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Abstract
Functional data is a current topic of research which was initiated by actual data, i.e. we

are collecting a sometimes massive amount of data and the tools to analyze such data are
just now catching up. Our main interest for this talk is focused on what we call the NIR
(near infrared spectroscopy data set), and we investigate briefly the main methods which
are available to analyze such data: PCA (principal component analysis), PLS (partial least
squares), kernel smoothing (there are various ways to do this), and SVM (support vector
machines).
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1. The Problem

Functional data is often produced by data which is so dense that we can best
describe it as a function. There have been several books written on the subject,
see, for example, Ramsey and Silverman (2002) and Ferraty and Vieu (2006). In
particular, as we will see, the NIR data is very dense, and when graphed it appears
to be a functions.
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The horizontal axis in Figure 1 is the wavelength index and the vertical axis is
fat absorbance. Unfortunately Figure 1 may or may not show up in this article due
to technical difficulties. Often the usual regression methods don’t work or are not
possible to use because n (the sample size) is smaller smaller than p (the dimension
of each sample). The way of handling data such as this was to use only a portion
of it, i.e. summarizing the data in some way so as to reduce the dimension. In an
effort to use all we have, a variety of functional data methods have appeared.
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Figure 1: Curves Ordered According to Associated Y Values

2. Notation

We will use the following data notation:

X =

 x1(ν1) . . . x1(ν100)
. . .

x215(ν1) . . . x215(ν100)

 Y =

 Y1
...

Y215


where the experimental units are 215 pieces of finely chopped meat, n = 215, Xi =:
ith spectrometric curve and Yi =: fat content of ith piece. We want to predict the
fat content based on the function which consists of NIR measurements for the piece
of meat. The graphs of the data show that the functions are smooth and highly
correlated. However, if we order the data according to the Y values and plot 3
curves associated with high Y values and 3 curves associated with 3 low Y values
we do see that the height of the curve wouldn’t be a predictor but that at the 750
wavelength the larger Y values have curves with a bump and the lower Y values
have curves without the bump.

3. Multiple Regression

We then believe that we know what to expect. Since for this data set, n is larger
than p, we could do multiple regression where n = 215 and p = 100. We regress Y
on X (= design matrix), with the model:

Y = Xβ + ε

where βp×1, Xn×p, Yn×1, εn×1
The initial results of this analysis shows 16 significant wavelengths

(Inter, 1, 2, 28, 29, 45, 54, 55, 60, 63, 64, 68, 69, 73, 79, 80).

where the interger values represent the wavelenth index numbered from 1 to 100.
However the minimum variance inflation factor is 218717908 and the maximum is
18344003376.
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> min(vif(specreg))

[1] 218717908

> max(vif(specreg))

[1] 18344003376

The elements of the correlation matrix are all between .96 and .99.

4. PCA

We can consider PCA using principal component regression. We have a design
matrix

Sp×p =
1

n
(Xn×p − X̄)′(Xn×p − X̄) = PΛP ′

where X̄n×p = (X̄∗1 , . . . , X̄
∗
p ), X̄∗i = 1

n

∑n
j=1 xj(νi) In addition, we have

• Λ = (λii)p×p where λii > . . . > λpp

• Pp×p = (e1, . . . , ep) P ′P = I

• (λii, ei) = ith (eigenvalue, eigenvector) pair

Our goal is to regress Y on the PC’s (principal components).

Y = (X− X̄)Pβ + ε

β̂ = (P ′(X− X̄)′(X− X̄)P )−1P ′(X− X̄)′Y

1st Prin. Comp (PC)
< e1,X− X̄ >

pth Prin. Comp (PC)
< ep,X− X̄ > (X1 − X̄)′e1

...
(Xn − X̄)′e1


 (X1 − X̄)′ep

...
(Xn − X̄)′ep


We then want to identify the important PC’s which are the ones explaining a

large percentage of the variation of the design matrix.
Important PC’s (?)

PC1 PC2 PC3 PC4
Standard Deviation 5.111 .488 .280 .174
Proporation of Var .987 .009 .003 .001
Cumulative Prop. .987 .996 .999 .999

Standard deviation=
√
λii; standard dev. of ith PC Scores

We can see that the first 4 PC’s account for 99.9% of the variation of the design
matrix.

P=(e1, . . . , ep) is an orthonormal basis for Rp

(X− X̄) =
p∑
i=1

< (Xj − X̄)′, ei > ei

(X− X̄) ≈
k∑
i=1

< (Xj − X̄)′, ei > ei k < p

Since 4 PC’s account for 99% variation ⇒ k = 4.
It is of interest to examine the 4 PC’s here where
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• black=1st, 98.7% variation

• red=2nd, .9% variation

• blue=3rd, .3% variation

• green=4th, .1% variation

While the flat line can said to represent the mean effect, we have difficulty saying
what the others really mean and that seems to represent lots of guesswork.
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We can take a look at how this method does for X215 - curve with Y(215)
X1 - curve with Y(1)
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We can tell that by appearance, that is, what our eye reports, is that for the
curve with the largest Y value and the curve for the smallest Y value seem to
be successfully reconstructed with the first 4 PC’s. Y vs. Ŷ for 4 models[(1).987
(2).996 (3).999 (4).999]
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However, in examining the PCR (principal component regression), we find others
significant:

PC St. Deviation

PC14 7.21e-04
PC44 3.57e-05
PC62 1.68e-05
PC58 1.49e-05
PC87 5.57e-06

So, even though the first 4 PC’s (in terms of variation explained) are supposed to
be important it seems that others are significant and perhaps have some importance
too.

SectionNonparametric Principal Component Regression Since thte data was so
dense and smooth, we didn’t do any smoothing process as we describe below. We
provide the model below.

Y =

∫
(X(t)− X̄(t))β(t) dt+ ε

PC Scores in Functional Data:

< ei,X− X̄ >=

∫
e(u)[X(u)− X̄(u)] du
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Then we have the Karhunen-Loeve dxpansion where eigenfunctions form basis of
function space and are obtained from Cov(X(s), X(t)) A certain number of the
eigenfunctions are selected, often 2. The results in this particular case are similar
to PCR. Refer to work by H-G Muller at UC Davis.

There are other functional data methods which can be used by selecting any
number of basis function variations. However, it seems there is not a ”best” way
to select the best basis function. While a certain set of basis functions may explain
the variation of the design matrix, there are cases where it doesn’t do a good job of
predicting Y .

5. Partial Least Squares

While there are several articles about PLS in major statistics journals, there is a
huge amount of literature in the chemometrics journals about this topic. PLS is a
major competitor for PCA. Sometimes these problems are called calibration prob-
lems and proponents of PLS can show examples where the PC with the highest
variance explained is actually orthogonal to the Y variable and therefore doesn’t
have predictive power. The methods seem similar to factor analysis. In particu-
lar, with the data in our example, PLS methods are used in industry. There are
programs available in R, but it would be hard to compare all the methods because
there are so many.

6. Kernel Smoothing - Ferraty, Vieu et al.

A distance between functions is needed so a semi-metric (as they call it) might be
what we see below.

• L2 √∫
(Xi(t)−Xj(t))2 dt

• 2nd derivative √∫
(X

(2)
i (t)−X(2)

j (t))2 dt

The smoother used by Ferraty et al. is a Nadaraya-Watson type adapted to us-
ing a distance measure which is always positive. In the typical Nadaraya-Watson
we have the data {(X1, Y1), . . . , (Xn, Yn)}, b=bandwidth and K(·)=kernel function
(symmetric density)
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The estimator is then:

m̂(x) =
n∑
i=1

K(x−Xi
b )Yi∑

K(x−Xi
b )

=
n∑
i=1

ciYi

In our problem of interest, we will be estimating when
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In the above example, the bandwidth (b) is 1, with a window = [−1, 1] A line is
fitted within the window using weighted least squares. where the weights

=
1

b
K(

0−Xi

b
)

and the estimator is the height at x = 0. So, in general if we wish to estimate
the curve at x∗), we follow the procedure outlined above repeatedly. The minimum
number of points in the window is 1 but it probably works best with 6.

When dealing with functional data where the distance is positive, the kernel’s
support is postive: K(·)

∫∞
0 K(u) du = 1 e.g.
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So, instead of the previous setting, we are alwayts estimating on the edge.

• d(χ, χi) semi-metric distance measure

• L2 distance for 2nd derivative - used in our example

•

r̂(χ) =
n∑
i=1

K(d(χ,χi)
b )Yi∑

K(d(χ,χi)
b )

=
n∑
i=1

ciYi

Black Y(2), Green Y(3), Blue Y(4), Orange Y(213),Pink Y(214), Red Y(215)
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Mean Square Prediction Error (MSPE) is a measure used in making comparisons
between groups. The original sample is split into two subsamples. So, in this data
set For example, Ferraty and Vieu used (X1, . . . , X160) was the learning sample and
(X161, . . . , X215): was the testing sample. The measure of performance is

MPSE =
1

55

215∑
i=161

(Yi − Ŷi)2 or
√
MPSE

In a comparison of the four methods with KS being kernel smoothing

PCR FPCA PLS KS
MPSE 8.2 8.5 7.4 8.2√
MPSE 2.87 2.92 2.72 2.8

7. SVM

And finally support vector machine methods. We found a library in R (e1701, svm)
which seemed to have numerous choices for parameters. It also seemed that one
would need a program to try all sorts of combinations of the parameters because
without that care and consideration one might get results such as ours.

svmspec1=svm(y1~.,data=specdat1,type="nu",kernel="linear",cost=100

,gamma = 1e-04)

pred1=predict(svmspec1,specdat2[,-1])

crossprod(pred1-specdat2[,1])/55

[,1]

[1,] 668.1261
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We did find an article by Hernandez et al. (2009) which claimed that three types
of SVM had a .45 ≤

√
MPSE ≤ .78 and PLS of 1.8. I wasn’t able to verify it as I

didn’t know the details such as which elements of the data were in the training and
testing sample.
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