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A Phase II trial is an expeditious and low cost trial with the primary goal of screening 

potentially effective agents prior to confirmatory Phase III trial. The success rate of Phase 

III oncology trials remains very low despite the success demonstrated in the preceding 

Phase II trials. This discordance is mainly due to the different endpoints used in Phase II 

(disease response) and III (survival) trials. While a robust disease response is expected to 

translate into survival improvement, this is NOT guaranteed. Moreover, disease response 

can be determined quickly whereas survival estimation requires a long period of follow 

up. We propose a novel 2-stage screening design for phase II trials whereby percent of 

tumor size change endpoint is used as an initial screening to select potentially effective 

agents within a short time interval followed by a second screening stage where 

progression free survival is estimated to confirm the efficacy of agents. This design can 

improve trial efficiency and reduce cost by early stopping the evaluation of an ineffective 

agent based on low percent of tumor size change. The second survival endpoint screening 

will substantially increase the success rate of follow-up Phase III trial by using the similar 

outcomes. We conducted simulation studies to investigate the underlying statistical 

considerations to optimize the significant levels of the two screening stages in the design. 

 

Key words: Double screening, Phase II design, Success rate of Phase III trials, Percent 

of Tumor Size Change, Progression free survival, Cost and length of trial  

 

 

1. Introduction 
 

A Phase II  trial in oncology is conducted to evaluate whether a new treatment has 

sufficient anticancer effect to precede subsequent Phase III study. It usually enrolls fewer 

than 100 people but may include as many as 300 (NCI website). As a screening trial of 

subsequent Phase III study, tumor response rate (RR) has been widely adopted as the 

primary endpoint. The assumption behind it is that higher RRs in Phase II trials 

associates with longer survival time which is the endpoint of the further Phase III trial. In 

conventional Phase II trials, tumor shrinkage is measured and assessed via the Response 

Evaluation Criteria in Solid Tumors (RECIST 1.1) (Eisenhauer EA, 2009), and the 

proportion of objective responders that two consecutive assessments of complete (CR) or 

partial response (PR) at least 4 weeks apart is defined as RR.  
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Nowadays, cancer clinical study is exceedingly important, since cancer is the leading cause of 

death world widely. However, high failure rate (e.g. 50-60%) of the subsequent Phase III trials 

obstructs the development of new treatments; and it attracts concerns over the response rate as a 

primary endpoint (An MW, 2011). Apprehensions about adopting response rate as a primary 

endpoint are recently well discussed. First, the simplicity achieved by creating only 2 response 

groups via RECIST 1.1 criteria has a cost: categorize of continuous data may be consequent with 

a loss of information (Pivot X, 2009). More fundamentally, the ultimate goal of a new drug 

development is to prolong survival rather than to raise RR. These concerns prompted us to 

propose a new two-stage Phase II design, which evaluates tumor size changes as a continuous 

endpoint in Stage I and estimates progression free survival (PFS) in Stage II. Our approach that 

includes a screening stage of survival time in order to improve Phase III success rate is beneficial 

to both pharmaceutical companies and patients. 

 

Previously researches on tumor size changes as a continuous variable have been proposed to 

evaluate antitumor activity (Lavin PT, 1981) (Wang Y, 2009). We adopt the approach by Wang et 

al. which characterizes tumor shrinkage with both treatment effect and linear tumor growth effect. 

And a Wilcoxon ranked test is applied to compare tumor size data in different treatment groups in 

Stage I. Moreover, many recent researches confirm PFS as the best estimate of overall survival 

(OS) (Buyse M, 2000). Although OS remains regulatory gold standard (Halabi S, 2009) and is 

more reliable in classifying event status; PFS has the advantage of short median survival (Greg Y, 

2007) and more informative within the protocol. PFS is a more sensitive indicator of treatment 

effect and is adopted in Stage II screening in our design.  

 

2. Methods 
 

We consider a two-stage design with a continuous outcome — percent of tumor size change 

(PTSC) in the first screening stage and PFS in the second at a predefined time point. Figure 1 

gives a schematic of our proposed design, which we will describe in this section. 

 

2.1 Design Framework 
Patients who meet the trial “inclusion criteria” with baseline tumor size measurement are given 

the targeted new treatment. After a predefined period of time, we calculate PTSC according to 

both baseline and current tumor size. Stage I screening is taken to the experimental group with 

new treatment, and to the control group or historical data. A decision will be made to early 

terminate the trial, if there is no significant result found. Otherwise, the experiment continues to 

second stage, in which we will investigate difference of PFS. Similarly, the trial will be 

terminated when no significant difference found, or we will proceed to subsequent Phase III trial 

if the result is significant. 
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Figure 1: Two-Stage Phase II Design Schematic 

 

2.2 Tumor Size Change Model 
In clinical studies, exponential model is widely adopted to formulate tumor growth (Skipper H, 

1982): 

 

   ( )    ( )      (    ) (1) 

 

Where   ( ) is the     patient’s tumor size at time point  ,   ( ) is baseline tumor size at the 

starting point of the patient, and    is the tumor growth rate. The exponential growth pattern is 

based on the assumption that no death or treatment intervention, and is considered to be 

appropriate (Sachs RK, 2001). To simulate data with external agent, Wang et al. proposed a 

mixed exponential-decay and linear-growth model (Wang Y, 2009): 

 

   ( )    ( )     (    )       (2) 

 

The model includes treatment effect by an exponential tumor shrinkage rate   and a linear tumor 

progression effect with rate  . We modified equation (2) to simulate our data with the 

considertation that the treatment effect applies to tumor’s self-progression as well.  

 

   ( )  (  ( )      )     (    ) (3) 

 

Continuous tumor size modeled with equation (3) would result in the tumor size asymptotically 

reducing toward zero.  , the rate for tumor shrinkage and  , the progression rate are both 

restricted to be non-negative. Considering tumor growth kinetics, inidividual patient’s tumor size 

is generated from exponential distribution (Friberg S, 1997). PTSC is calculated as: 
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2.3 Simulation Study and Design Performance 
A simulation study is conducted to assess the performance of the two-stage design with respect to 

sensitivity and specificity. We generated 10,000 trials and compare sensitivity and specificity by 

two designs — conventional design, and our two-stage design. RR is generated via RECIST 1.1 

criteria (Table 1), and PTSC is generated by tumor size model described above respectively as 

Stage I endpoints. Our two-stage design will adopt PFS as an endpoint in Stage II screening. OS 

is also simulated as an observation for each patient; log-rank test results to OS are assumed to be 

true results. We compared outcomes of both designs to the true results.  

 

Table 1: RECIST 1.1 Criteria 

 
Group Response Category RECIST 1.1 Criteria Example 

Objective 

Response 

Complete Response (CR) Disappearance of all target 

lesions. Any pathological 

lymph nodes (whether target 

or non-target) must have 

reduction in short axis to 

<10mm. 

A 100 percent of 

decrease in tumor size is 

defined as CR. 

Partial Response (PR) At least a 30% decrease in 

the sum of diameters of 

target lesions, taking as 

reference the baseline sum 

diameters. 

A 45 percent of decrease 

in tumor size is defined 

as PR. 

Non-objective 

Response 

Progressive Disease (PD) At least a 20% increase in 

the sum of diameters of 

target lesions, taking as 

reference the smallest sum 

on study (this includes the 

baseline sum if that is the 

smallest on study). In 

addition to the relative 

increase of 20%, the sum 

must also demonstrate an 

absolute increase of at least 

5 mm. (Note: the appearance 

of one or more new lesions 

is also considered 

progression). 

A 30 percent of increase 

in tumor size is defined 

as PD. 

 Stable Disease (SD) Neither sufficient shrinkage 

to qualify for PR nor 

sufficient increase to qualify 

for PD, taking as reference 

the smallest sum diameters 

while on study. 

Both 20 percent 

decrease in tumor size, 

and 10 percent increase 

in tumor size are 

identified as SD. 

 

A Wilcoxon ranked test is conducted to compare the distribution in terms of PTSC, and chi-

square test is used to assess the difference of RR in two treatment groups. The whole design is 

based on the idea that the time to progression of a patient is related with the tumor shrinkage. 

Therefore, PFS is generated according to the percent of change, which assumes 1% tumor size 
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shrinkage will result in certain amount benefit of survival time. Log-rank test is performed to 

assess PFS. OS is simulated as the true observation as well; log-rank test result in OS between 

two groups is considered to be gold standard. Both conventional design and our two-stage design 

results are compared with the gold standard. 

 

As it is shown in table 1, sensitivity and specificity of our two-stage design are superior to those 

of conventional design. 73.55% of treatments that are truly efficient are correctly recognized by 

our design, while only 36.36% evaluated as active using conventional design. On the other hand, 

96.32% of treatments that are not sufficiently active are correctly identified by the two-stage 

design, whereas a mere of 68.29% are recognized if adopt the traditional design. That is, the 

ability of our design to correctly identify treatments with sufficient anticancer activities and the 

ability to correctly identify those with confounding outcomes exceeds conventional design. 

Moreover, positive predicted value of 74.17% means that 74.17% of treatments identified by two-

stage design to be efficient are truly efficient; but only 14.15% of those hit the truth if using 

conventional design. Similarly, non-significant results with our design have a 96.20% chance of 

being truly inefficient; while the chance of conventional design is 88.19%. With a high NPV, our 

new design is considered doing as good as “gold standard”. 

 

Table 2: Comparison of Sensitivity and Specificity of Two Designs 

 

 

Conventional Design Two-Stage Design 

Estimated Value 95% Confidence Interval Estimated Value 95% Confidence Interval 

SE (%) 36.36 30.36 42.80 73.55 67.44 78.90 

SP (%) 68.29 66.00 70.50 96.32 95.27 97.14 

PPV (%) 14.15 11.56 17.19 74.17 68.06 79.48 

NPV (%) 88.19 86.28 89.87 96.20 95.15 97.04 
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3. Endpoints of our Two-Stage Design 

 
3.1 Continuous vs. Categorical Endpoint 

In clinical studies, categorization is quite commonly adopted by grouping continuous values into 

   categories, (Naggara O, 2011), not only limited to cancer Phase II trials. The primary reason 

according to the approach is the need to label patients with an attribute for diagnostic or 

therapeutic procedures determination (e.g. ‘hypertensive’, ‘obese’)  (Royston P, 2006).  

 

However, the disadvantage of grouping continuous variables is obvious. A serious loss of power 

(Lagakos SW, 1988) and higher sample size requirements (Wason JMS, 2011) in effectively 

detecting possible relationships is the cost of simplicity. At least one third, even higher proportion 

if the predictor is exponentially distributed of the data is discarded while dichotomizing (Lagakos 

SW, 1988). Moreover, concerns about clinical benefit make it more controversial nowadays in 

cancer trials. For example, a patient with 25% tumor shrinks has more clinical benefit than one 

with 10% tumor increases, but both are labeled by RECIST 1.1 as having stable disease (Karrison 

TG, 2007). In contrary, a patient is identified as an objective responder with 35% shrinkage may 

not has much difference with the one with 25% shrinkage, but the latter is not (Karrison TG, 

2007). Therefore, it is not surprising that more and more researchers choose to use tumor size 

changes directly instead of RR. 

             

3.2 Simulation Result 

Table 3 lists the simulated P-values of the Phase II trials with RR method and PTSC method, 

respectively. Different combinations of mean percent of tumor size change are assigned to 

experiment and control groups. Tumor response categories are also listed in the table. According 

to RECIST 1.1 criteria, CR is defined as a completely disappear of tumor cells, which is only 

applied to a very small proportion of patients. So, we only compare those mean percent of tumor 

size change that belong to PR, SD, and PD categories.  

 

Table 3: Comparison of Simulated P-value by Two Designs 

 
Mean Percent of Tumor Size Change  

with RECIST Category 

Simulated P-values  

Conventional  

Design 

Two-Stage  

Design 

Placebo Group (  ) Experiment Group (  ) Stage I
 

Stage I 

32.7%  (PR) 45.2%  (PR) 0.2616 0.0019 

-5.0%  (SD) 45.2%  (PR) 2.42       9.15       

-22.9%  (PD) 45.3%  (PR) 9.56       1.97       
-5.0%  (SD) 15.4%  (SD) 0.0024 1.93      

-22.9%  (PD) 15.4%  (SD) 1.88       1.45       

-27.6%  (PD) -23.0% (PD) 0.0015 0.0231 

 

Table 3 shows that all of the median P-values in first screening using PTSC method are 

statistically significant. Majority of P-values with PTSC method are more significant than with 

RR method, which implies PTSC method is more sensitive at detecting tumor size change. It is 

interesting to notice that large discrepancies exists between PTSC and RR P-values when mean 

percent of changes are in the same or adjacent categories. Although they are in the same or 

adjacent categories, the mean percent of changes still have large differences that could be 

detected by measuring the changes directly. However, adopting dichotomized categories would 

ignore the natural spread of changes in tumor sizes. It is also noticeable that two of RR P-values 

are more significant than PTSC P-values. We notice that tumor shrinkage in one treatment group 

distributes far away from the category boundary (e.g. 45.3% is far above PR boundary 30% that 
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will be categorized as Objective Response, and -27.6% is opposite will be categorized as Non-

objective Response). So the more significant RR P-values might overestimate the difference by 

simply comparing objective response rate. Table 3 also illustrates the simulated Stage II P-value 

results. We found that the PTSC method provides very small improvement while testing the 

difference in progression-free time.  

 

3.3 PFS as Surrogate Endpoint of OS 

OS is the traditional and the objectively measured endpoint that is adopted to assess new cancer 

drugs. However, it requires prolonged follow-up and so may not be optimal for a fast assessment 

of therapeutic advances (Burzykowski T, 2004). Moreover, many clinical trials now include 

sequential therapies, and OS as a primary endpoint would not accurately reflect the effect of the 

investigational drug with multiple lines of treatment (Hotte SJ, 2011). So many researchers 

proposed surrogate endpoints for OS to evaluate the clinical benefits of new drugs in oncology, 

where PFS is frequently adopted. For instance, Gill et al. used PFS in clinical trials of metastatic 

colorectal cancer (Gill S, 2011), and Saad et al.reviewed PFS as a surrogate endpoint in breast 

and colorectal cancer treatment (Saad ED, 2010). In this paper, we will treat PFS as the endpoint 

of Stage II in our design as a predictor of OS. 

 

4. Comparison of Success Rates of Two Designs 
 

We will compare the two-stage Phase II trials with different measurements of tumor shrinkages 

(continuous measurement of tumor size change vs. grouped tumor response rate). Moreover, we 

will use the simulation result to discuss the choice of primary test criterion in the first screening 

stage.  

 

Figure 2 captures the trend of simulated overall success rate in this Phase II trial (significant level 

of the second screening is set up as 0.05). It shows the success rate of the method that uses tumor 

size change (PTSC method) directly is superior to the method that uses response rates (RR 

method) in Stage I screening.  

 
Figure 2: Success Rates of PTSC method and RR method 

 

In this simulation, mean percent of changes in tumor size are assigned as 45.2% and 12.3% to 

experiment and control groups, respectively. Progression-free survivals are simulated according 

to tumor shrinkage with regard of PFS increment rate. In this scenario, both distributions are 

centered within the range of the same category — “SD”, but their clinical benefits — 
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progression-free survival are quite different. Using RR method, however, may underestimate the 

clinical benefits; because information is lost during the process of categorizing data.  In contrary, 

our design (PTSC method) which uses tumor size change directly is more sensitive in detecting 

the differences of tumor size related variables. 

 

 
Figure 3: Success Rate of our Two-Stage Design 

 

The main objective of our study for the new Phase II trial is to improve the success rate following 

Phase III trial. Previous researches (Burzykowski T, 2004; et al.) have confirmed PFS as a 

potential surrogate as OS. So the success rate in the simulation study could well reflect the 

success rate of the proceeding Phase III trial. A higher percent of success in the two-stage Phase 

II trial will definitely lead to a better chance of success in further study.  

 

It is demonstrated by Figure 2 that the two-stage Phase II trial success rate changes according to 

the selection of Stage I significant levels. The half bath-tube shaped curve implies a very sharply 

decreasing at first and then very smooth trend for the success rate. From 0 to 0.025 the success 

rate declines more than 30%, while another 15% decrease happened between the range of 0.025 

and 0.2. In contrary, the cumulative decrease is a mere 4% starting from 0.2 till 1.With this result, 

we would like to suggest a rigorous significant level in Stage I screening (e.g.        ). 

Although it is generally expected that a phase II trial with a lax criteria could increase the 

possibility of new drug discovery and avoid the omission from the phase II trial rejection, this 

assumption is not supported by our simulation result. A strict criterion in Stage I screening in our 

Phase II trial is considered to be more significant in practice, and tends to lead more satisfactory 

results in the further study.  

 

5. Application 

 
Anticancer drug development is an extreme costly and time-consuming process. The cost of 

launching a new drug in oncology ranges from $800 million to $2 billion, where the mean cost of 

a Phase III trial is the highest among all three phases (Phase I: $15.2 million, Phase II: $23.5 

million, and Phase III: $86.3 million). But the probability of entering Phase III study from 

previous trials are merely 31.4%, which is relatively low comparing to 71.0% from Phase I to 

Phase II trials (DiMasi JA, 2003). Thus, it is crucial in clinical studies to enhance the success rate 

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0

4
0

6
0

8
0

t test P-value

%
 o

f 
lo

g
-r

a
n

k
 P

-v
a

lu
e
 <

 a
2

Success Rate of Stage II vs. Stage I a1

a1  range: 0 ~ 1

51.88 %

46.08 %

41.28 %

37.76 %
34.93 % 34.34 %

Biometrics Section – JSM 2012

176



from the mid-stage studies to late-stage Phase III trials. Our proposed new Phase II design, which 

uses continuous tumor size change and PFS as endpoints in the double screening process, could 

effectively improves the success rate of the further trial. Based on the assumption that survival 

time is associated with tumor shrinkage, our design could detect the change in tumor size more 

sensitively. Early termination is determined with the assessment of Stage I result, which could 

reduce the length and cost of the trial. We also recommend a strict significant level to evaluate the 

tumor shrinkage. According to our simulation study, a promising result is more likely to be lead 

to in Stage II if the Stage I result passes the test with a strict significant level. So, setting up a 

strict criterion in the first screening stage could effectively reduce the cost by excluding trials 

unlikely to have significant result in further studies. 

 

According to a new benchmarking report, Goldfarb pointed out the cost per patient of running 

phase III trial has exceeded $26,000, on average (Goldfarb NM, 2006). Assuming an average 

phase III trial size of 400 subjects (that is 200 subjects in each treatment arm) are involved in 

about 500 phase III clinical trials currently, it will cost approximate 5.2 billion. However, high 

failure rate (50-60%) (An WM, 2011) will cost at least 2.6 billion   without returns. Thus, our 

proposed two-stage Phase II design that could effectively improve the success rate of Phase III 

trials has a lot practical meanings.  
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