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Abstract 
Terminal phase half-life (t1/2) is an important pharmacokinetic parameter characterizing a 
compound. Underestimating t1/2 can result in a shorter-than-necessary dosing interval, 
which in turn can cause undesired accumulation of the compound in the body.  
 
The population t1/2 is estimated by first estimating t1/2 for each subject, and then 
take the average of all the t1/2s to obtain the mean t1/2. However, in current 
practice, the estimated t1/2 for some subjects may be deemed unreliable based on 
certain “reliability criteria”; as a result, these t1/2s are discarded, rendering the t1/2 for 
those subjects a missing value. In this work, we examine the missingness mechanism and 
the overall impact of the missing values on the estimated parameters, and apply that 
concept to the case of estimating mean t1/2; we demonstrate that in some cases, excluding 
these “unreliable” t1/2s can result in the biasness of the mean t1/2. We propose some 
alternative methods to estimate the mean t1/2, in particular, use sensitivity analysis, 
Pattern Mixture Model (PMM) and censoring method. We implement our methods 
through simulation, and show the improvement of our methods over the “traditional” 
method.  
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1. Introduction 

 
In a pharmacokinetics (PK) study, one of the main purposes is to understand how a 
chemical compound behaves once entering a human body.  In other words, 
pharmacokinetics is a study of “what the body does to the drug”. Once entering a human 
body, a drug typically undergoes absorption, distribution, metabolism and excretion 
phases, and metabolism and excretion together are also referred to as “elimination”. 
Figure 1  depicts a “typical” time-concentration profile for an oral dosing in linear scales.  
 
There are a number of important PK parameters that are used to characterize a 
compound’s behavior. These parameters include, but are not limited to,  
 

Cmax ( = maximum concentration)   
 
tmax ( = time to reach Cmax) 
 
AUC0-t ( = area under the time-concentration curve from time 0 to t,  
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where t is the time the last concentration is observed)  
 

AUC0-inf ( = area under the time-concentration curve from time 0 to infinity) 
AUC0-inf    = AUC0-t +AUCt-inf   (see Figure 2). AUCt-inf  is termed the 
“extrapolated AUC”, and is obtained through extrapolating the 
regression slope described in later section.) 
 

t1/2 ( =terminal phase half-life, i.e., the time required for a quantity to fall to half 
 its value as measured at the beginning of the time period). 

 
Half-life is an important pharmacokinetic parameter that characterizes the elimination of 
the compound. Estimated t1/2 is important in determining the dosing interval. If t1/2 is 
estimated incorrectly, the subsequent dosing interval can be predicted incorrectly, and 
thus causing undesired concentration level in a subject’s body, such as below-therapeutic 
level, or unintended accumulation which may in turn cause undesired toxicity or side 
effect. 
 
In general, t1/2 is estimated using Non-Compartmental Analysis (NCA) through a two-
step procedure: first, a t1/2 is estimated for each subject; in the second step, the mean t1/2 is 
estimated and will be used as the estimate of the population t1/2. 
 
In the first step, the half-life is obtained through the following regression model (see 
Figure 3 for illustration): 
 

Ln (Cj) = 0 - 1 (timej) + j 
  j ~ N (, 2) 
 
where C = Concentration, j = t*….t, t* is the first time point in the elimination phase 
after Tmax that is deemed appropriate to estimate the t1/2, and t is the last time point when 
concentration is observed / measureable. The estimated slope parameter ߚመ1 is used as the 

elimination rate constant, ke, and t1/2 is calculated through the following formula: 
 

 t1/2= ln (2) / ke 
   

However, in some cases, the estimated ke for an individual is deemed unreliable; the list 

below summarizes the most commonly used criteria to determine whether an estimated ke  
falls into an “unreliable” category: 
 

1. There should be at least three post- Cmax concentrations in the terminal phase that 

will be used to estimate ke, and these concentrations should not include the 
concentration at Tmax ( i.e., at least 3 points in terminal phase). 

2. The duration of time over which ke is estimated should generally be at least twice 
the subsequently estimated terminal phase half-life (t1/2) ( i.e., t - t* ≥ 2 • t1/2) . 

3. The adjusted regression coefficient (R2
adj) should be generally greater than 0.90 

(i.e., R2
adj  ≥ 0.90).  

4. The extrapolated area in AUC (AUCt-inf) in subsequently estimated AUC0-inf 
should not be greater than 20% of AUC0-inf ( i.e., AUCt-inf  < 20% • AUC0-inf ). 
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If any of the above criteria is not met for an individual, the ke for that individual will be 
discarded, rendering the t1/2  for that individual a missing value. Further, when calculating 

the mean t1/2 for the population, these kes are excluded from the calculation due to the 
missingness.  
  
This raises a question: what is the impact of these missing values on the biasness of the 
mean t1/2, if we only use observed t1/2 for the estimation? 
 
In this work, we examine the missingness mechanism and the overall impact of the 
missing values on the estimated parameters, and apply that concept to the case of 
estimating mean t1/2; we demonstrate that excluding these “unreliable” t1/2s can result in 
the biasness of the mean t1/2. We propose some alternative methods to estimate the mean 
t1/2, in particular, use sensitivity analysis, Pattern Mixture Model (PMM) and censoring 
method. We implement our methods through simulation, show the result of the 
simulation, and compare them vs. the results obtained from the “traditional” method. We 
conclude this work with some discussions on the advantages and limitations of our 
methods. 
 

2. Methods 
 
2.1  Missingness Mechanism 

In general, missingness can be classified into three categories: 
 

1) Missing completely at random (MCAR), which assumes that missingness does 
not depend on either observed or unobserved data. 

2) Missing at random (MAR), which means that missingness is independent of the 
unobserved outcomes after accounting for the appropriate observed data in the 
model. 

3) Missing not at random (MNAR). MNAR means that missingness depends on the 
unobserved values, and cannot be predicted solely based on subject’s observed 
data. 

 
The mechanism of the missingness has an important impact on the biasness of the 
parameters that are estimated using only the observed data. In the first case (MCAR), the 
estimated parameters remain unbiased; in the second case (MAR), if appropriate 
statistical models are used, the estimated parameters can still remain unbiased; however, 
in the case of MNAR, if only observed data are used, the estimated parameters in general 
will be biased.   
 
Applying these principles to the case of calculating t1/2, we can examine the potential 
causes of the missingness for each scenario, and determine, based on the reasons of 
missingness, its impact on the estimated parameter – the mean t1/2. It needs to be noted 
that the potential causes discussed below are neither exhaustive nor mutually exclusive; 
i.e. each scenario may be caused by multiple reasons, and we can only postulate the most 
likely cause.   

 
1) Less than 3 points in the terminal phase 
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 Figure 4 depicts such a scenario. As can be seen, this is most likely due to a long 
absorption phase; so by the time of the last sample collection, it has not or has just 
reached the elimination phase. 

 
2) t - t* ≥ 2 •  t1/2. 

Similar to the previous scenario, this scenario is also likely caused by a long 
absorption phase (see Figure 4). 

 
3) R2

adj < 0.90.  
This scenario most likely reflects a high variability (see Figure 5). 

 
4) AUCt-inf   > 20% • AUC0-inf . 

As can be seen in Figure 6, this is most likely due to a long half-life.  
 
To summarize, the scenarios that can result in a t1/2 being discarded are either due to a 
subject having a long absorption, or high variability, or a long half-life. Further, linking 
these reasons of missingness to the missingness mechanism, we can see that in the case of 
a long absorption, we do not have enough information on the elimination phase, and there 
is no reason to assume that this subject has a long t1/2, so we consider this case MCAR. 
The high variability has nothing to do with unobserved t1/2, so it is also a MCAR. 
However, in the case of AUCt-inf   > 20% • AUC0-inf, the missingness is due to the subject 
having a long half-life, i.e., the missingness of a subject’s t1/2 depends on the unobserved  
t1/2 itself, then this is clearly a case of MNAR, and we will focus our attention to this case. 
In particular, we will focus on the scenario of AUCt-inf   > 20% • AUC0-inf. 
 
In this case, i.e., some t1/2s are discarded due to the subject’s AUCt-inf   > 20%• AUC0-inf, 
in other words, these t1/2s are missing because these subjects have a long t1/2, it is easy to 
see that the mean t1/2 using only observed data is an underestimate of the true population 
mean t1/2, a systematic bias. We propose to use sensitivity analysis, Pattern Mixture 
Model (PPM) and censoring method to handle these MNARs in the next section.   
 
 
2.2  Sensitivity Analysis 

 
Notice that all t1/2s in the case of AUCt-inf > 20% • AUC0-inf  have been calculated for each 
individual at the first place. They were discarded only after the fact that using these 
estimated t1/2 to calculate AUC0-inf and AUCt-inf, the AUCt-inf  is greater than 20% • 
AUC0-inf. So instead of excluding these t1/2s in the calculation of mean t1/2 as in the 
traditional method, we can conduct a sensitivity analysis by simply including these  t1/2s 
to calculate mean t1/2, and compare the result vs. the traditional method. If the results are 
similar, then there is no enough evidence to conclude an MNAR, or a biasness in the 
mean t1/2; however, if the results differ significantly, then it is a clear indication that an 
MNAR and a biasness is highly possible. 
 
 
2.3  Pattern Mixture Model (PMM) 

 
Pattern Mixture Model (PMM) is one of the main classes of models widely used to 
handle MNAR data. To use this model in our problems, we first define the following 
notations. 
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Let Y be a vector representing the outcome variable, in our case, t1/2. With some missing 

values in Y, Y can be decomposed into two sub-vectors: Yobs and Ymis, where Yobs  are 

the observed Ys, and Ymis are the missing Ys. We further define a vector of indication 
variable, R, to indicate the missingness status for each Y: 
 

 Yall = ( Yobs, Ymis). 
 

 Ri = 1, if Yi is observed, i=1…..n 
      = 0, otherwise 
 
If Y can be expressed as a function of some covariates, X, then the joint distribution of Y 
and R in the PMM model can be expressed as follows: 
 

P (Yobs, Ymis, R | X) = p (Yobs, Ymis | R, X) p (R | X)      
                                        

Since there is no covariate in our problem, the PMM model can be simplified as 
    

  p (Yobs, Ymis, R)  

= p (Yobs, Ymis | R) p (R)   

= p (Yobs | R)   p (Ymis | Yobs, R)  p (R)  
        

This model implies that conditioning on R, the missingness status, there can be different 

distributions of Ys. In other words, Yobs may have a different distribution from Ymis. Our 

interest is to estimate the mean of Yall. This can be achieved by integrating over p (Yall), 
the marginal distribution of Y, and the marginal distribution of Y can be obtained through 

integrating over the joint distribution of Yall and R over R, i.e., take some weighted 

average over all missingness status, if both p(Yall) and p (R) are observed.  
 

However, in our case, p (R ) and  p (Yobs | R)  are observed, but not p (Ymis | Yobs, R), so 

we need to impose some identifying restrictions on p (Ymis | Yobs, R). In other words, we 
need to impute some values to the missing t1/2s, and then take some weighted average to 
obtain the mean t1/2. 
 
The missing t1/2 problem has some similarities with the problem of “below quantification 
limit (BQL) in concentration data, in that a quantity is unobserved either because the 
quantity is too small (below the limit of quantification), or the quantity is too large (too 
long of a t1/2). So we can borrow some ideas from the methods to handle BQL data to our 
problem. 
 
In the BQL problem, a BQL value is usually imputed as 0, or the QL (quantification 
limit), or one-half of QL. In 2001, Professor S. Beal published a paper[1]  that summarized 
7 commonly used methods to deal with the BQL problem, and one of the methods is the 
PMM model; however, the difference between our problem vs. BQL problem is that, in 
our problem, it is not clear what the “quantification limit” is, i.e., we know we have t1/2s 
that are longer than we can measure; however, there is no pre-existing “quantification 
limit” or a threshold as in the concentration data, so we cannot simply apply the methods 

Biopharmaceutical Section – JSM 2012

581



summarized in Beals’ paper. We need to first define our own “quantification limit” or 
threshold and then use that in our imputation. 
 
One natural and evident candidate for the imputation is to use the boundary value itself 
on an individual level. As mentioned before, in the case of AUCt-inf  > 20% AUC0-inf, 
some individual’s t1/2 are excluded because their AUCt-inf  > 20% AUC0-inf. However, if 
we can find a t1/2, bdy, such that with that t1/2, bdy, that subject’s AUCt-inf, bdy  = 20% AUC0-

inf, bdy , then that subject’s t1/2, bdy will not be discarded, and we will not have a missing t1/2 
for that subject (see Figure 7). We know t1/2, bdy < true t1/2; but to impute t1/2, bdy as t1/2 is 
definitely better than to completely discard t1/2 and treat it as missing. 
 
To find t1/2, bdy, we first fix the AUCt-inf, bdy at 20%AUC0-inf, bdy, i.e., assuming  
 

 AUC0-t / AUCt-inf, bdy = 4.0 
 

In the above equation, AUC0-t is observed, but AUCt-inf, bdy  is unknown, though it can be 
solved through the above equation. The AUCt-inf, bdy  obtained through the above equation 
implies that it equals 20% AUC0-inf, bdy. We can then use the formula below to calculate 
ke, bdy , and further use ke, bdy  to calculate t1/2, bdy. 
 
   AUCt-inf  = Clast / ke 
 
Alternatively, instead of using boundary values from each individual, we can use some 
quantities based on observed t1/2s from the observed population. We know the missing 
t1/2s are long t1/2s, so we can consider the following statistics based on all observed t1/2s, 
and use them to impute the missing t1/2s: 
 

1) the upper limit of the 95% CI for mean t1/2  
2) the 90 percentile of the t1/2 
3) maximum  t1/2  

 
 

2.4 Censoring Method 
 

As discussed previously, we do not know the exact value of these missing t1/2s; but we do 
know that they are longer than certain values. So these missing t1/2s can be considered as 
censored variables, we just need to find the censoring values, i.e., the “threshold” at 
which they are censored. We can then use likelihood function that handles censoring data 
to solve for the mean t1/2.  
 
For the censoring values, we can simply use all the threshold or statistics proposed in the 
PMM section, i.e.,  
 

1) boundary value  t1/2, bdy for each subject,  
2) the upper limit of the 95% CI for mean t1/2 based on all observed t1/2s ,  
3) the 90 percentile based on all observed t1/2s 
4) maximum t1/2  based on all observed t1/2s.  
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Note that instead of imputing these quantities on the missing t1/2s as in PMM, we only use 
them as the censoring values for the missing t1/2 here; and for the purpose of making 
inference of the mean t1/2, there is no need to impute the t1/2 for each subject, we can 
simply obtain the estimated mean t1/2 by solving the likelihood function. Also note that 
there is another main difference between PMM and censoring method. As mentioned 

before, in PMM, the Yobs may have a different distribution than Ymis; while in censoring 
method, they are assumed to come from the same distribution, and the reason for the 
missingness is due to the fact that these values are beyond certain threshold and cannot be 
measured, and are thus censored.  
 
The general form of the likelihood function that contains some censored data can be 
expressed as the following: 
 

L (Y; )=∏ ݂ሺ݅ݕ; ሻ௜:ோ௜ୀଵߠ ∏ ܵሺ݅ݕ; ሻ௜:ோ௜ୀ଴ߠ   

where  

 S (yi; ) = 1 – F (yi; ). 

Since we assume a normal distribution for the Y, i.e.,  
Yi ~ N (, 

It follows that 

 S (yi; )  = 1 - (( c - ) / )  
where c = censoring value 
 
We can estimate  directly from the likelihood function, and SAS Proc Lifereg can be 
used to obtain the estimates.   

3. Simulations and Results 
 
We implement the proposed methods in our simulation, and compare the results vs. the 
traditional method. 
 
For the simulation, we generated 2 types of random concentration-time profiles: 1)  the 
“typical” profile with true mean t1/2 = 7 hours, and 2) long half-life profile with true mean 
t1/2 = 35 hours. We then created 100datasets, and each dataset contains 100 subjects.  
These 100 subjects are a mixture of the two types of concentration-time profiles, based 
on certain proportion. For example, we may have 70 subjects with “typical” profile, 30 
with long t1/2. We examined three different proportions of the long t1/2s: 30%, 20%, and 
10%. For each dataset, we calculated true mean t1/2. We also estimated the t1/2 for each 
subject using WinNonlin.  Since the subjects with long t1/2 had their estimated AUCt-inf > 
20% AUC0-inf, their estimated t1/2s are potentially missing (in traditional method).   
 
Then for each dataset, we calculated sample means using 10 methods: Method 1) the 
traditional method, which excludes all t1/2s if the AUCt-inf  based on the estimate t1/2 > 20% 
AUC0-inf,  Method 2) the sensitivity method, which includes all the estimated t1/2 even 
though their AUCt-inf  > 20% AUC0-inf, Method 3-6) the PMM method using the four 
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different quantities (the boundary value t1/2, bdy for each subject, or the upper limit of the 
95% CI for mean t1/2, the 90 percentile or maximum t1/2 based on all observed t1/2s) as the 
imputation values, and Method 7-10),  the censoring method using the four different 
quantities as in the PMM method but as the censoring values.  
 
We then take the average of the 100 datasets to obtain overall results for each of the 10 
methods, as well as the overall true mean. For each method, the estimated overall mean 
 is compared with the overall true mean (t1/2 ) , and percent bias (=absolute value ( 1/2̅ݐ )
 t1/2) is also calculated. For the 9 methods except traditional method, we / ( t1/2  - 1/2̅ݐ )
also calculated bias reduction (= %improvement) from traditional method (= absolute 
value of (% bias from each of the 9 methods – % bias from the traditional method) / % 
bias from traditional method). The results are presented in Table 1.  
 
It can be seen from the table that for the traditional method, the %bias increases with 
increased missing data. Even when there are only 10% missing, the traditional method 
underestimates the mean t1/2 by 27%, quite a substantial bias. When the missingness 
reaches 20%, the bias reaches 43%. The %bias seems to close or higher than 2 times 
the %missing. 
 
Table 1. Simulation Results  
 

 
 
 

% Missing

Hour
% 

Bias

% 
Improv
ement Hour

% 
Bias

% 
Improv
ement Hour

% 
Bias

% 
Improv
ement

True t1/2 9.86 12.60 15.34

Traditional 7.17 27 7.17 43 7.14 53

Sensitivity 8.71 12 21 10.26 19 43 11.77 23 65

Pmm_uclm 7.20 27 0 7.23 43 1 7.23 53 1

Pmm_p90 7.37 25 3 7.56 40 5 7.73 50 8

Pmm_max 7.62 23 6 8.08 36 13 8.44 45 18

Pmm_20pct 8.11 18 13 9.05 28 26 9.95 35 39

Cens_uclm 7.31 26 2 7.47 41 4 7.61 50 7

Cens_p90 7.45 24 4 7.78 38 8 8.13 47 14

Cens_max 7.71 22 7 8.35 34 16 9.00 41 26

Cens_20pct 8.23 17 15 9.51 24 33 11.01 28 54

10 20 30
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The biasness improved over the traditional methods for all the 9 alternative methods, but 
with different levels of bias reduction. Overall, they still underestimate the true mean, and 
the % improvement increases along with increased missingness. 
 
It can be seen from the table that for the traditional method, the %bias increases with 
increased missing data. Even when there are only 10% missing, the traditional method 
underestimates the mea t1/2 by 27%, quite a substantial bias. When the missingness 
reaches 20%, the bias reaches 43%. The %bias seems to close or higher than 
the %missing.  
 
The biasness improved over the traditional methods for all the 9 alternative methods, but 
with different levels of bias reduction. Overall, they still underestimate the true mean, and 
the %improvement increases along with increased missingness.  
 
The sensitivity analysis has improved the %bias over traditional method substantially for 
all the three missingness proportions, and not surprisingly, the more missingness, the 
more improvement. When the missingness reaches 30%, the sensitivity analysis reduced 
bias by 65%. Even when there is only 10% missingness, there is a 21% improvement 
over the traditional method. 
 
Among the four PMM models that used different imputation values, from the least, 
minimal improvement to the largest improvement, are   
 

the upper limit of the 95% CI for mean t1/2 based on all observed t1/2s ,  
the 90 percentile t1/2 based on all observed  t1/2s   
maximum t1/2 based based on all observed t1/2s 
boundary value t1/2, bdy for each subject 
  

In the PMM model with boundary value t1/2, bdy for each subject as the imputation value, 
the %improvement over the traditional method is almost proportional, although higher, 
than the % missingness.  
 
The censoring method is uniformly better, though not significantly, than the PMM, and 
the %bias reduction over the PMM also increases along with the increase 
of %missingness. Overall, the censoring method exhibits similar pattern as the PMM 
models in the order of bias reduction, and from the least improvement to the largest 
improvement, it is  
 

the upper limit of the 95% CI for mean t1/2 based on all observed t1/2s  
the 90 percentile t1/2 based on all observed t1/2s 
maximum t1/2 based on all observed t1/2s 
boundary value t1/2, bdy for each subject. 
 

 
4. Discussions 

  
In this work, we demonstrated that using traditional method to estimating mean t1/2, i.e., 
to exclude “unreliable” t1/2s, can sometimes result in MNAR and thus introduce bias in 
the estimated population t1/2.  We showed that this bias increases along with the 
proportion of missingness (= the t1/2s excluded from the calculation of the mean t1/2).  

Biopharmaceutical Section – JSM 2012

585



 
In general, in an MNAR, there is no reliable way to test the MNAR assumption, as well 
as any imputation method. The common solution to this problem is to conduct various 
sensitivity analyses, to test different assumptions and imputation methods, and compare 
the results. However, our problem is a special case, in that the missingness is due to some 
“reliability criteria” that did not take into account of potential biasness in the parameter 
estimation. In other words, the “missing values” do exist, particularly in the case of 
AUCt-inf  > 20% AUC0-inf , making it easier to test the MNAR assumption as well as the 
proposed imputations.  
 
In this work, we used “sensitivity analysis” to specifically mean including all the 
“missing values” in the calculation of the mean. We showed that such analysis is 
important in identifying potential bias, as well as reducing the bias. We also proposed 
other imputation methods, and we showed that using the PMM model with the boundary 
value t1/2, bdy as the imputation value is very beneficial. It is easy to implement, and it will 
never overestimate the true t1/2, as the methods using values from the observed subjects 
might be.  
 
The PMM model also has a very sensible biological interpretation. It states that in the 
general population, there might be some subpopulations, each with its own distinct 
distribution of the t1/2. For example, the true t1/2s may differ in these subpopulations due 
to genetic polymorphism, or due to the impairment of renal or hepatic functions.   
 
There are some limitations in this work that need to be addressed in future work. One 
limitation is that we only focused on the case that the missingness is due to AUCt-inf  > 20% 
AUC0-inf. However, as pointed out previously, the reasons for a t1/2 being deemed 
unreliable can be complicated, and may not be either exhaustive or mutually exclusive. 
Further work is needed to explore more complicated scenario that result in “unreliable” 
estimate of t1/2 and missing data.   
 
As in many other PK parameter estimation problems, the variability of these estimates is 
not adequately addressed in this work. In addition to biasness, the efficiency of the 
parameter estimate should also be considered, especially when there are missing data.  
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Figure 1. Concentration-Time Profile, Linear Scale 
( t1/2 = 6 hours) 

 

 
 
 
 
 
 
 

Figure 2. AUC0-inf    = AUC0-t +AUCt-inf    

( t1/2 = 33 hours) 
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Figure 3. Concentration – Time Profile, Semi-log Scale 
( t1/2 = 6 hours) 

 

 
 

 
 
 

Figure 4. Long Absorption and Distribution – MCAR 
 (t1/2 = 6 hours) 
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Figure 5. High Variability – MCAR 
(t1/2 = 6 hours) 

                             

 
 
 
 
 

Figure 6. Long Half-life – MNAR 
( t1/2 = 33 hours) 
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Figure 7. AUC0-t, bdy = 20% AUC0-inf, bdy 

(t1/2 = 33 hours) 
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