) + 0.577,
the FDR/QA test will have a higher power; this difference will be quite drastic when the
number of hypothesis tests is large.

In general, the false discovery rate and quantile adjusted methods are more powerful
when there is a large number of tests and a large number of relatively small p values.
Conversely, the family-wise error rate is more powerful when there is a small number of
tests or one very small p value but a large number of bigger values. The FWER is a good
alternative for quick simulation runs when the number of bootstrap trials is significantly
reduced. The adaptive QA proposal is suggested only when one desires to determine a
truly stable p value by using a very high number of bootstrap samples; its limiting behavior
with a fixed γmin is a bit more reliable than the FDR procedure, however for smaller runs
it has a tendency to be marginally less powerful.

Given that no proposal is uniformly preferable, the package hdlm allows for specifying
a particular method. As a default we use the QA method with a fixed γ = 0.5; in other
words, we take the median across all bootstrap runs.

2.3 Obtaining confidence intervals and point estimators

Typically, regression tables give either confidence intervals or standard errors in addition
to p values. In ordinary linear least squares regression these quantities all give equivalent
information, albeit with a different focus; in other situations such as robust or quantile
regression where the distribution of estimated coefficients is not assumed to be normal this
is no longer true. In the single-split variant of two-stage high dimensional regression, the
second stage is an ordinary linear regression and therefore reporting either of both of these
quantities is not terribly difficult. With the multi-split method, the particulars of how to
combine different runs makes calculating either for the final regression table somewhat
non-trivial. Here we will concentrate on a method for constructing asymptotically valid
confidence intervals; standard errors are not calculated as they are not a particularly helpful
quantity to estimate when using biased point estimators.

We wish to construct confidence intervals, individually for each variable, using a sim-
ilar procedure as used to construct p values from Section 2.2. Benjamini and Yekutieli
[2] have written about a multiple confidence interval generalization to their FDR multiple
hypothesis procedure. Unfortunately, unlike in the hypothesis setting, we find that having
all of the confidence intervals correspond to the same quantity changes the natural method
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for combining confidence intervals and therefore require some new theory. The main diffi-
culty lies in the fact that confidence intervals from alternate bootstrap runs may in fact be
disjoint; considering that the distribution of our multistage method is multi-modal, such a
situation in fact arises quite frequently. Additionally, the proposed generalization of FDR
to confidence intervals can occasionally yield no solution; that is, none of the confidence
intervals are chosen, leaving us with no estimated interval. Such a situation seems inade-
quate given that a trivial conservative confidence interval can be constructed by a simple
convex union of confidence intervals across all bootstrap runs.

In order to address the issue with FDR confidence intervals, we propose an alternative
procedure for aggregating confidence intervals across simulation runs. We do not suppose
a particular process for the construction of confidence intervals, but rather allow for the use
of any valid confidence interval construction procedure. Let (Lj,b, Uj,b) be the confidence
interval for the coefficient βj from the b-th bootstrap replicate. For a fixed α ∈ (0, 1), k ∈
{1, 2, . . . ⌊(m+ 1)/2⌋} and co-ordinate j ∈ {1, 2, . . . p}, define the confidence intervals:

CIj(α) :=
(
Lj,(k)(α), Uj,(m−k+1)(α)

)
, (9)

Where Lj,(k) and Uj,(m−k+1) are the k-th and (m− k + 1)-th order statistics, respectively.
If the original confidence intervals are valid, then we have:

P [βj ∈ CIj(α)] ≥ 1− α · (2k − 1), (10)

Individually for each coefficient βj . The details of the probability calculation can be found
at http://euler.stat.yale.edu/~tba3/thesis/ch2, as well as in the pack-
age’s supplemental documentation.

We note a few interesting properties of the proposed confidence intervals. Notice that
if k = 1, the resulting confidence interval is simply the convex hull of the intersection of
all bootstrapped confidence intervals. Consequently, the corresponding significance of the
resulting interval CIj is 1− α; therefore, we see that when k = 1 our method collapses to
the union bound. In contrast, consider for the moment setting k = (m+1)/2, The resulting
confidence interval corresponds to taking the maximum lower bound together with the
minimum upper bound; the resulting confidence interval should have a significance level of
1−α ·m. In other words, when k = m we are using a Bonferroni correction and (assuming
all of the lower bounds are less than all of the upper bounds) taking the intersection of the
resulting intervals. We see then that our method allows for choosing an interval somewhere
between the extremes of the Bonferroni correction and the union bound.

The size of k is restricted due to the fact that for larger k it is possible that the resulting
confidence interval is in fact an empty set. Regardless of the validity of the confidence
intervals given in Equation 9, the resulting CIj(α) is non-empty given that m+ 1 ≥ 2 · k;
that is, we have the right end-point of the interval no larger than the left end-point. We can
see this from the following simple calculation:

Lj,(k)(α) ≤ Lj,(m−k+1)(α) ≤ Uj,(m−k+1)(α) (11)

Therefore the collapsed confidence intervals CIj(α), which are given in the the form of(
Lj,(k)(α), Uj,(m−k+1)(α)

)
, must necessarily be non-empty. Notice that this property does

not hold uniformly for higher values of k; as an example take a set of mutually disjoint con-
fidence intervals. Our method does not typically provide the smallest possible intervals;
using Ãh for a particular order of the indices would, for instance, typically give smaller
intervals. However, our construction is a conservative choice, but should not be overly con-
servative, and has the nice property of always constructing non-empty confidence intervals.
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Figure 2: Primary decision tree of function hdlm under default options.

Given a confidence interval CIj(α) as in Equation 9, we use the following definition
of a point estimator for β:

β̂ := median {βj,b : βj,b ∈ CIj(α)} (12)

This assures that the point estimator lies within the confidence interval. Use of the median
rather than mean or other measure comes from the special status of coefficient estimates
which are set exactly the zero. If a majority of the time, a coefficient is not included in the
final model it makes sense to set it equal to exactly zero. On the other hand, if a coefficient is
usually estimated to be around 1 but not included in about 20% of the model selection steps,
a point estimator around 1 is better than one around 0.8. The median assures that both of
these properties hold. We avoid giving a detailed convergence result regarding either point
estimator, as convergence depends in a complex way on the underling data matrix as well
as on the chosen model selection and confidence interval procedures. Obviously, since we
are using a sample median, if the single-split procedure yields asymptotically consistent
point estimators and the number of bootstrap trials is fixed, our resulting point estimator be
consistent as well.

We note that a possible alternative point estimator would be to use the average of
L(⌊(m+1)/2⌋), and U(⌊(m+1)/2⌋)+1. Such a method is not likely to have the property of
setting additional coefficients to zero, but does have the nice property that the point estima-
tor does not depend on the confidence level α, while still having the point estimator always
contained in the given confidence interval.

3. Basic design and usage

The high-level design of the package with default options is given in Figure 2. The top
level function hdlm creates a model matrix, standardizes the variables, and parses various
options. The real estimation work is done inside of hdlm.fit. Here, part of the dataset
is analyzed by a cross validated version of the elastic net procedure. The model corre-
sponding to the best fit is then used in conjunction with the standard ordinary least squares
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function lm. When bootstrapping is turned on, this sub-routine is looped over for each re-
quired bootstrap run. Finally, the output is sent back up through the hierarchy of functions,
cleaned, and returned to the user. When desired, the final model can also be ‘refit’ inter-
nally; basically, in this case the final model is used to run a reduced ordinary least squares
fit on the whole dataset. Such a refitting should be done carefully, as issues of multiple
hypothesis testing and the validity of the p values may come into question. Nonetheless,
such a refitting procedure does seem to often produce lower mean square errors in wide
range of simulation studies. When the refit option is turned on, the output is simply a stan-
dard linear regression object with two extra attributes signifying the output of the model
selection steps.

Arguments available to pass to the top-level function hdlm come in a few different
groups. Looking at the function call:

hdlm(formula, data, subset, bootstrap = 10, siglevel = 0.05,
alpha = 0.5, M = NULL, N = NULL, model = TRUE, x = FALSE,
y = FALSE, scale=TRUE, pval.method=c('median', 'fdr', 'holm',
'QA'), ..., FUNCVFIT = NULL, FUNLM = NULL, bayes=FALSE,
bayesIters=NULL, bayesTune = c(1,1), refit=FALSE)

We see some parallels between arguments for hdlm and those for standard lm. The op-
tions formula, data, subset, and logical arguments model, x, and y all intentionally
behave in the same manor as for the basic linear model function. These specify the basic
linear model and data at play, as well as which elements of the input should be returned in
the output.

The other options exist to deal with the particular options for high dimensional regres-
sion. Many options are covered more carefully in the online documentation; we give a brief
description of each here:

• bootstrap: number of bootstrap trails to conduct when bayes=FALSE. Default is
10.

• siglevel: significance level to use for confidence bounds. Default is 0.05.

• alpha: elastic net mixing parameter sent to default FUNCVFIT, can be any value
in (0,1]. When alpha = 1, this is the lasso penalty and when alpha = 0 (not supported)
this is the ridge penalty. See the package glmnet for more details.

• M: maximum model size sent to the second stage low-dimensional regression. When
more than M variables are chosen in the first stage, the model is trimmed by succe-
sively taking larger sized coefficients until only M remain. If NULL, M is taken to
be 90% of the number of samples in the second stage. If M = 0, the model is fit with
all of the data once, and the estimated parameters are returned as is.

• N: Number of observations to include in the first stage regression. Default is (#
samples / 2), so that the data is split evenly amongst the two stages; will be set when
N=NULL.

• scale: Logical; should the variables in the data matrix be scaled. Default is TRUE.

• pval.method: one of ‘median’, ‘fdr’, ‘holm’, or ‘QA’. Signifies the method used
to combine p-values when bootstrap is greater than 1. For details and relative strengths
of the three methods, see the package vignette.
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• ...: additional arguments to be passed to the low level regression fitting functions
(see below).

• FUNCVFIT: Used to pass an alternative model selection function. Must accept data
matrix as its first element and response vector as second element. Return should
be a vector of length p (the number of regressors), which indicates which variables
are included in the final model. Zero terms are considered to be out of the model;
typically all non-zero terms are treated as in the model, though if the model size is
too large (see ‘M’ above), it will be trimmed relative to the absolute size of each
non-zero term. Therefore, it is advised to return the model vector in a relative scale
rather than an absolute one. The default, used when NULL, is the elastic net function
from package glmnet, with the mixing parameter alpha from above. See Section 4
for more details and examples.

• FUNLM: Used to pass alternative second stage, low-dimensional function. Must
accept as its first argument a formula object. The return class must have a sum-
mary method and the summary method in turn must have a coef method. The
coef.summary should return a matrix where the first column contains the coefficients
and the second column contains standard errors. Intercepts should be handled ac-
cording to the passed formula. As an example, stats::lm works by default; stats::lm
is additionally the default when FUNLM is set to NULL. See Section 4 for more
details and examples.

• bayes: logical. Should Bayesian method be used in place of the two stage method.

• bayesIters: number of iterations to conduct in the Gibbs sampler when bayes is
set to TRUE. A total of (bayesIters * 0.1) burn-in steps are included as well. The
default is 1000.

• bayesTune: numerical vector tuning parameter for the Bayes estimator. Defines
a Beta(bayesTune[1], bayesTune[2]) prior on the proportion of variables included in
the true support.

• refit: Either a logical or number in (0,1]. When not equal to false, the final model
will be refit from the entire dataset using FUNLM. When a numeric, the model is
selected by only including variables with p-values less than refit. When set to TRUE,
any variable corresponding to a non-zero p-value is included.

Special care has been taken to deal sensibly with sparse design matrices. We use the
package Matrix to offer support for sparse matrix representations. This is particularly use-
ful when dealing with data which has factors with a large number of levels; this occurs
frequently in word count and network data.

4. General techniques for extension

4.1 Overriding elastic net

As mentioned, the default behavior for hdlm is to use the elastic net procedure of package
glmnet. Our package has been written in such a way as to allow for using other model
selection routines. Rather than incorporating a bulky set of predefined options, instead we
have a simple technique for using any desired function by making sure the new function
outputs values in the same format as glmnet.
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As an example, consider the following penalized model selector know as the Dantzig
selector [5, 6] given by:

β̂ = argmin
b

||X⊤(Y −Xβ)||∞ + λ||β||1. (13)

The following code produces the Dantzig selector for a particular tuning parameter λ via
the quantreg package [9]:

R> dselector <- function(x,y){
+ n <- nrow(x)
+ p <- ncol(x)
+ lambda <- sqrt(log(ncol(x)+1) * nrow(x)) * sd(as.numeric(y))
+
+ A <- t(x) %*% x
+ R <- rbind(A, -A)
+ a <- c(as.matrix(t(x) %*% y))
+ r <- c(a-lambda, -a-lambda)
+ beta <- quantreg::rq.fit.fnc(diag(p), rep(0,p),
+ R=R, r=r)$coefficients
+ return(round(beta, 6))
+ }

This solution of the Dantzig selector was originally proposed by Roger Koenker, with code
found at http://www.econ.uiuc.edu/~roger/research/sparse/sfn.html.
In some cases, we may wish to tune the model via some form of cross-validation. For
instance, the default elastic net procedure does this via 10-fold prediction loss. With
the Dantzig selector, to keep our example simple, we simply use the analytical value
λ = σ ·

√
n log(p). Notice that the return of the function is a vector of length p, where

non-included variables are set to zero. The actual values are generally not used, unless too
many variables are given to run low-dimensional routines in the second stage.

Having defined the Dantzig selector, it is easy to run hdlm with the new model selector
in place of the standard elastic net:

R> hdlm(y ~ x, FITCVFUN = dselector)

While it would have been possible to include appropriate FITCVFUN arguments into the
package hdlm, we have not done so for two reasons. First of all, it would require having
an exceptionally large number of linked packages; while these could be loaded as needed it
seemed to unnecessarily complicate what we feel is a currently streamlined package. Sec-
ondly, this would require making sure any necessary packages do not change their output
or arguments over time. As we may wish to use cross validation routines, many of which
are internal functions of packages rather than front-facing commands, this is likely to be
the case going forward for at least a few options. As an alternative, we give basic transfor-
mations as supplementary material available separately in the the package documentation.
This option allows for users to more easily adapt code as packages change over time.

4.2 Replacing ordinary least squares

Just as with the model selection routine, the function hdlm allows for replacement of the
low dimensional fitting algorithm, the default of which is ordinary least squares through
the use of lm. The method must be able to provide a point estimator and p values for the
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hypothesis tests βi = 0 for any i. Possible alternatives include Bayesian regression, ridge
regression, and MM-regression. Here we demonstrate the procedure for generalization by
implementing the quantile regression as an alternative to least squares.

The function supplied to the FUNLM argument requires two things:

1. To return an object which has a corresponding summary method.

2. For the summary method to produce an object with a coef method which produces a
matrix with a first column of coefficients and a second column of standard errors.

Such conditions may seem slightly arbitrary, but coincide with the behavior of the lm func-
tion.

The basic quantile regression procedure has been already coded in the package quantreg.
What remains for us is to turn the default output of quantreg into the form specified above.
The sole difficulty lies in the fact that the summary method for quantreg does not produce
p values by default, but does so only via an option to the summary command. In order
to address this, we define a wrapper function for the the rq function which does nothing
different save using a different class for the output:

R> library("quantreg")
R> rq2 <- function(formula) {
+ out <- rq(formula)
+ class(out) <- "rq_new"
+ return(out)
+ }

We now define a new summary method for this new class which uses different default
parameters to force a calculation of standard errors:

R> summary.rq_new <- function(out) {
+ class(out) <- 'rq'
+ val <- summary.rq(out, se='nid')
+ return(val)
+ }

Now, we can run hdlm with quantile regression with the following:

R> out <- hdlm(y ~ x, FUNLM=rq2)

Similar tricks can be used to have hdlm work with a wide range of low dimensional es-
timators; essentially anything that is able to report standard errors can be adapted without
having to change any of the code in the hdlm package.

4.3 Generalized models

As generalized linear models are often encountered in high dimensional data, particularly
binomial responses in social and laboratory sciences, we have included a pre-built func-
tion for dealing with such responses. We have done this easily by using the default hdlm
function with different arguments for the high and low dimensional estimators. The high
dimensional estimator uses the generalized elastic net as described by [7]. The low dimen-
sional estimators uses the glm function found in the standard R package stats.

While wrapped with additional checks and options, the basic method of extension can
be achieved by the following code for the binomial model:
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self.time self.pct total.time total.pct
.Fortran 10.41 54 10.41 54

matrix 1.56 8.07 1.80 9.35
glmnet 1.18 6.11 14.71 76.25

as.double 0.69 3.59 0.69 3.59
cbind2 0.52 2.68 0.52 2.68

FUN 0.40 2.07 2.31 11.97
standardGeneric 0.33 1.71 1.17 6.06

double 0.30 1.58 0.30 1.58
t.default 0.27 1.42 0.27 1.42

sort 0.27 1.38 1.50 7.76
seq.default 0.25 1.30 0.25 1.32

nrow 0.22 1.13 0.29 1.49
sort.int 0.21 1.10 1.19 6.16

list 0.18 0.94 0.18 0.94
deparse 0.17 0.86 0.57 2.94

.deparseOpts 0.15 0.78 0.23 1.20
match.arg 0.13 0.67 0.94 4.85

eval 0.11 0.57 0.92 4.76
pnorm 0.09 0.49 0.11 0.58

Table 1: Profile output of hdlm with data generated from 250 observations, 10, 000 vari-
ables, 10 bootstraps, β with a support of size 1, and a signal to noise ratio of about 2. Only
processes with the highest self time are listed.

R> LMFUN <- function(x,y) return(glm(y ~ x,
+ family=binomial(link=logit)))
R> FUNCVFIT <- function(x,y) return(cv.glmnet(x, y,
+ family='binomial'))
R> out <- hdlm(y ~ x, LMFUN = LMFUN,
+ FUNCVFIT = FUNCVFIT)

The resulting object could be displayed, plotted, and manipulated as with a generic hdlm
output. Our actual implementation differs slightly; while the main regression table is the
same as this simple example, ours correctly calculates the residuals and allows for calling
the particular Bayes solution built specifically for binomial data.

5. Computational performance

Given that the methods described here are meant to be used with large, high-dimensional
datasets, it is important to verify that there are no critical performance issues when using
such data.

Table 1 gives a run profile of the hdlm function for a typical dataset. We see that over
half of the time the function is processing Fortran code. Since there is a high degree of
efficiency in compiled Fortran, this indicates that it would be hard to speed up our function
by more than a factor of 2 by just changing the code’s syntax. We would need to have fun-
damentally different algorithms underlying our method. As the most efficient algorithms
for fitting high dimensional linear models have been used, therefore it seems that our code
is about as fast as we could expect it to be, at least in the regime profiled in Table 1.
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Sample Size 10 10 100 100 1000 1000 1000
Model Size 100 500 1000 5000 1000 5000 25000

hdlm time (bootstrap=10) 0.57 0.76 4.01 12.59 33.91 97.80 472.17
glmnet time 0.06 0.09 0.31 1.05 3.08 9.05 45.79

Table 2: Comparison of run times (in seconds) between hdlm and cv.glmnet. Notice
that the latter calls the former 10 times. A β with a support of size 1, and a signal to noise
ratio of about 2 was used throughout.

Number of Bootstrap Runs: 2 20 100 250
1 core 1.43 9.07 44.20 82.75

2 cores 1.21 5.93 23.11 42.29
4 cores 1.15 3.91 20.63 28.05

Table 3: Comparison of run times (in seconds) for various number of used cores and num-
ber of bootstrap runs.

Actual run times for various sample and model sizes for default options are given in
Table 2. As seen in the profiling table, the computation time of hdlm is dominated by calls
to cv.glmnet. For model sizes less than about 500, the code runs fast enough to consider
results coming in ‘real time’. Models approaching 25 thousand variables take long enough
that a user would likely set it up while performing another task, as it may take upwards of
10 minutes. While this may seem like a long time, given that (outside of simulation runs)
such large datasets typically take a very long time to clean and acquire, a 10 minutes wait
for an analysis of the data is generally not terribly inhibitive.

Using foreach by [19], we are able to provide a parallel execution for both the frequen-
tist and Bayesian hdlm implementation. This package allows the user to declare a number
of parallel backends (e.g., MPI, or multicore), so that the most appropriate method for a
given workstation or cluster may be used. The frequentist hdlm method can be imple-
mented as an embarrassingly parallel algorithm, where different cores compute different
bootstrap runs. The Bayesian implementation on the other hand, is executed in parallel by
conducting independent MCMC runs and pasting all of the runs together before calculat-
ing p values, point estimators, and confidence intervals. The computational performance
of the parallelized code is given in Table 3, which uses the parallel backend provided by
doMC. These runs were performed on a single four core server, though given the lack of
communication between threads, similar performance is expected when running in other
architectures. We see, unsurprisingly, that as the number of bootstrap runs increases, the
advantage of a parallel execution increases. With a high bootstrap count, the advantage
appears to (and should) approach near perfect parallelization.

6. Further discussion

We have presented the basic functionality and design choices of the package hdlm. Our
hope is that it will be be a useful tool for data analysis and as well as for testing new model
selection algorithms. As previously discussed, additional linking functions which allow
for a wide variety of options and model selectors are included as additional R code in the
package documentation available via CRAN.

While the primary purpose of the package is to construct regression tables, we have
found two related uses which work quite nicely. By setting the option M = 0, the function
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returns a simple point estimator using the inputted model selection routine allowing the
package to serve as a convenient wrapper function when applying a variety of algorithms
to a single dataset. On a separate point, by setting the option refit = TRUE all variables
with a p value below a given cut-off are used to refit a model using the whole set of obser-
vations. While the resulting p values and standard errors cannot be trusted, the predicted
point estimator often outperforms the unfit version in terms of both parameter estimation
and prediction. See, for instance, [17] for more details.

A planned future extensions of hdlm is to extend the current methods for sparse linear
models to methods for learning the structure of sparse graphical models. As a large amount
of high dimensional data analysis is presented in a network form, such as social network
data, gene interactions, and citation networks, this a generalization would be extremely
useful. This extension is a not a simple task to do well; particularly when considering
the increased computational cost. A simple, node based implementation as suggested by
[15] for instance would require running the equivalent of hdlm separately on each variable.
Additionally, since no low-dimensional template currently exists, even the format of a high
dimensional graphical model selector must be created from scratch.
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