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Abstract

A statistical learning methodology, called flow field forecasting, is introduced for
predicting the future of a univariate time series. Flow field forecasting draws infor-
mation from the interpolated flow field of an observed time series to build a forecast
step-by-step. Flow field forecasting is premised on the principle of inductivism. We
present flow field forecasting, along with a discussion of its motivating principle,
examples with comparisons to other major forecasting techniques and a statistical
error analysis.
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1. Introduction

The theoretical challenge and practical risk involved in making predictions beyond
the domain of available data are well recognized among statisticians. Time series
forecasting, involving as it does extrapolation from past data to future times, is
one of the most challenging and problematic of statistical learning tasks. Today
many general-purpose forecasting methods [1, 2], exponential smoothing [3, 4], Box-
Jenkins ARIMA modeling [5], and artificial neural networks [6, 7] among them,
are available to address the essential challenge posed by forecasting. Each of these
established techniques has significant limitations, and still other forecasting methods
are being developed—for example, wavelet-based methods [8].

Established forecasting methods do not always effectively address the problems
posed by rapidly accumulating or very long data records. Some of these estab-
lished methods are too computationally intensive, others do not readily yield er-
ror estimates and, most importantly, none can automatically (i.e., without human
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guidance) select a model, set procedure parameters, and screen the results. Re-
gression modeling, for example, is a highly interactive procedure in which different
models are tried and assessed against various criteria to achieve an acceptable re-
sult. Box-Jenkins ARIMA forecasting succeeds best when judgments are made from
the data about model order and the multi-dimensional numerical optimization in-
volved in parameter estimation is monitored. Even neural networks, which are
essentially a highly flexible class of nonlinear regression models, involve significant
human guidance in their training phase. Generally, the neural network model is
over-parameterized, and the optimization problem that sets the network weights
is non-convex and prone to instability [9]. We note, too, that ARIMA modeling
and spectral/wavelet methods are generally formulated for data uniformly spaced
in time, and adapting these methods to non-uniform spacings is not straightforward.
These and similar concerns lead us to propose a new framework for forecasting, called
flow field forecasting. Flow field forecasting, while retaining important strengths of
established forecasting methods, designedly meets the challenge posed by the rapidly
growing sizes of observational data sets and the flow volumes seen on modern data
networks.

The remainder of the paper is organized as follows. Section 2 presents the
premise—the principle of inductivism—on which flow field forecasting is based. Sec-
tion 3 details the mechanics of flow field forecasting, including the three basic steps
for making a forecast, and section 4 addresses the statistical error that accompanies
a flow field forecast. Section 5 demonstrates flow field forecasting in head-to-head
comparisons with ARIMA forecasting, exponentially weighted averaging, and artifi-
cial neural network modeling. Some broader remarks about flow field forecasting are
made in Section 6. The computational efficiency of flow field forecasting is treated
in [10, 11].

2. Inductivism—a premise for forecasting

Flow field forecasting is premised on the principle of (naive) inductivism recognizable
from the philosophy of science [12]. To understand what this means, suppose, for
example, that the past record of a statistical process shows a particular dynamic
(or history) H1, after which the process is seen to drop precipitously (change d1)
as shown in Fig. 1a. Suppose, maybe, that there are no counterexamples to this
association in the data record and even suppose that a similar history H2 in the
record is seen to be followed be a corresponding similar change d2. Then, we might
reasonably anticipate that, if currently the process is changing according to a history
H ′ that is similar toH1 and H2, it will likely in the near future undergo a precipitous
drop d′ similar to d1 and d2. This inductive reasoning is the basic premise of flow
field forecasting: if a process exhibited a history H in the past followed by a level
change d, then if the process is presently on a course H ′ similar to H, it will likely
next undergo a level change d′ similar to d.

We depict histories in Fig. 1a as made up of short sequences of consecutive
observations in the data record. The observations need not be consecutive; the
histories might involve, as shown in Fig. 1b, disjoint subsequences of observations.
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The choice of the form of the history is one way in which flow field forecasting
is flexible. The essential point of flow field forecasting is to build an inductive
interpolation of the immediate future change d′ from the current history H ′ and
the past observed history-change associations. It is important to point out, also,
that flow field forecasting bases its histories on sequences of knots, not sequences of
observations. This last point becomes clearer in the next section where the actual
steps in a flow field forecast are presented.

It is our experience that inductivism as a principle for forecasting is often enough
applicable and sufficiently flexible that it offers a useful basis for forecasting. A con-
crete illustration of the applicability of flow field forecasting to energy management
in gasoline/electric hybrid automobiles is offered in [13].

h1 h2 h¢

d1 d2 d¢ ??

Figure 1a. Past histories h1, h2 and their associated changes

d1, d2. These associations are used to interpolate the change d′

associated with the current history h′. The histories in this

example have consecutive components.

h1 h2
h¢

d1 d2 d¢ ??

Figure 1b. Past histories h1, h2 and their associated changes

d1, d2. These assocations are used to interpolate the change d′

associated with the current history h′. The histories in this

example have non-consecutive components.
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3. Flow field forecasting in three steps

Explicit, computationally efficient procedures have been identified [14] to translate
the general premise of flow field forecasting into a method of making a forecast from
past observations of a process. The inductivism paradigm requires: 1) from the
data, a clear picture of the different histories that occurred in the process’s past and
the changes that followed in each there from, 2) an interpolation of process changes
from histories seen in the past record to histories not available in the record, and
3) a mechanism for using interpolated change in the process to build a forecast
from the present into the future. Flow field forecasting is a framework of statistical
procedures that in three steps addresses each of these requirements.

Step I of flow field forecasting represents the time series record as a process with
additive (homoscedastic) noise and estimates the underlying dynamic of the process
via a penalized spline regression [15]. This spline smoother of the observed process
is a set of process levels and level changes for each time in the set of spline knot
times. Subsequent steps II and III of the flow field forecast are based solely on this
spline smoother. The collection of information in the spline smoother is called the
process data skeleton [14], and because the size of the skeleton is only loosely related
to and much smaller than the size of the set of original data, this stage robustly
scales even very large data sets to a more manageable size and supports computation
in cases of very limited resources. Standard penalized spline regression involves a
numerical search for the appropriate amount of smoothing. This numerical search
is obviated by an asymptotic result that approximates the smoothing parameter λ
by a simple calculation [16]. Also, by "stitching" the penalized spline regression can
accommodate heteroscedasticity, be calculated still more efficiently and be updated
in real time [11].

Step II of flow field forecasting applies Gaussian process regression [17] to the
process skeleton to create an interpolator for future process change based on ob-
served past process changes. Gaussian process regression derives this interpolator
from the correlation of the process changes. This correlation must be estimated,
usually within a parametric model such as the squared exponential model [17].

Step III uses the step II interpolator to step-by-step predict the process forward
to the desired forecast horizon. We now describe in technical detail these three
steps.

Step I: Extracting the skeleton

We are given N observations {Yi, i = 1, . . . , N} of a process Y with their asso-
ciated (not necessarily uniformly spaced) observation times t1 < t2 < . . . < tN , and
we want to forecast Y at a time tF > tN . We assume that

Yi = S(ti) + εi (1)

where {εi, i = 1, . . . , N} is a set of uncorrelated random variables with zero mean and
common variance σ2. The set {Si = S(ti), i = 1, . . . , N} constitutes the non-random,
systematically determined component of the observation record. The method of
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penalized splines [15] is used to fit to the data a semiparametric regression model of
the form

Y = β0 + β1t+
K
∑

k=1

βk+1(t− κk)+ + ε (2)

where

(t− κk)+ =

{

t− κk, t ≤ κk
0, t > κk

and the model parameters βk are estimated from the data. The K knots κk are
spaced uniformly within the range of observations ti such that t1 < κ1 and κK < tN .
Without loss of generality the observation times ti are assumed to be coded such
that the knots are κk = k∆ where ∆ is the chosen knot spacing and such that
t1 > 0. Add κ0 = 0 to the set of knots (for a total of K + 1 knots), and let bk = β̂k
be the penalized spline estimate of βk for k = 0, 1, . . . ,K + 1. Then the smoothed
responses sk = Ŝ(κk) at the knot times κk = k∆ are

sk = b0 +∆
k−1
∑

j=0

dj , k = 0, 1, . . . ,K

where the dk are the estimated (forward) response derivatives

dk =
k+1
∑

j=1

bj , k = 0, 1, . . . ,K (3)

at these times. Assembled with their knot times, these level and change estimates

(κk, sk, dk), k = 0, 1, . . . ,K (4)

constitute the skeleton of the original data. Only this skeleton is used subsequently
in steps II and III to construct flow field forecasts. While we started with a data
record whose size is of order N , we go forward with only the skeleton (4) with size
of order K < N . This contributes to flow field forecasting’s applicability to large
data sets and voluminous data flows. Our choice in (2) of linear basis functions
(t − κk)+ with uniformly spaced knots is not only the simplest choice, it is the
appropriate choice. Quadratic or cubic basis functions [15] would not have yielded
the change estimates (3) so summarily, and non-uniformly spaced knots would have
led to incommensurable estimates across the different knot times.

Step II: Interpolating the flow field

Step II of flow field forecasting builds an interpolator of the change Ṡ(t) in the
systematically determined component S(t) of the process Y , basing this interpolator
on the information contained in the data skeleton. The point (sk, dk) in the data
skeleton (4) estimates the derivative Ṡ(t) as the forward rate of change dk at the
knot time κk where the level was estimated to be sk = Ŝ(κk). More particularly,
the skeleton associates the estimated change dk with the estimated process level sk.
Using the K + 1 points (sk, dk) in the skeleton, we can consider interpolating Ṡ(t)
for other levels s not in the skeleton. In fact, the skeleton is providing estimates of
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Ṡ(t) not just for different levels sk, but with much greater specificity. For example,
the skeleton can be interpreted to say that, when S(t) was sk−1 with change dk−1
and subsequent level sk at corresponding times κk−1 and κk, the derivative at time
κk was estimated to be dk. Here we are treating the relevant history to be hk =
(sk−1, sk, dk−1). Flow field forecasting allows the history to be defined to include
any number and combination of previous levels sk and changes dk. Consequently,
the skeleton, for all its simplicity, is sufficient for interpolating a change Ṡ(t) from,
even, a rather detailed history. The derivative Ṡ(t) viewed as a function of this
multi-component history is called the flow field.

Gaussian process regression [17] is a natural choice for interpolating Ṡ(t); it is
computationally efficient, it readily yields error estimates, it is very flexible about
the size and content of the predictor history, and it has the desirable property that
the default interpolated change is Ṡ(t) = 0 in cases where the current history is
far different from all the histories available in the skeleton. Let h∗ = (s∗,d∗) be
the current history involving present and past levels s∗ and past changes d∗ for
which we want to interpolate the derivative d∗ from the flow field. Let k(h∗) be
the column vector of kernels k(h∗,hk) where the hk are the histories in the data
skeleton. A kernel k(h,h′) in this context is a covariance model for the changes
d and d′ associated with the histories h and h′. A standard covariance model for
this purpose is the squared exponential covariance model [17]. Let K be the matrix
with i, jth entry k(hi,hj). Finally, let y be the column vector of derivatives dk in
the skeleton corresponding to the histories hk = (sk,dk). Then the derivative d∗
interpolated by Gaussian process regression corresponding to the history h∗ is [17]

d∗ = k(h∗)
>ỹ (5)

where ỹ = K−1y. The matrix inversion of K required for (5) can be accomplished
efficiently and in numerically stable fashion using Cholesky decomposition. Notice
that, for successive uses of (5) for different histories h∗, the vector ỹ = K−1y must
be calculated just once. This is a general feature of Gaussian process regression that
contributes significantly to the overall efficiency of flow field forecasting.

Step III: Iterating to the future

Step III of flow field forecasting uses the flow field interpolator (5) prepared in
step II to forecast the path of the process Y out to the desired future time tF . The
forecasting proceeds incrementally. We start by estimating the process level at time
κK+1 = (K+1)∆ (one knot increment ∆ beyond the skeleton) by sK+1 = sK+∆dK .
With this we assemble a new current history

hK+1 = (sK+1,dK+1) (6)

for the time κK+1. We return with this updated current history to the interpolated
flow field and predict the next change dK+1 by

dK+1 = k(hK+1)
>ỹ (7)

in accordance with (5). We use this change prediction to find

sK+2 = sK+1 +∆dK+1 . (8)

Section on Statistical Learning and Data Mining – JSM 2012

2953



We repeat (6), (7) and (8), cycling in general through the steps

hK+m= (sK+m,dK+m)

dK+m= k(hK+m)
>ỹ

sK+m+1= sK+m +∆dK+m (9)

κK+m+1= (K +m+ 1)∆

until the time κK+M = ∆(K +M) is reached that just exceeds the desired forecast
time tF . This construction yields not only a forecast for time tF , it also predicts
the path leading up to the forecast.

In the next section we estimate the statistical error that accompanies a flow field
forecast, and in section 5 we present some applications of flow field forecasting. We
close this section by mentioning three attractive properties of flow field forecasting
that derive from the three steps described above:

• Flow field forecasting in step I reduces potentially very long data records with
possibly non-uniformly spaced observations to a skeleton that may have only
a relatively small number (50∼200) of uniformly spaced knots plus the process
level and change at those knot times. Converting the original data record into
the step I data skeleton achieves a very useful degree of data reduction and
standardization.

• Penalized spline regression is computationally efficient in most respects. To
optimize its efficiency, we replace the standard numerical search for the op-
timal smoothing by an approximation [16]. The step II Gaussian process
regression and the step III extrapolation mechanism are also computationally
efficient. This makes flow field forecasting attractive in settings with only
limited computational resources or where data flow volume is an issue.

• Flow field forecasting is adaptable to a variety of forecasting settings by, for
example, choice of history. However, once such choices are made and a few
parameters are estimated or otherwise set, flow field forecasting performs au-
tonomously, with no interactive supervision of a skilled analyst required. This
is desirable in situations involving high data flows or where many forecasts
must routinely be made.

4. Forecast error

Steps I and II of flow field forecasting are each a source of statistical error. The
penalized spline regression in step I readily yields an estimate of the variance σ2

of the noise ε in (1). Similarly, the Gaussian process regression in step II yields
standard errors with its predictions. The errors from these two steps combine and
are reflected in step III in the final forecast in a straightforward fashion, as we now
show.

The variance of the error ε in (1) is estimated in step I by

σ̂2 =
‖Y− Ŷ‖2

n− dfres
(10)
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whereY is the vector of observations,Y is the spline fit in (2) and dfres is the number
of residual degrees of freedom [15]. This error makes an uncorrelated contribution
to the total statistical error in the forecast.

The skeleton found in step I is a set of flow field values for different histories.
The Gaussian process regression flow field estimates in step II are interpolations of
these flow field values. Gaussian process regression readily yields standard errors
for its estimates. The variance of the flow field estimate (5) is [17]

V [d∗] = τ2 − τ2k(h∗)>Kk(h∗) (11)

where τ2 is the variance of the Gaussian process regression response. Here as in
(5) a fast, numerically stable calculation of (11) is possible using the Cholesky
decomposition of K. The variance τ2 in (11) is estimated by the sample variance
S2
d of the observed changes dk recorded in the skeleton.

We now combine (10) and (11) to identify the standard error of our flow field
forecast constructed by successive applications of (9). The squared standard error
is

σ̂2 +∆2S2
d

(

M −
M
∑

m=1

k(hK+m)
>Kk(hK+m)

)

. (12)

The number M of knot increments needed to reach tF is approximately

M ≈ tF − tN
∆

.

Thus, according to (12), the standard error of the flow field forecast at time tF is
approximately

√

σ̂2 +∆(tF − tN )S2
d(1− ω̄) , (13)

where ω̄ is the average of is approximately

ωm = k(hK+m)
>Kk(hK+m) , m = 1, 2, . . . ,M .

The ωm, and their average ω̄, are bounded between 0 and 1. The average ω̄
reflects the overall usefulness of the information in the interpolated flow field for the
desired forecast. For example, maybe the sequence of future forecasts traverses re-
gions of the flow field not represented in the skeleton; in these cases the interpolated
flow field provides little or no useful information, and ω̄ ≈ 0. Or maybe the future
process always lands on or near histories where the flow field has been observed; in
these cases the Gaussian process regression prediction has zero or near zero error,
and ω̄ ≈ 1. The average ω̄ is a measure of the extent to which the flow field model
explains the future; ω̄ is the counterpart for flow field forecasting of the coefficient
of determination in least squares regression.

The square of the standard forecast error in (13) is roughly linear with time into
the future. Since 0 ≤ ω̄ ≤ 1, we obtain from (13) the simple upper bound

√

σ̂2 +∆(tF − tN )S2
d
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for the standard error. Notably, this error bound can be calculated from just the
spline fit in step I.

5. Demonstrations of flow field forecasting

We begin with demonstrations of flow field forecasting based on two fabricated time
series, each with N = 1, 000 uniformly spaced observations. Each time series was
fabricated according to model (1) with σ = 50. Fig. 2 shows each time series
with its extracted skeleton based on K = 40 knots. In each case the spline fit (2)
satisfactorily estimates σ, with respective estimates σ̂ = 51.2 and σ̂ = 50.7 for the
two series. Fig. 2 also shows the incremental development of forecasts for the two
series, going out M = 15 knot steps—against roughly K = 40 knot steps spanned
by the data. The forecasts are given with 50% and 95% confidence error bounds.
These bounds are based on the standard error in (13), and they assume a normal
error distribution.

The forecasts and the growth of the forecasting error in the two cases of Fig. 2
are distinctly different. In the case of data set 1, the forecast is accessing a region of
the interpolated flow field with significant information, and the forecast is effectively
capturing that information, reflecting, for example, the somewhat periodic dynamic
in the past data. The information drawn from the flow field allows the forecast to
proceed with error that grows relatively slowly. In the case of data set 2 on the other
hand, the present time is characterized by levels declining to around 400 and there
is very little data for this history in the flow field. When the flow field is accessed
to construct a forecast, it recommends only small changes, and it does so with large
cautionary standard errors. Thus the prediction error grows much more rapidly in
this latter case.

We next compare flow field forecasting with standard forecasting methods, using
data sets commonly employed for this type of comparison. In particular, we look at
head-to-head comparisons of flow field forecasting with Box-Jenkins ARIMA mod-
eling [5], exponential smoothing [3, 4] and artificial neural networks [6, 7]. The four
data sets we use for our comparisons are:

Births (N = 365) The daily total number of female births in California in 1959
[18]. These numbers vary between about 30 to 60 per day.

Pines (N = 625) Tree rings index data for Ponderosa pines in Bryce Water Canyon,
Utah, from 1340 to 1964 [19].

S&P (N = 388) The Standard & Poor 500 stock index is employed as a measure
of the general level of U.S. stock prices, as it includes both “growth” stocks
and less volatile “value” stocks. The components of the S&P 500 index are
selected by committee and change over time [20].

Spots (N = 288) Wolf’s relative sunspot numbers from 1700 to 1987 [21]. The rela-
tive sunspot number counts a combination of sunspots and groups of sunspots
observed on the Sun. These data exhibit a 10.5-year cycle. The attribution of
these data is discussed in [22].
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Figure 2. Two fabricated time series with flow field forecasts.

For each data set the number K of knots used for flow field forecasting was
the smaller of N/4 and 35, and the amount of smoothing for the penalized spline
regression in step 1 was obtained using Wand’s aymptotic expression [16]. Also,
we estimated the characteristic length (a key parameter in the squared exponen-
tial covariance model used in step II for the Gaussian process regression) by 20/K.
These crude rules-of-thumb somewhat limited the relative performance of flow field
forecasting in our comparisons, but their strict application also protected against
possibly unfairly "tweaking" the flow field forecast. We made similar straightfor-
ward choices for the other three competing forecasting methods, in an attempt to
duplicate typical performances that might be seen in practice.
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For our comparisons we set aside the ten most recent observations from each
data set, used each of the four methods to forecast these values and then scored the
four methods based on their mean absolute errors

MAE =
1

10

10
∑

i=1

|Yi − Ŷi| , (14)

where Yi is the known value and Ŷi is the corresponding forecast value. Since flow
field forecasting only gives forecasts at knot times, for these comparisons forecasts
for times between knots were derived by simple quadratic interpolation. Shown
in Fig. 3 is the relative performance of the four forecasting techniques with each
of the data sets above. Fig. 3 gives the MAE of each technique as a precent of
the worst performing technique for each data set; so for each data set the worst
performer had 100% relative MAE and the best performer had the lowest relative
MAE. Flow field forecasting was best or second best for each data set. Of course, no
comparisons based on four—or four hundred—data sets can be determinative. The
present comparison, though, does suggest that flow field forecasting can perform as
well as, or better than, the most popular statistical forecasting techniques.

Births Pines S&P Spots

20

40

60

80

100

Percent MAE Relative to Worst

FFF
ES
ARIMA
ANN

Figure 3. Relative performance of flow field forecasting (FFF),

exponential smoothing (ES), ARIMA modeling and artificial

neural network (ANN) modeling with four common data sets.

6. Closing remarks

Flow field forecasting is perhaps best viewed first and foremost as an (inductivist)
framework for forecasting, in which choices of techniques are available for steps I
and II. For example, kernel averaging might be used instead of penalized spline
regression to build the step I data skeleton. Or an artificial neural network might
be used in place of Gaussian process regression to interpolate the flow field in step
II. Preprocessing prior to steps I or II might be applied, also, within the frame-
work of flow field forecasting. Deseasonalization [23], detrending, differencing, log
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transformation, and multiple averaging, in particular, have all been found in one
or more contexts with other forecasting methods to have an impact on forecast-
ing performance [24]. The relative merits of these and other implementations and
modifications of flow field forecasting are attractive subjects for future study.

Histories in flow field forecasting are short sequences of (not necessarily con-
secutive) knots developed from the penalized spline regression in step I of the flow
field forecast. Our idea of history in flow field forecasting is notionally similar to
that of a motif used in data mining. The purposes of motifs and histories are very
different, though. Data mining seeks, as a task in unsupervised learning, to extract
motifs [25] and, for example, evaluate their significance [26]. Flow field forecasting,
by contrast, is performing supervised learning to interpolate a new change for a
current history based on a set of past observed associations between history and
change. We prefer the distinctive term “history” partly because of this difference.

We noted in the Introduction the essential challenge that time series forecasting
presents. Extrapolation into the future is problematic (see Fig. 4) even in the best of
circumstances. A remarkable feature of flow field forecasting is that it translates this
extrapolation into a cumulative series of interpolations; with flow field forecasting,
instead of forecasting into the future, we interpolate changes in the flow field. This
in no way reduces the risk inherent in forecasting, but it does offer a new way to
understand and address that risk.
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Figure 4. Forecasting is problematic [27].
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