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Abstract
Moving averages or linear filters are ubiquitous in seasonal adjustment and business cycle extraction
methods. For example, software packages like X-12-Arima or Tramo-Seats use Henderson’s and
composite moving averages to estimate the main components of a time series, notably by accounting
for forecasts obtained from an ARIMA modelling. When estimating the most recent points, all these
methods must rely on asymmetric filters, whose main drawback is to induce phase shift effects
that usually impact the real-time estimation of turning points. Here, we first propose a timeliness
criterion included in a global procedure to compute moving averages minimizing the phase shift.
Second, by drawing up a general unifying framework, we get a theoretical link between this way
of designing moving averages, the filters based on minimized revisions purposes and a recently
developed data-driven procedure called the Generalized Direct Filter Approach. Consequently, we
also show that the results obtained for moving averages can be easily extended to any kind of linear
filters, like the Hodrick-Prescott filter. Empirical results and comparisons on real time series data
will be eventually presented.
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1. Introduction

Moving averages or linear filters are ubiquitous in seasonal adjustment and business
cycle extraction methods. For example, the commonly used software package X-12-Arima
uses Henderson’s and composite moving averages to estimate the main components of a
time series. Symmetric filters are applied to the center of the series, but when it comes
to the estimation of the most recent points, all these methods must rely on asymmetric
filters. X-12-Arima or Tramo-Seats apply symmetric averages on forecasts obtained from
an ARIMA modeling of the series. As forecasted values are linear combinations of past
values, it turns out that these methods use asymmetric moving averages at the end of the
series.

If these asymmetric moving averages have good properties regarding the size of future
revisions induced by the smoothing process (see [2, 3, 8]), they also induce phase shifts
that usually impact the real-time estimation of turning points. Figure 1 gives an illustration
of this phase shift problem. The thick black line represents the “true value” of the trend-
cycle of the French industrial production index estimated in June 2010 with X-12-Arima.
A turning point can be observed in January or February 2001. The colored lines show the
successive estimates of the trend-cycle obtained with X-12-Arima using data up to March
2001, April 2001 .... October 2001. It is only in June 2001, and in fact 4 or 5 months after
the real date, that the turning point can be noticed.

In this paper, we propose a timeliness criterion which allows us to compute moving
averages minimizing the phase shift. By drawing up a general unifying framework, we
get a theoretical link between this way of designing moving averages, the filters based on
minimized revisions purposes and a recently developed data-driven procedure called the
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Figure 1: Real-time estimation with X-12-Arima.
The thick black line represents the “true value” of the trend-cycle of the French industrial production index estimated in June 2010 with X-12-Arima. The colored

lines show the successive estimates of the trend-cycle obtained with X-12-Arima using data up to March 2001, April 2001 .... October 2001.

Generalized Direct Filter Approach (see [11, 12, 13]). Consequently, even if we focus here
on moving averages whose coefficients do not depend on the characteristics of the series,
the results can be easily extended to any kind of moving averages.

Section 2 gives some definitions, identifies mathematically both main effects (gain and
phase shift) of linear filters and shows how moving averages preserving some trends or
cancelling some seasonalities can be designed. Section 3 presents the revision criterion
introduced by John Musgrave in 1964 and draws a parallel with the Wildi’s Direct Filter
Approach, the generalization of which emphasizes the necessity of minimizing the phase
shift. Section 4 then shows that the construction of such linear filters can be seen as partic-
ular cases of a same very general unifying framework. By varying some modeling assump-
tions, it provides a large class of linear filters, data independent as well as data dependent,
including not only those based on revisions, but also some well-known moving averages
like Henderson’s ones. The generalized Direct Filter Approach then yields an interesting
point of comparison to the new Timeliness criterion introduced in Section 5, that permits
to minimize the phase shift effects. Finally, in Section 6, we present the global procedure
to construct asymmetric moving averages that induce a phase shift as small as possible,
followed by some empirical results.

2. Moving averages: definitions and design

From now on, let (Xt)t∈Z denote a time series that can be usually considered as the
sum of three components - the trend-cycle TCt, the seasonality St and the irregular com-
ponent It - with Xt = TCt + St + It. In case of a multiplicative model, the logarithmic
transformation of (Xt)t∈Z should be rather considered. Moving averages are the basic tool
of the X-12-ARIMA seasonal adjustment method and are used to estimate these three main
components1.

1In X-12-Arima and Tramo-Seats, the other components, namely the outliers and the trading-day effects,
are detected and estimated before the seasonal adjustment procedure per se (see [7] for a detailed presentation
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2.1 Definitions

Let p and f be two nonnegative integers and θ = (θ−p, . . . , θ+f )′ a vector of p+ f + 1
real numbers. The moving average Lθ is then defined as the linear endomorphism of the
vector space of time series which associates to every series (Xt)t∈Z, also called the input
signal, the series (Yt)t∈Z = (LθXt)t∈Z, also called the output signal, such that:

∀t ∈ Z, Yt = LθXt =

+f∑
k=−p

θkXt+k.

The value at instant t of the unadjusted series is therefore replaced by a weighted aver-
age of p “past” values of the series, the current value, and f “future” values of the series.

• The quantity p+ f + 1 is called the moving average order.

• When p is equal to f , that is, when the number of points in the past is the same as
the number of points in the future, the moving average is said to be centered.

• If, in addition, θ−k = θk for any k, the moving average is said to be symmetric.

Generally, the observationsXt are available only for a finite set of indices t = 1, . . . , T .
Consequently, with a moving average of order p + f + 1 calculated at instant t with p
points in the past and f points in the future, it will be impossible to smooth out the first p
values and the last f values of the series. In the X-11 method, symmetric moving averages
play an important role; but, to avoid losing information at the ends of the series, they are
supplemented with ad hoc asymmetric moving averages.

If we want for example to get an estimation of the trend-cycle from the decomposition
model Xt = TCt + St + It using the moving average Lθ, it should be desirable that
Lθ remove the seasonality St, reduce the irregular component It as much as possible and
preserve the trend-cycle TCt.

2.2 Preserving trends and removing seasonalities

It is possible to design a moving average, i.e. determining the set of coefficients {θk},
that preserves simple trends, particularly polynomials. For instance, for any moving aver-
age to preserve constant series Xt = a, it is necessary that a = LθXt =

∑
k θkXt+k =

a·(
∑

k θk), and therefore that the sum of the coefficients of the moving average,
∑+f

k=−p θk,
be equal to 1. When looking at preservation of straight lines Xt = at + b, it is necessary
that, for any t, at+b = LθXt =

∑
k θk [a(t+ k) + b] = (at+ b)·(

∑
k θk)+a·(

∑
k kθk),

which results in
∑+f

k=−p θk = 1 and
∑+f

k=−p kθk = 0. Generally, it can be shown that for a
moving average to preserve a polynomial of degree d, it is necessary and sufficient that its
coefficients satisfy the following conditions:

+f∑
k=−p

θk = 1 and
+f∑
k=−p

kjθk = 0, j = 1, . . . , d.

It is also possible to design a moving average that cancels a seasonality which can
evolve polynomially with time. Let us note St = (a0 + a1t

1 + a2t
2 + . . . + adt

d)ut
where ut is a periodical function with period `. And let us define n the integer satisfying
p+ f + 1 = n` where p+ f + 1 is the order of the moving average.

of the X-12-Arima algorithm).
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It can be shown2 that for a moving average to cancel a seasonality evolving like a
polynomial of degree d, it is necessary and sufficient that its coefficients satisfy:

∑n−1
j=0 θk−j` −

∑n−1
j=0 θf−j` = 0∑n−1

j=0 (k − j`)θk−j` −
∑n−1

j=0 (f − j`)θf−j` = 0

. . .∑n−1
j=0 (k − j`)dθk−j` −

∑n−1
j=0 (f − j`)dθf−j` = 0

Preserving trends and removing seasonalities imply therefore that the choice of coeffi-
cients is generally subject to some minimal linear constraints. More generally, the subset
of admissible vectors θ in Rp+f+1 - i.e. the subset of vectors satisfying every constraint -
is supposed to be convex and will be denoted by Θ.

2.3 Gain and phase shift effects

To identify both main effects of the moving averages, let us now consider an harmonic
time series at frequency ω, Xt(ω) = eiωt. The transform of Xt by any moving average Lθ

will be:

Yt = LθXt =

+f∑
k=−p

θkXt+k =

+f∑
k=−p

θke
iω(t+k) =

 +f∑
k=−p

θke
iωk

 ·Xt

Mathematically, the harmonic time series appear as the eigenvectors of operator Lθ, whose
eigenvalues are respectively the values taken by the transfer function of the filter, L̂θ

(
eiω
)

=∑+f
k=−p θke

iωk.
If, for any frequency ω, ρθ (ω), ϕθ (ω) denote respectively the modulus and the argu-

ment in ] − π;π ] of this transfer function, then we have Lθe
iωt = ρθ (ω) ei[ωt+ϕθ(ω)], or,

to stay within real time series domain,

Lθ cos (ωt) = ρθ (ω) cos [ωt+ ϕθ (ω)] .

Applying a moving average to an harmonic time series then transform it in two different
ways : on the one hand, by multiplying it by an amplitude coefficient ρθ (ω); on the other
hand, by ‘shifting’ it in time by ϕθ (ω) /ω, which directly affects the detection of turning
points. In signal theory, ρθ (ω) and ϕθ (ω) are simply the gain and the phase of the transfer
function L̂θ

(
eiω
)
. For any stationary time series (Xt)t∈Z, its component at frequency ω is

then affected by these two distinct effects.

3. Optimal moving averages based on revision criteria

3.1 Musgrave’s approach

The filters commonly used for seasonal adjustment are derived by tuning their char-
acteristics to application purposes, like minimization of revisions. In particular, Doherty
([2]) reviewed the method of Musgrave ([8]) for calculating the X-12-Arima trend-cycle
asymmetric averages. A summary of this method is given hereinafter.

Let {w1, . . . , wN}withN = 2p+1 be the weights of the Henderson’s moving average,
the definition of which is recalled in section 4.2. Let also {θ1, . . . , θM} − with p + 1 ≤
M ≤ 2p and

∑M
i=1 θi = 1 − be one of the p vectors of Musgrave’s asymmetric averages.

2see [4] for a complete proof
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There are p such averages, one for each of the last p points. Assume that M is fixed and
that the last data points of the time series follow a simple linear trend of the following form,

Xt = a+ bt+ εt, (1)

with the εt’s being uncorrelated random variables with zero mean and variance σ2 (It should
be understood that the parameters a, b and σ2 refer to those at the end of the time series,
and that they can change with time as more data become available). Then the weights
{θ1, . . . , θM} that minimize the expected squared revision,

R (θ) = E

(
M∑
i=1

θiXi −
N∑
i=1

wiXi

)2

,

under the constraint
∑M

i=1 θi = 1, are given by

θi = wi +
1

M

2p+1∑
j=M+1

wj +

(
i− M+1

2

)
D

1 + M3−M
12 D

2p+1∑
j=M+1

(
j − M + 1

2

)
wj ,

where D = b2/σ2. Note here that for M fixed, the index i varies from 1 to M .
In X-12-Arima, as in X-11, the order of the Henderson’s moving average used to obtain

an estimate of the trend-cycle is based on a “I/C-ratio” which is computed as

I/C =
Σ |It − It−1|
Σ |Ct − Ct−1|

when the series Xt is expressed as the sum of a trend-cycle Ct and an irregular component
It. Under the additional assumption that the εt’s have a normal distribution, the value of
D and I/C are related by the formula D = 4/(π(I/C)2) (see for example Doherty [2]).
In X-12-Arima, I/C = 1.0, 3.5 and 4.5 are used with the 9, 13 and 23-term Henderson’s
averages respectively and for the Musgrave’s surrogates.

Actually, the approach adopted by Musgrave can be easily generalized in different
ways, especially by considering less specific models to describe the series and by choos-
ing other kinds of benchmark symmetric weights wi. Thus, suppose that the last 2p + 1
data points of the time series follow a polynomial trend of degree d and that we have, for
t = −p, . . . ,+p, Xt = a0 + a1t

1 + . . . + adt
d + εt, where (εt)t is a random station-

ary process with zero mean. With matricial notations, these assumptions can be rewritten
as follows: X = Aβ + ε, with X = [X−p, X−p+1, . . . , X+p]

′, β = [a0, a1, . . . , ad]
′,

ε = [ε−p, ε−p+1, . . . , ε+p]
′ and

A =


1 −p (−p)2 . . . (−p)d
1 −p+ 1 (−p+ 1)2 . . . (−p+ 1)d

...
...

...
...

...
1 +p (+p)2 . . . (+p)d

 .

If w = (w−p, . . . , w+p)
′ denotes the vector of the benchmark symmetric moving average

coefficients and θ = (θ−p, . . . , θ+p)
′ the vector of the asymmetric moving average (with

its coefficients θk equal to 0 if p + 1 ≤ k ≤ f ), the revision criterion to be minimized can
be then expressed as:

R (θ) = E

 +p∑
i=−p

θiXi −
+p∑
i=−p

wiXi

2

= (θ −w)′R(θ −w)

where, as E(ε) = 0 and Var(ε) = Σ, matrix R is given by :

R = E(XX′) = E
[
(Aβ + ε)(Aβ + ε)′

]
= Aββ′A′ + Σ.
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3.2 Towards the Generalized Direct Filter Approach

Heretofore, the way to derive moving averages regarding optimal revision purposes is
guided by parametric modelings, which force to make more or less strong assumptions on
the input time series. Conversely, a non-parametric approach can also be considered. By
only assuming that the filter error, i.e. the difference between the benchmark symmetric
filtered signal and the asymmetric filtered one, is a stationary process, the Direct Filter
Approach (DFA, see [11, 12]) consists first in “translating” the revision criterion to be
minimized in the frequency domain. For stationary processes Xt, the mean squared filter
error can indeed be expressed as

E (LθXt − LwXt)
2 =

∫ 2π

0

∣∣∣L̂θ

(
eiω
)
− L̂w

(
eiω
)∣∣∣2 dHX (ω) , (2)

where HX (ω) is the unknown spectral density of Xt. The weights θ of the asymmetric
filter can then be computed by minimizing an estimation of the right-hand term of equation
2, based on a discretization of the interval [0; 2π]. The case of non-stationary integrated
processes can be also handled within this framework, insofar as cointegration between both
filtered signals can be easily satisfied by imposing linear constraints on vector θ, like those
presented in section 2.

The main interest of this procedure lies in the fact that it is now possible to split the
revision criterion into two distinct effects, one related to the gain and one related to the
phase of the transfer functions. Indeed, as noticed by Wildi (see [13]), we have :∣∣∣L̂θ

(
eiω
)
− L̂w

(
eiω
)∣∣∣2
= (ρθ (ω)− ρw (ω))2 + 2ρw (ω) ρθ (ω) [1− cos (ϕθ (ω))]

= (ρθ (ω)− ρw (ω))2︸ ︷︷ ︸
Gain effect

+ 4ρw (ω) ρθ (ω) sin2 (ϕθ (ω) /2)︸ ︷︷ ︸
Phase shift effect

. (3)

The previous equations are derived from the fact that the phase function of a symmetric
filter is real, so that its corresponding phase ϕw (ω) is always equal to 0 or π. In our
scope of interest, we naturally suppose the latter is actually null (i.e. the transfer function is
positive), at least at low frequencies. Indeed, classical constraints imposed to the filters, like
preserving constant trends, are in agreement with such an assumption, since, for instance,
condition

∑
k wk = 1 implies that L̂w (0) be equal to 1 and, by continuity arguments,

ϕw (ω) be null at low frequencies.
Thanks to this factorization of the revision criterion, we are now able to deal with the

trade-off between reliability and timeliness aspects, by emphasizing more or less the phase
shift effect and by attaching varying importance to the different frequency components,
depending on whether they appear in the spectrum of the initial time series or not. Thus,
Wildi first suggests to modify the revision criterion in the following way,∫ 2π

0

∣∣∣L̂θ

(
eiω
)
− L̂w

(
eiω
)∣∣∣2W (ω) dHX (ω)

+ 4λ

∫ 2π

0
ρw (ω) ρθ (ω) sin2 (ϕθ (ω) /2)W (ω) dHX (ω) , (4)

where λ is a tuning factor, balancing the gain and phase shift components, and W (ω) is a
frequency weighting function. Increasing λ amounts to giving priority to the minimization
of the phase error and so to the real-time detection of turning points - or more generally of
trend changes.
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As mentioned previously, the presence of phase shift effects is mainly due to the asym-
metry of the filter, or equivalently to the fact that the tranfer function is complex. Conse-
quently, another way to reduce them consists in giving an higher weight to the imaginary
part of the transfer function in the criterion to be minimized. To generalize the DFA, Wildi

has then proposed recently to replace L̂θ

(
eiω
)

by <
(
L̂θ

(
eiω
))

+ i

√
1 + 4λL̂w (eiω) ·

=
(
L̂θ

(
eiω
))

in (2), where < and = denote the real part and the imaginary part respec-
tively. Developing expression (2) by accounting for this surrogate and weighting frequen-
cies leads him eventually to minimize a discretized version of the following criterion:∫ 2π

0

∣∣∣L̂θ

(
eiω
)
− L̂w

(
eiω
)∣∣∣2W (ω) dHX (ω)

+ 4λ

∫ 2π

0
ρw (ω) ρ2θ (ω) sin2 (ϕθ (ω))W (ω) dHX (ω) . (5)

Unlike the previous criterion given in (4), the latter is a quadratic function of the filter
coefficients, making it easier to solve the minimization problem from a computational point
of view.

4. A general unifying framework to derive linear filters

4.1 From the revision criteria to a very general optimization problem

The revision criterion on which Musgrave’s approach and the DFA are based is nothing
else but a distance measure between the output signal and what the latter would be if we
were not confronted with the lack of observations in the future. Actually, the choice of the
distance measure as well as the time series to which the output signal is compared can be
widened. The ways to derive linear filters presented in section 3 are encompassed within
the following more general optimization problem,{

min
θ

E
[
[∇q (LθXt − ut)]2

]
subject to Cθ = a,

(6)

where ∇ is the discrete differentiation operator on time series, ∇Xt = Xt − Xt−1, and,
for any integer q ≥ 1, ∇q = ∇ ◦ ∇q−1 = ∇ ◦ . . . ◦ ∇︸ ︷︷ ︸

q factors

(with ∇0 denoting the identity

function). The filter coefficients are chosen by minimizing the q-th difference of the dis-
crepancy between the output signal and any benchmark time series (ut)t∈Z. Moreover,
they must satisfy some given linear constraints, for which the equality Cθ = a provides a
matricial notation. The number of rows of matrix C and vector a is equal to the number of
constraints. Because the latter are supposed to be linearly independent, we assume that C
is a full row rank matrix.

The benchmark time series ut is chosen to yield a rough estimate of the trend-cycle of
the initial signal Xt. It can be either deterministic or stochastic and may depend itself on
the filter coefficients. The order of differentiation and the linear constraints are chosen so
that the filter satisfy expected properties like preserving trends and removing seasonalities.
In this way, they can ensure that the process∇q (LθXt − ut) be stationary.

Moreover, beyond these considerations, the choice of modeling assumptions to apply
to the initial time series is completely free. By varying these assumptions, we obtain a
very large class of linear filters. Musgrave’s moving averages and the DFA are obtained by
choosing q = 0 and ut = LwXt. In the first case, a parametric model is used whereas, in
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the second case, the filter coefficients are computed thanks to a non-parametric estimation
of the data spectral density. Actually, in the next subsection, we will see that more con-
straining assumptions can lead to well-known filters which depend neither on the data nor
even on the date of estimation.

4.2 Classical particular cases

4.2.1 Fidelity

A first application of the general framework given in 4.1 provides simple moving av-
erages suggested by Bongard (see [1]). Indeed, Bongard’s approach consists in choosing
moving averages having a strong attenuation effect on the irregular component, once trends
have been preserved and seasonalities removed. In the decomposition of the unadjusted se-
ries, the residual is often modeled in the form of a white noise εt with zero expectation
and constant variance σ2. This white noise is transformed by the moving average into a
sequence of random variables, ε∗t , with a constant variance equal to σ2

∑+f
k=−p θ

2
k. Re-

ducing the irregular component, and therefore its variance, then amounts to reducing the
criterion

∑+f
k=−p θ

2
k. The output signal is supposed to be ‘as close as possible’ to the input

signal where noise components are removed; that is why this criterion will be called here
the ‘Fidelity’ criterion, denoted by F (θ). Considering additive white noises, the ’Fidelity’
criterion is a very simple positive quadratic form,

F (θ) =

+f∑
k=−p

θ2k = θ′Fθ,

with F being the identity matrix of order p + f + 1. This way of designing linear filters
can be directly obtained by considering the general problem (6), with q = 0 and where ut
is the deterministic benchmark time series ut = E (LθXt).

4.2.2 Smoothness

X-12-ARIMA uses Henderson’s moving averages to extract the trend-cycle from an
estimate of the seasonally adjusted series (Tables B7, C7, D7, D12). In the additive case,
the model which is considered then becomes Xt = TCt + It. Henderson suggests to use
a moving average derived from a criterion which ensures a smooth estimation of the trend-
cycle. Let us consider the Dirac time series δt0t , equal to 1 at instant t = t0 and to 0 at any
other instant. Its transform by a moving average Lθ of order p + f + 1 with coefficients
{θk}, is given by:

Lθδ
t0
t =

{
θt0−t if t0 − f ≤ t ≤ t0 + p
0 otherwise

.

This transform will therefore be smooth if the coefficient curve of the moving average is
not too irregular. Noting that the vector space of time series is generated by the Dirac
ones, since any time series Xt can be written as Xt =

∑
t0∈ZXt0δ

t0
t , Henderson [5, 6]

proposes to use the quantity S =
∑

k

(
∇3θk

)2 to measure the ‘flexibility’ of the coefficient
curve. The notation ∇, introduced in section 4.1 as a linear operator on time series, is
extended with a similar meaning onto the set of vector coefficients θ, i.e. (∇θ)k = ∇θk =
θk − θk−1. Quantity S vanishes when the coefficients {θk} are located along a parabola.
In the general case, it measures the difference between a parabola and the form of the
coefficient curve. Henderson then looked for centered averages that preserve quadratic
polynomials and minimize S.
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Minimizing Henderson’s criterion, or more generally the ‘Smoothness criterion’

S (θ) =
∑
k

(∇qθk)2 ,

aims at getting quite regular output signals. Notice that S (θ), as the previous ‘Fidelity’
criterion, is also a positive quadratic form over Rp+f+1. For instance, if we consider Hen-
derson’s case q = 3, we have S (θ) = θ′Sθ, where S is the following symmetric Toeplitz
matrix :

S =



20 −15 6 −1 0 . . . 0

−15 20 −15 6
. . . . . .

...

6 −15 20
. . . . . . . . . 0

−1 6
. . . . . . . . . 6 −1

0
. . . . . . . . . 20 −15 6

...
. . . . . . 6 −15 20 −15

0 . . . 0 −1 6 −15 20


.

Actually, let us extend the notation of the filter coefficients by stating that θk = 0 for any
integer k /∈ [−p; +f ]. We have then : ∇q (LθXt) = (−1)q

∑
k∈Z (∇qθk)Xt+k−q. Thus, if

we consider similar assumptions on the irregular component to those made for the Fidelity
criterion in section 4.2.1, Henderson’s approach then appears to be a particular case of
problem (6) where ut is the deterministic benchmark time series ut = E (LθXt) again, but
q is now a positive integer.

Other classical linear filters, like the Hodrick-Prescott filter, can also be considered as
particular cases of problem (6).

5. The Timeliness criterion

5.1 Minimizing the phase shift

As suggested in section 2.3, an approach to reduce the observed phase shift between
any input signal and its corresponding output signal could consist in searching for moving
averages which introduce a small phase shift when they are applied to harmonic signals(
eiωt
)
t∈Z. In other words, we are going to search for vectors θ such that the phase ϕθ (ω)

of filter Lθ be close to 0. Such an approach should provide moving averages with a priori
satisfying properties in terms of phase shift, whatever the input signal to which they are
applied.

If a vector θ is such that ϕθ (ω0) = 0, then it guarantees that both signals
(
eiω0t

)
t∈Z

and
(
Lθe

iω0t
)
t∈Z be in phase, but this property is no more satisfied for any pair of signals(

eiωt
)
t∈Z and

(
Lθe

iωt
)
t∈Z as soon as we consider a frequency ω different from ω0. In

fact, as the transfer function is regular and the phase is supposed to be wihin the range
] − π;π ], it can be only stated that the phase ϕθ (ω) is also a regular function and thus
is close to 0 in a neighbourhood of ω0. As any stationary signal can be decomposed into
linear combinations of harmonic signals characterized by different frequencies, the filter
coefficients θ must be actually chosen among those for which the phase function is close to
0, whatever the frequency ω. Practically, we will rather consider the range of frequencies
]ω1;ω2 [ which belong to the spectrum of stationary components of time series to which
the moving average Lθ will be applied, with 0 ≤ ω1 ≤ ω2 ≤ 2π.

Besides, when filtering, the harmonic component of the input signal at frequency ω is
multiplied by an amplitude factor equal to the modulus function. Therefore, it is natural to
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consider that the impact of the phase shift on the harmonic component at frequency ω will
be all the more significant so as the value ρθ (ω) taken by the modulus function is high.

As a consequence, in order to reduce the phase shift effects between input and output
signals, we suggest the use of a moving average whose coefficients minimize the following
criterion, ∫ ω2

ω1

f [ρθ (ω) ;ϕθ (ω)] dω, (7)

where the function f , defined over [ 0; +∞ [ × ]−π;π ] is chosen beforehand and satisfies
the six following conditions:

1. f ≥ 0

2. f (ρ, 0) = 0

3. f (0, ϕ) = 0

4. f (ρ, ϕ) = f (ρ,−ϕ)

5. ∂f
∂ρ ≥ 0

6. ϕ · ∂f∂ϕ ≥ 0

From now on, the function f is called the penalty function. Conditions 1 and 2 assure
that this function is minimized when the phase is null. Conditions 4 and 6 mean that, in the
criterion (7), the phase is penalized only in function of its distance from 0, all the more so as
such a distance is high. Moreover, condition 5 means that, the more a frequency is amplified
by the filter, the more the corresponding phase shift should be reduced. Eventually, in the
limit case of a frequency cut off by the filter, condition 3 stipulates that it is unnecessary to
give a non null weight to the corresponding phase in the criterion.

5.2 The choice of a convenient penalty function

Now, the penalty function has to be chosen. It would be desirable to find a function
satisfying the six previous conditions such that the problem consisting in minimizing (7)
can be solved analytically or, if it is not possible, by using numerical algorithms. In the
latter case, we must then be able to prove the existence of both a theoretical solution and
a numerical algorithm converging quickly to this solution. A penalty function f providing
a convex criterion would be suitable since minimizing the quantity given in (7) would then
become a classical convex optimization problem for solving of which some converging
numerical algorithms are well-known (gradient methods,...).

Proposition 1 (A first family) : For any k > 0 and ` > 0, the function (ρ, ϕ) 7−→ ρk |ϕ|`
satisfies the six conditions imposed on the penalty function appearing in criterion (7).

However, it seems better to force the second parameter ` to be greater than or equal to 1.
Otherwise, the partial derivative |∂f/∂ϕ| would tend to +∞ when ϕ tends to 0 ; non-null
phases close to 0 would be too much penalized.

Proposition 2 (A second family) : For any k > 0 and ` > 0, the function (ρ, ϕ) 7−→
ρk
∣∣sin (ϕ2 )∣∣` satisfies the six conditions imposed on the penalty function appearing in cri-

terion (7).
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Once again, we can recommend the use of a function with a parameter ` greater than or
equal to 1. Let us notice that functions of this second family are 2π−periodic with respect
to the variable ϕ (so that it would be no more necessary to force the phase to belong to
]− π;π ]).

Here, we suggest choosing the penalty function given in proposition 2 with parameters
k = 1 et ` = 2. In other words,

f [ρθ (ω) ;ϕθ (ω)] = ρθ (ω) sin2

(
ϕθ (ω)

2

)
=

1

2

[
ρθ (ω)−<

(
L̂θ

(
eiω
))]

(8)

As shown later, such a penalty function is worthwhile inasmuch as it makes the minimiza-
tion of criterion (7) solvable, at least with classical numerical algorithms. But notice also
that it corresponds exactly to the phase shift effect appearing in (3), which is then empha-
sized in the revision criterion (4) for the Direct Filter Approach. However, in this section,
the filter is supposed to be independent from the data and its phase shift properties are
analysed directly and not compared to those of a convenient symmetric filter.

−π −π/2 π/2 π

0.5

1

0

Figure 2: Penalty function ϕ 7−→ f (1, ϕ) = sin2
(ϕ
2

)
Let now Co (ω) and Si (ω) denote the vectors defined by [cos (−pω) , . . . , cos (fω)]′

and [sin (−pω) , . . . , sin (fω)]′ respectively. Let also Ω (ω) be the square matrix of order
p + f + 1 whose entry lying in the k−th row and the `−th column is given by Ωk` =

cos [(k − `)ω] for any indices −p ≤ k, ` ≤ +f . Note that we have then <
(
L̂θ

(
eiω
))

=

Co (ω)′ θ, =
(
L̂θ

(
eiω
))

= Si (ω)′ θ and Ω (ω) = Co (ω) Co (ω)′ + Si (ω) Si (ω)′, so

that ρ2θ (ω) = θ′Ω (ω)θ. Thus, matrix Ω (ω) is symmetric, positive semi-definite but
non-invertible (its rank is lesser than or equal to 2).

Considering the penalty function given in (8), criterion (7) can be rewritten in the fol-
lowing way:

T0 (θ) =

∫ ω2

ω1

√
θ′Ω (ω)θ dω −

(∫ ω2

ω1

Co (ω) dω

)′
θ (9)

Proposition 3 Criterion T0 (θ) given in (9) is a convex function of the vector of coefficients
θ.

The objective mentioned at the beginning of this section is achieved. Proposition 3
implies that the phase shift minimization problem for the penalty function given in (8), as a
convex optimization problem, has a solution and is solvable by using for instance a gradient
method. For this purpose, let us also give the expression of the gradient of criterion T0 (θ).
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Proposition 4 The gradient of criterion T0 (θ) given in (9) is given by:

∂T0 (θ)

∂θ
=

(
1

2

∫ ω2

ω1

Ω (ω)θ√
θ′Ω (ω)θ

dω

)
−
(∫ ω2

ω1

Co (ω) dω

)

5.3 Variation on the Timeliness criterion

In this section, we propose releasing some constraints on the penalty function to get a
more practical Timeliness criterion from a computational point of view. As already said in
section 3.2, an other way to restrict the phase shift effects consists in reducing the imag-
inary part of the transfer function. By doing so, this boils down to considering the phase
function modulo π and consequently to tolerate antiphases between input and output sig-
nals. Geometrically, this merely means that the distance from the transfer function to the
real line in the complex plane is reduced as much as possible, whereas mathematically
the penalty function f must now satisfy the six conditions given in section 5.1, but with
a slight restriction. Indeed, the sixth condition has to be valid only for phases ϕ in the
interval [−π/2;π/2] and is completed by a seventh one, stipulating that for any phase
ϕ ∈ ]π/2;π ], f (ρ, ϕ) = f (ρ, π − ϕ). A family of penalty functions satisfying the seven
conditions is given below:

Proposition 5 For any k > 0 and ` > 0, the function (ρ, ϕ) 7−→ ρk |sin (ϕ)|` satisfies the
seven conditions imposed on the penalty function appearing in the problem where phase
shift effects are minimized modulo π.

−π −π/2 π/2 π

0.5

1

0

Figure 3: Penalty function ϕ 7−→ f (1, ϕ) = sin2 (ϕ)

Among these functions, the following one, obtained for k = ` = 2,

f [ρθ (ω) ;ϕθ (ω)] = ρ2θ (ω) sin2 (ϕθ (ω)) =
[
=
(
L̂θ

(
eiω
))]2

, (10)

is particularly worthwhile because it makes the minimization of the Timeliness criterion
analytically solvable. Indeed, the latter, denoted by T (θ), is simply a quadratic form :

T (θ) =

∫ ω2

ω1

y2θ (ω) dω = θ′Tθ, (11)
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where T =
∫ ω2

ω1
Si (ω) Si (ω)′ dω is a square matrix of order p + f + 1. After a few

calculations, it can be shown that its entries are given for −p ≤ k, ` ≤ f by:

Tkl =


sin((k−`)ω2)−sin((k−`)ω1)

2(k−`) − sin((k+`)ω2)−sin((k+`)ω1)
2(k+`) if |k| 6= |`| and k` 6= 0

ω2−ω1
2 − sin(2kω2)−sin(2kω1)

4k if k = ` and k` 6= 0
sin(2kω2)−sin(2kω1)

4k − ω2−ω1
2 if k = −` and k` 6= 0

0 if k` = 0

Not surprisingly, controling the phase shift effects by the means of the imaginary part of
the transfer function has led us to a criterion (10) which is exactly the non-data-driven
equivalent of the Generalized Direct Filter Approach summed up in equation (5). Its main
drawback lies in the lack of penalization of antiphases. However, this is not really knotty.
Indeed, for the same reasons as those invoked in section 3.2, the transfer function is close to
1 and therefore the phase function close to 0 at low frequencies. Thus, antiphases can only
occur at higher frequencies, but the constraints usually imposed to the filter coefficients,
regarding trends or seasonalities, aim precisely at removing or at least strongly reducing
the high frequency components of the input signals.

6. Operational procedure and simulations

6.1 A mixed criterion

It is important to notice that there are always an endless number of solutions θ to
the minimization of the Timeliness criterion. For instance, criterion T0 is convex but not
strictly convex, whereas criterion T is only a semi-definite positive quadratic form. For
instance, the latter is null and so reaches its minimum exactly on the whole vector subspace
of symmetric vectors, i.e. of vectors θ such that θk = θ−k for any |k| ≤ min (p, f) and
θk = 0 otherwise.

Classical procedures to choose the coefficients of a moving average have been based
on the minimization of the Fidelity and/or the Smoothness criteria. A quite natural idea
could consist now in mixing them with the Timeliness criterion to account for the various
biases induced by a moving average. Using the notations introduced in section 4.1, 4.2
and 5.3 to depict the linear constraints regarding trends and seasonalities and to compute
the previously mentioned criteria, we suggest the following operational procedure to derive
moving averages minimizing phase shift effects:

Problem 1 (The operational FST procedure){
min
θ
J (θ)

subject to Cθ = a
, where J (θ) = α · F (θ) + β · S (θ) + γ · T (θ) ,

the 3 real numbers α, β, γ being given in the interval [0; 1] and satisfying two conditions,
α+ β + γ = 1 and αβ 6= 0.
Such an optimization problem has a unique solution.

The first condition on real numbers α, β, γ means that the mixed criterion J (θ) is a
convex linear combination of the Fidelity, Smoothness and Timeliness ones. The second
condition guarantees that J (θ) is a strictly convex function, that is why the solution to
problem 1 is unique. Incidentally, the latter is given by θ = J−1C′(CJ−1C′)−1a, where
J = F + S + T. Obviously, Timeliness criterion T (θ) could be replaced by the more
accurate one T0 (θ) presented in formula (9), but resolution of problem 1 would be then no
more analytical.

The problems of the optimal choice of the coefficients α, β, and γ as well as the design
of the matrix of linear constraints will be the core of a next paper.
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6.2 An application to real data

Below is an application to a time series based on real data. Both the raw series (black
line) and the series smoothed by the classical asymmetric Henderson moving average with
p = 9 et f = 3 (purple line) are represented in figure 4. On figure 5, we can see the same
raw time series (black line) and the series now smoothed by the 9-3 Henderson moving
average minimizing phase-shift (purple line). In the areas circled in purple, the moving av-
erage minimizing phase-shift yields a significantly better adjustment in terms of ‘fidelity’
and ‘timeliness’, compared to usual Henderson filters applied in seasonal adjustment soft-
wares.

Figure 4: Raw time series (black) and time series smoothed by classical 9-3 Henderson
moving average (purple)

Figure 5: Raw time series (black) and time series smoothed by the 9-3 Henderson moving
average minimizing phase-shift (purple)
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